The present application claims priority to Korean Patent Application No. 10-2016-0169822 filed on Dec. 13, 2016, the entire contents of which are incorporated herein for all purposes by this reference.
The present invention relates to an exhaust gas purification apparatus and method for controlling the same. More particularly, the present invention relates to an exhaust gas purification apparatus and method for controlling the same which adjusts an oxygen purge period after fuel-cut according to a degradation level of a three way catalyst to improve performance of a three way catalyst.
Recently, according to an increased usage of vehicles and increased traffic volume, air pollution due to exhaust gas has come to the fore as a serious social problem.
Therefore, governments of every country have set an emission standard of pollutants in exhaust gas such as carbon monoxide (CO), hydrocarbon (HC), nitrogen oxide (NOx) and the like to regulate exhaust gas. Regulations on exhaust gas are becoming more and more strict.
Further, manufacturers of vehicles make a great effort to effectively cope with the regulations on exhaust gas which are becoming stricter. A novel vehicle is manufactured in accordance with an exhaust gas emission standard.
Particularly, to satisfy an exhaust gas emission standard, a three way catalyst converter in which a noble metal is immersed is disposed in an exhaust system of the vehicle to accelerate the oxidation of hydrocarbon, oxidation of carbon monoxide, and reduction of nitrogen oxide.
The three way catalyst refers to a catalyst which simultaneously reacts with a hydrocarbon based compound, carbon monoxide, and nitrogen oxide (NOx) to remove these compounds and a Pt/Rh, Pd/Rh or Pt/Pd/Rh catalyst is mainly used.
The three way catalyst performs a function of reducing carbon monoxide and hydrocarbon or reducing nitrogen oxide in response to a change of a lean (excessive oxygen) state and a rich (excessive fuel) state with respect to the air-fuel ratio of exhaust gas.
In the meantime, in a fuel cut state, unburned air passes through the three way catalyst so that oxygen is stored in the three way catalyst. When fuel is reinjected, the purification rate of nitrogen oxide is significantly lowered due to the stored oxygen. To prevent the lowering of the purification rate, an oxygen purge (O2 purge) function which excessively injects fuel at the time of reinjecting the fuel to consume oxygen is performed.
However, catalyst performance deteriorates as the three way catalyst degrades. When the three way catalyst is controlled in a region that the amount of oxygen storage capacity (OSC) is below a certain value, control becomes difficult since the variation of catalyst performance according to a variation of the OSC is large, therefore deterioration of the catalyst performance such as emissions etc. is generated.
The information disclosed in this Background of the Invention section is only for enhancement of understanding of the general background of the invention and should not be taken as an acknowledgement or any form of suggestion that this information forms the prior art already known to a person skilled in the art.
Various aspects of the present invention are directed to providing an exhaust gas purification apparatus and method for controlling the same which determines an inflection point by use of the variation amount of the OSC after fuel-cut during the cold engine period, and controls an oxygen purge period differently around the inflection point.
A method for controlling an exhaust gas purification apparatus in a form of a catalyst oxygen purge control method during a cold engine period includes a three way catalyst (TWC) converter purifying exhaust gas expelled from the engine may include determining whether a fuel cut condition of an injector which injects fuel to the combustion chamber is satisfied; performing a fuel cut of the injector when the fuel cut condition is satisfied; determining the heat load of the three way catalyst using a temperature detector and an exhaust gas flow rate detector; measuring the oxygen storage capacity (OSC) stored in the three way catalyst according to the heat load; determining an inflection point using the variation amount of the OSC; and controlling an oxygen purge period differently around the inflection point.
The inflection point may include a point wherein the decreasing rate of the variation amount of the OSC is changed.
In the determining of an inflection point, the heat load may be determined by accumulating temperature and exhaust gas flow rate of a front end portion of the three way catalyst, and a decreasing rate of the OSC may be determined by measuring the amount of the OSC according to the heat load, and when the absolute value of the decreasing rate of the OSC is below a certain value, it may be determined that the inflection point has past.
In the controlling of an oxygen purge period differently, when the variation amount of the OSC is before the inflection point, the oxygen purge period may be controlled to be increased linearly; and when the variation amount of the OSC is after the inflection point, the oxygen purge period may be controlled to have a predetermined set value.
The OSC may be measured using a chemical adsorption method, a simulation activation evaluation device, an engine, or a vehicle.
The OSC during vehicle driving may be measured in a state that the three way catalyst is disposed in the vehicle.
A criteria of the cold engine during the cold engine period may be that an exhaust gas temperature at a front end portion of the three way catalytic converter is lower than approximately 400° F. and the time is before activation of the three way catalyst.
