Claims
- 1. In an exhaust recirculation control system for an internal combustion engine for a vehicle, the engine having an intake passage with a pressure responsive auxiliary fuel supply device, and having an exhaust gas recirculation passage, the improvement comprising, in combination: a flow regulating valve in the exhaust gas recirculation passage, said flow regulating valve being actuated by suction pressure in the engine intake passage, a regulating valve means responsive to intake passage suction pressure for controlling actuating suction pressure to said flow regulating valve, a control suction air line communicating with the intake passage and said regulating valve means, means for changing the flow resistance through the control suction air line, said means being responsive to a predetermined control factor relating to an operating condition of the engine or the vehicle, whereby said flow regulating valve and said auxiliary fuel supply device are controlled in a manner such that the flow rate of exhaust gas being recirculated and the flow rate of fuel being supplied to the engine are varied in response to said predetermined control factor.
- 2. The combination set forth in claim 1 in which said control factor may include temperature of engine cooling water, vehicle speed, engine load, or atmospheric pressure.
- 3. The combination set forth in claim 1 in which the control suction air line is provided with a plurality of orifices, and valve means for selectively directing flow through said orifices for changing the flow resistance through the control suction line.
- 4. An exhaust gas recirculation control system for an internal combustion engine for a vehicle, the engine having an intake passage with a pressure responsive auxiliary fuel supply device, and having an exhaust gas recirculation passage, the improvement comprising, in combination: a first suction pressure line extending from a first suction pressure detecting port opening in said intake passage at a location near a throttle valve of a carburetor provided in said intake passage, a flow regulating valve in the exhaust gas recirculation passage and having a suction chamber for operating said valve, said first suction pressure line communicating with said suction chamber, a second suction pressure detecting port opening in a venturi of said carburetor, a second suction pressure line extending from said second suction pressure detecting port, a third suction pressure detecting port opening in said intake passage at a location downstream of said throttle valve, a control suction air line extending from said third suction pressure detecting port and leading to an air intake port, a regulating valve including a valve chamber formed across said second suction pressure line, a suction pressure chamber adjacent to said valve chamber with a diaphragm intervening therebetween, a connecting line extending between said suction chamber of the flow regulating valve and the valve chamber, a valve element secured to said diaphragm for opening or closing an open end of the connecting line, an air valve including a valve chamber formed across said control suction air line and communicating with said suction pressure chamber of said regulating valve, a suction pressure chamber formed adjacent to said valve chamber with a diaphragm intervening therebetween and communicating with said suction chamber of said flow regulating valve, and a valve element secured on said diaphragm for opening or closing the downstream side of said control suction air line, means for changing the resistance to flow produced between said air valve and said air intake port, wherein said auxiliary fuel supply device and said flow regulating valve are arranged to be controlled at the same time by a predetermined control factor.
- 5. The combination set forth in claim 4 wherein said control factor is temperature of engine cooling water.
- 6. The combination set forth in claim 4 wherein the changing means comprises orifice means provided in said control suction air line at a location between said air valve and said intake port, at least one bypass channel bypassing said orifice means, and a solenoid valve for opening or closing said bypass channel.
- 7. The combination set forth in claim 4 wherein the changing means comprises orifice means provided in said control suction air line at a location between said air valve and said intake port, at least one bypass channel bypassing said orifice means, at least one solenoid valve for opening or closing said bypass channel, said pressure responsive auxiliary fuel supply device comprising an auxiliary fuel supply valve in the carburetor, a suction pressure conduit connecting said auxiliary fuel supply valve to the intake passage downstream from the throttle valve, and a second solenoid valve for opening or closing said suction pressure conduit.
- 8. The combination set forth in claim 7, wherein said bypass channel comprises first and second channels each provided with a solenoid valve, one of the solenoid valves being connected to said second solenoid valve, said solenoid valves being independently operated with respect to each other by different control factors.
- 9. The combination set forth in claim 8 wherein said different control factors are temperature of engine cooling water and vehicle speed.
- 10. In an exhaust gas recirculation control system for an internal combustion engine for a vehicle, the engine having an intake passage with a pressure responsive auxiliary fuel supply device, and having an exhaust gas recirculation passage, the improvement comprising, in combination: a flow regulating valve in the exhaust gas recirculation passage, said flow regulating valve being responsive to suction pressure in the engine intake passage, a pressure control valve means for controlling suction pressure introduced from the intake passage into the flow regulating valve, said pressure control valve means having a pressure chamber and a valve chamber, said valve chamber including a valve to regulating suction pressure introduced into the flow regulating valve, a control pressure line connecting said pressure chamber to the intake passage, an air conduit connecting said pressure chamber to atmosphere, means for changing the flow resistance through the air conduit, said means being responsive to a predetermined control factor relating to an operating condition of the engine or the vehicle, whereby said flow regulating valve and said auxiliary fuel supply device are controlled in a manner such that the flow rate of exhaust gas being recirculated and the flow rate of fuel being supplied to the engine are varied in response to said predetermined control factor.
- 11. The combination set forth in claim 10 in which said control factor may include temperature of engine cooling water, vehicle speed, engine load, or atmospheric pressure.
- 12. The combination set forth in claim 10 in which the air conduit is provided with a plurality of orifices, and valve means for selectively directing flow through said orifices for changing the flow resistance through the air conduit.
Priority Claims (1)
Number |
Date |
Country |
Kind |
55-11763 |
Feb 1980 |
JPX |
|
Parent Case Info
This is a continuation, of application Ser. No. 228,218, filed Jan. 26, 1981 now abandoned.
US Referenced Citations (9)
Foreign Referenced Citations (6)
Number |
Date |
Country |
53-17803 |
Feb 1978 |
JPX |
54-30304 |
Mar 1979 |
JPX |
54-36425 |
Mar 1979 |
JPX |
54-72334 |
Jun 1979 |
JPX |
55-54658 |
Apr 1980 |
JPX |
2068458 |
Aug 1981 |
GBX |
Continuations (1)
|
Number |
Date |
Country |
Parent |
228218 |
Jan 1981 |
|