The present invention relates generally to engine systems and more specifically to an engine cooling system.
It is generally known that the combustion process within an engine produces noxious oxides of nitrogen (NOx), which causes undesirable results, such as pollution. The presence of NOx in the exhaust gas of internal combustion engines is generally understood to depend upon the temperature of combustion within the combustion chamber of an engine. To control the emissions of unwanted exhaust gas constituents from internal combustion engines, it is known to re-circulate a portion of the exhaust gas back to an air intake portion of the engine. Because the re-circulated exhaust gas effectively reduces the oxygen concentration of the combustion air, the flame temperature at combustion is correspondingly reduced, which decreases the emissions of NOx since the NOx production rate is exponentially related to flame temperature.
It is further known to cool the re-circulated exhaust gas prior to introducing the gas at the engine air intake port. Thus, an EGR cooler is typically arranged within the exhaust gas recirculation system to cool the stream of re-circulated exhaust gas. The temperature of the exhaust gas exiting from the cooler is critical both to the NOx control process and to the integrity of the cooler and the downstream components, such as EGR conduits, EGR flow control valves, and the engine.
However, next generation emission standards will require lower intake manifold temperatures. In order to meet these standards, a new approach to EGR-cooler-coolant plumbing is needed. The present invention addresses such a need.
A cooling system for an engine is disclosed. In a first embodiment, the cooling system may comprise a heat exchanger, a pump coupled to the heat exchanger, an EGR cooler coupled to the pump, and a first valve coupled to the EGR cooler and the heat exchanger. When the first valve is in a first position, the first valve directs a coolant to the heat exchanger and when the first valve is in a second position, the heat exchanger is bypassed and coolant flows directly to the pump.
Through the use of the above described system the rate that coolant flows throughout the system is maximized when the valve is in an open position and engine can warm up in an efficient manner when the valve is in a closed position.
The present embodiment is illustrated by way of example and not limitation in the figures of the accompanying drawings, in while like references indicate similar elements, and in which:
The present invention relates generally to engines and more specifically to an engine cooling system. The following description is presented to enable one having ordinary skill in the art to make and use the embodiment and is provided in the context of a patent application and the generic principles and features described herein will be apparent to those skilled in the art. Thus, the present embodiment is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features described herein.
A cooling system is disclosed for engines that meet the requirements of next generation emissions standards. The system utilizes exhaust gas recirculation (EGR) cooler plumbing and reduced EGR cooler inlet temperatures, while minimizing a coolant flow-rate decrease through a cylinder head and cylinder block of the engine.
Furthermore, the cooling loop also features the pump 101 coupled to an EGR cooler 105 within the cooling system. That is, pump 101 may have a dual outlet 109 to direct a coolant to both the cylinder block 102 and the EGR cooler 105. The cooling system 100 also comprises a valve 106 which is coupled to the EGR cooler 105 and the heat exchanger 108. For an embodiment, the valve 106 is coupled to the outlet of the EGR cooler 105 and the inlet of the heat exchanger 108.
A method and system in accordance with the present invention is shown by the flowchart in
The pump 101 may be coupled to the cylinder block 102 and the EGR cooler 105 through conduits, channels, pipes, inlets, outlets, and any other suitable connections known in the art. For an embodiment, the pump 101 is coupled to the cylinder block 102 and the EGR cooler 105 through pipes embedded within the cooling system 100 such that a coolant flows from the pump 101 to the cylinder block 102 and from the pump 101 to the EGR cooler 105, as shown in
Within cooling system 100, the valve 106 regulates the flow of coolant from the EGR cooler 105. The valve 106 directs the coolant according to the position of the valve 106. Accordingly, the valve 106 may take on multiple positions within the cooling system 100 such as, but not limited to, an open-valve position or a closed-valve position. For example, when valve 106 is in an open-valve position, valve 106 directs the coolant to the heat exchanger 108, as shown in
Valve 106 may have various configurations such as the valve shown in
For an embodiment when valve 106 is a thermally-controlled valve, valve 106 opens upon when the coolant temperature is greater than a pre-set threshold temperature. As such, valve 106 may comprise a thermostat that measures the temperature of the coolant from the EGR cooler 105 and takes on a position based upon the temperature of the coolant relative to the threshold temperature. For example, when the threshold temperature is 190° F., the valve 106 opens and directs the coolant to the heat exchanger 108 when the coolant temperature has exceeded the threshold temperature. Alternatively for the embodiment, the valve 106 remains closed when the coolant temperature is below the threshold temperature of 190° F. The valve 106 may take on pre-set default positions such as, but not limited to, normally open or normally-closed valve positions. For example, when valve 106 is normally open, coolant flows continuously from the EGR cooler 105 to the heat exchanger unless the coolant temperature is less than the pre-set threshold temperature. For an embodiment, however, valve 106 is normally closed and therefore directs coolant from the EGR cooler 105 to the pump 101 when the coolant temperature exceeds the threshold temperature.
Accordingly, the valve 106 may operate as a control valve within the cooling system 100 and may be used to engage various system functions. For example, when valve 106 is fully closed, the cooling system 100 can allow the engine 120 to warm up more quickly than when valve 106 is open. It is known that while the engine is running, heat will be transferred to components, parts, and fluids in proximity to the engine 120. That is, by closing the valve 106, the coolant will increase in temperature as heat transfers from the engine and will re-circulate through the system 100 without passing through the heat exchanger 108. As such, when valve 106 is closed the cooling system 100 institutes a bypass system to prohibit the coolant from flowing through the heat exchanger 108.
Additionally, the valve 106 may be used to maximize the flow rate of coolant within the cooling system 100. Accordingly, valve 106 is fully open and directs the coolant from the EGR cooler 105 to the heat exchanger 108 to be cooled prior to entry into an inlet of pump 101. Additionally, the pump 101 may comprise a dual outlet to split the coolant into first and second portions of coolant. The first portion of coolant is directed to the cylinder block 102 and the remaining portion of coolant is directed to the EGR cooler 105. Thus, by splitting the coolant, a large pressure differential occurs in the EGR cooler 105, which maximizes overall the flow rate of coolant throughout the cooling system 100. For an embodiment, however, valve 106 is normally closed and therefore directs coolant from the EGR cooler 105 to the pump 101 until the coolant temperature exceeds the threshold temperature.
The cooling system 100 may also comprise additional components such as a second valve 107 and auxiliary devices 104, as shown in
Although the present embodiment has been described in accordance with the embodiments shown, one having ordinary skill in the art will readily recognize that there could be variations to the embodiments and those variations would be within the spirit and scope of the present embodiment. Accordingly, many modifications may be made by one having ordinary skill in the art without departing from the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5732688 | Charlton et al. | Mar 1998 | A |
6237547 | Ishiyama | May 2001 | B1 |
6244256 | Wall et al. | Jun 2001 | B1 |
7299771 | Wei et al. | Nov 2007 | B2 |
20060157002 | Pfeffinger et al. | Jul 2006 | A1 |
20060213459 | Theorell | Sep 2006 | A1 |
20070157893 | Wei et al. | Jul 2007 | A1 |
20080271721 | Wikstrom | Nov 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20100147272 A1 | Jun 2010 | US |