A criteria of the cold engine during the cold engine period may be before approximately 200 seconds after starting the engine, and before the activation of the three way catalyst.
The oxygen purge period may be determined by the oxygen storage capacity of the three way catalyst.
Meanwhile, an exhaust gas purification apparatus according to an exemplary embodiment of the present invention includes a three way catalyst (TWC) disposed at an exhaust line which exhaust gas expelled from an engine passes, and changing harmful material including carbon monoxide, hydrocarbon, and nitrogen oxide included in the exhaust gas into harmless components; an oxygen detector configured for measuring oxygen storage capacity (OSC) stored in the three way catalyst; and a controller configured to determine the heat load of the three way catalyst and control the oxygen purge period by use of the variation amount of the OSC according to the heat load.
The controller may determine an inflection point wherein the decreasing rate of the variation amount of the OSC is changed, and controls the oxygen purge period differently around the inflection point.
The controller may control the oxygen purge period to be increased linearly when the variation amount of the OSC is before the inflection point, and control the oxygen purge period to have a predetermined set value when the variation amount of the OSC is after the inflection point.
As described above, according to an exemplary embodiment of the present invention, optimum control to three way catalyst performance is possible and exhaust gas purification performance may be improved by determining an inflection point using the variation amount of the OSC and controlling the oxygen purge period differently around the inflection point.
The methods and apparatuses of the present invention have other features and advantages which will be apparent from or are set forth in more detail in the accompanying drawings, which are incorporated herein, and the following Detailed Description, which together serve to explain certain principles of the present invention.
It should be understood that the appended drawings are not necessarily to scale, presenting a somewhat simplified representation of various features illustrative of the basic principles of the invention. The specific design features of the present invention as disclosed herein, including, for example, specific dimensions, orientations, locations, and shapes will be determined in part by the particular intended application and use environment.
In the figures, reference numbers refer to the same or equivalent parts of the present invention throughout the several figures of the drawing.
Reference will now be made in detail to various embodiments of the present invention(s), examples of which are illustrated in the accompanying drawings and described below. While the invention(s) will be described in conjunction with exemplary embodiments, it will be understood that the present description is not intended to limit the invention(s) to those exemplary embodiments. On the contrary, the invention(s) is/are intended to cover not only the exemplary embodiments, but also various alternatives, modifications, equivalents and other embodiments, which may be included within the spirit and scope of the invention as defined by the appended claims.
It will be understood that when an element is referred to as being “on” or “over” another element, it can be directly on the other element or intervening elements may also be present.
Hereinafter, an exhaust gas purification apparatus and method for controlling the same according to an exemplary embodiment of the present invention will be described with accompanying drawings.
Referring to
Outside air is supplied to the combustion chamber 102 of the engine 100, the injector 104 injects a predetermined fuel amount to the combustion chamber 102 at a predetermined time, and the combusted exhaust gas is exhausted to outside through the three way catalyst 120 of the exhaust line 110.
The three way catalyst 120 is disposed in the exhaust line 110 which the exhaust gas expelled from the engine 100 passes, and changes harmful materials including carbon monoxide, hydrocarbon, and nitrogen oxide into harmless materials by an oxidation-reduction reaction.
The lambda detector 130 is configured to detect a lambda value of the exhaust gas passing through the exhaust line 110, transmits the present signal to the controller 160, and the controller 160 may control the injector 104 by use of the lambda value, and determine state whether or not the fuel of the injector 104 is cut.
The temperature detector 140 is disposed at a front or rear end portion of the three way catalyst 120, and configured to measure the temperature of the exhaust gas or the three way catalyst 120, and supplies the temperature information to the controller 160.
Further, the oxygen detector 150 is configured to measure an oxygen storage capacity (hereinafter, OSC) and to supply the measured oxygen storage capacity information to the controller 160. Here, it is described that the oxygen detector 150 is disposed at the three way catalyst 120, but the oxygen detector 150 may be disposed at a front or rear end portions, but is not limited thereto.
Meanwhile, the OSC may be measured using a chemical adsorption method, a simulation activation evaluation device, an engine, or a vehicle, and the OSC during vehicle driving may be measured in a state that the three way catalyst is disposed in the vehicle.
The controller 160 is configured to determine heat load of the three way catalyst 120 by use of information of the temperature measured at the temperature detector 140, and controls the oxygen purge period by use of a variation amount of the OSC according to the heat load.
The controller 160 controls the oxygen purge period to be increased linearly when the variation amount of the OSC is before the inflection point, and controller 160 controls the oxygen purge period to have a predetermined set value when the variation amount of the OSC is after the inflection point. Here, the predetermined set value includes predetermined values for maintaining catalyst performance on the basis of a distance value which is the warranty period of the catalyst.
For the present purpose, the controller 160 may be realized by at least one microprocessor operated by a predetermined program, and the predetermined program may be programmed to perform respective steps of the method for controlling an exhaust gas purification apparatus according to an exemplary embodiment of the present invention.
Referring to
Next, when the fuel cut condition is satisfied, the fuel cut of the injector is performed S202.
Next, the exhaust gas purification apparatus according to an exemplary embodiment of the present invention determines the heat load of the three way catalyst 120 using a temperature detector and an exhaust gas flow rate detector S203.
Then, the exhaust gas purification apparatus measures the oxygen storage capacity (OSC) stored in the three way catalyst according to the heat load S204.
The exhaust gas purification apparatus determines an inflection point using the variation amount of the OSC S205. Here, the inflection point includes a point where the decreasing rate of the variation amount of the OSC is changed. The inflection point may include a point which reducing tendency according to catalyst aging time is critically and smoothly reduced.
The exhaust gas purification apparatus determines the heat load by accumulating the temperature and exhaust gas flow rate of a front end portion of the three way catalyst, and determines a decreasing rate of the OSC by measuring the amount of the OSC according to the heat load. Further, the exhaust gas purification apparatus may determine that the inflection point is past when the absolute value of the decreasing rate of the OSC is below a certain value.
Further, the exhaust gas purification apparatus may control the oxygen purge period according to the three way catalyst aging when the OSC value according to the heat load is bigger than the OSC value of the inflection point S206 and S207.
Further, the exhaust gas purification apparatus may control that the oxygen purge period has a predetermined set value when the OSC value is smaller than the OSC value of the inflection point S206 and S208. Here, the predetermined set value includes predetermined values for maintaining catalyst performance on the basis of a distance value which is the warranty period of the catalyst.
The amount of the OSC of the three way catalyst reduces rapidly according to degradation at an initial stage, and the amount of the OSC reduces smoothly after a certain time. Accordingly, there is an inflection point which the variation tendency of the OSC changes as shown in
Before the inflection point (Zone_1), variation of the OSC according to aging time is large, but EM effect according to the variation of the OSC is small, so controlling the control variable related to the performance of the three way catalyst, that is the oxygen purge period, is easy.
However, after the inflection point (Zone_2), variation of the OSC according to aging time is small, but EM effect according to the variation of the OSC is sensitive, so controlling the control variable related to the performance of the three way catalyst, that is the oxygen purge period, is difficult.
Meanwhile,
Referring to
As illustrated in
Referring to
Referring to
Referring to
Referring to
However, after the inflection point (Zone_2), variation of the OSC according to aging time is small, but EM effect according to the variation of the OSC is sensitive, so controlling the control variable related to the performance of the three way catalyst, that is the catalyst heating time, is difficult.
Referring to
Referring to
However, referring to
Accordingly, the exhaust gas purification apparatus according to an exemplary embodiment of the present invention controls an oxygen purge period related to the performance of the three way catalyst on the basis of the inflection point, as shown in
Further, after the inflection point (Zone_2), the oxygen purge period (D) is controlled to have a predetermined set value according to the amount of the OSC (B) according to the heat load at the inflection point.
Further, the exhaust gas purification apparatus according to an exemplary embodiment of the present invention controls the catalyst heating period related to the performance of the three way catalyst on the basis of the inflection point, as shown in
Further, after the inflection point (Zone_2), the catalyst heating period (D) is controlled to have a predetermined set value according to amount of the OSC (B) according to the heat load at the inflection point.
As described above, according to an exemplary embodiment of the present invention, optimum control of the three way catalyst performance is possible and exhaust gas purification performance may be improved by determining an inflection point using the variation amount of the OSC, and controlling an oxygen purge period differently around the inflection point.
For convenience in explanation and accurate definition in the appended claims, the terms “upper”, “lower”, “internal”, “outer”, “up”, “down”, “upwards”, “downwards”, “front”, “back”, “rear”, “inside”, “outside”, “inwardly”, “outwardly”, “internal”, “external”, “forwards”, and “backwards” are used to describe features of the exemplary embodiments with reference to the positions of such features as displayed in the figures.
The foregoing descriptions of specific exemplary embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teachings. The exemplary embodiments were chosen and described to explain certain principles of the invention and their practical application, to enable others skilled in the art to make and utilize various exemplary embodiments of the present invention, as well as various alternatives and modifications thereof. It is intended that the scope of the invention be defined by the Claims appended hereto and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2016-0169822 | Dec 2016 | KR | national |