Applicant claims priority under 35 U.S.C. ยง119 of German Application No. 10 2006 009 153.1 filed Feb. 24, 2006.
Field of the Invention
The present invention relates to an exhaust gas recirculation device for an internal combustion engine, in particular in motor vehicle.
DE 44 29 232 C1 describes an exhaust gas recirculation device which has a recirculation line and is equipped with a fresh gas line section. A Venturi nozzle is provided in an inlet area of the fresh gas line section. The recirculation line is connected to the fresh gas line section so that it opens into a low pressure area of the Venturi nozzle.
In particular with supercharged internal combustion engines, the pressure in the fresh gas line in many operating ranges of the internal combustion engine may be higher than the pressure in the exhaust line. Exhaust gas recirculation is then impossible without additional measures. By using a Venturi nozzle, the pressure in the fresh gas line can be lowered locally, so that there is an adequate pressure gradient between the exhaust gas line and the fresh gas line to allow the desired exhaust gas recirculation.
However, the desired local reduction in pressure can be achieved with a Venturi nozzle only if the velocities of flow prevailing therein are relatively high, e.g., greater than 0.65 Mach. In addition, the throughput through a Venturi nozzle is limited to the flow rate established on reaching the velocity of sound. Therefore, the design of the Venturi nozzle must take into account the maximum required flow rate of fresh gas. At a low engine speed and/or at a low load, the velocity of flow in the Venturi nozzle is reduced to such an extent that in many applications the pressure drop required for intake of the exhaust gas is not achieved.
U.S. Pat. No. 6,502,397 B1 describes another exhaust gas recirculation device that operates with a Venturi nozzle. A mouth section of the recirculation line there is arranged coaxially with the Venturi nozzle and is mounted axially adjustably on the fresh gas line section. By axial positioning of the mouth opening of the recirculation line in relation to the Venturi nozzle, the pressure prevailing at the mouth opening can be varied. The recirculation rate can be adjusted in this way. However, even with this embodiment, the Venturi nozzle is to be designed for the maximum required fresh gas flow rate.
The present invention relates to the problem of providing an improved embodiment for an exhaust gas recirculation device of the type defined above, characterized in particular in that it operates reliably in a comparatively large operating range of the internal combustion engine and allows an adequate, preferably adjustable exhaust gas recirculation rate.
This problem is solved according to this invention by the subject matter disclosed herein. A number of advantageous embodiments are described.
The invention is based on the general idea of designing the Venturi nozzle with a variable nozzle geometry such that the narrowest flow cross section of the Venturi nozzle can be varied, i.e., is adjustable. For high fresh gas flow rates, a comparatively large flow cross section can thus be adjusted to adjust the desired pressure drop in flow-through close to the velocity of sound and thus to adjust the respective desired recirculation rate. With small fresh gas flow rates, the flow cross section can be narrowed accordingly so that here again velocities of flow near the velocity of sound can be implemented. Accordingly, even with relatively small flow rates, it is possible to adjust an adequate pressure drop in the Venturi nozzle to achieve the particular exhaust gas recirculation rate desired. To this extent, the variable Venturi nozzle makes it possible to achieve the pressure drop in the Venturi nozzle required for implementation of the particular exhaust gas recirculation rate desired and to do so over a large operating range of the internal combustion engine, preferably over the entire operating range. The exhaust gas recirculation device therefore becomes more efficient and improves the emissions of the internal combustion engine equipped therewith over a larger operating range.
The adjustability of the flow cross section can be implemented essentially in various ways with the Venturi nozzle. In a preferred embodiment, the Venturi nozzle has at least one adjustable wall section which is adjustable with regard to its distance with respect to an opposing wall section. The flow cross section of the Venturi nozzle can be adjusted by varying the distance measured across the direction of flow of the Venturi nozzle. An embodiment with such an adjustable wall section can be implemented comparatively inexpensively.
Additional important features and advantages of the invention will become apparent from the following detailed description considered in connection with the accompanying drawings.
It is self-evident that the features mentioned above and those yet to be explained below may be used not only in the particular combination given but also in other combinations or alone without going beyond the scope of the present invention.
Preferred exemplary embodiments of the present invention are depicted in the drawings and explained in greater detail in the following description, where the same reference numerals refer to the same or similar or functionally identical components.
The drawings show schematically in each case
According to
In the fresh gas line section 8, an inlet area 9 where a Venturi nozzle 10 is provided is provided for the exhaust gas inlet. The recirculation line 7 is connected to the fresh gas line section 8 so that the recirculation line 7 opens into the fresh gas line section 8 in a low pressure range 11 of the Venturi nozzle 10. According to this invention, the Venturi nozzle 10 is designed so that it has a variable flow cross section, which is represented by the arrow 12 in
The internal combustion engine 1 is preferably a supercharged combustion engine 1, e.g., a diesel engine or a gasoline engine having a charging device, i.e., a charger 13 in the fresh gas line 4. In the exemplary embodiment shown here, the charger 13 is a compressor 14 of an exhaust gas turbocharger 15 whose turbine 16 is installed in the exhaust line 5. Essentially, however, another embodiment of the charger 13 is possible, e.g., a mechanically driven compressor, in particular a roots blower.
Downstream from the charger 13 a charging air cooler 17 may be provided in the fresh gas line 4. Upstream from the fresh gas line section 8, an exhaust gas recirculation cooler 18 may be arranged in the recirculation line 7. In addition, the recirculation line 7 e.g., the exhaust gas recirculation cooler 18, may contain a cutoff valve 19.
According to
To be able to vary the flow cross section, the Venturi nozzle 10 may have at least one adjustable wall section 21 according to the embodiment shown here. The adjustable wall section 21 is adjustable with respect to its distance with respect to an opposing wall section 22. In the examples shown here, the wall section 22 mentioned last is fixed and is therefore referred to below as fixed wall section 22. The distance between the adjustable wall section 21 and the fixed wall section 22 is measured across the direction of flow 23 of the Venturi nozzle 10. This direction of flow 23 is represented here by an arrow. The wall sections 21, 22 of the Venturi nozzle 10 form a Venturi nozzle profile in the direction of flow 23, said profile initially converging and then diverging. In this way, a variable flow cross-sectional area is obtained in the direction of flow 23. In the exemplary embodiments shown here, the Venturi nozzle 10 has essentially a rectangular profile across its direction of flow 23. This design simplifies the implementation of the variable flow cross section by means of the adjustable wall section 21. The wall sections 21, 22 are bordered laterally, i.e., across the direction of flow 23 by side walls 24, only one of which is discernible in the sectional views shown here. These side walls 24 may be planar to be able to adjust the adjustable wall section 21 comparatively tightly along the side walls 24 across the direction of flow 23.
With the embodiment shown in
To this end, the control mechanism 20 is drive-coupled to the adjustable wall section 21. To do so, the control mechanism 20 has a control element 29 which is designed here in the manner of a valve rod as an example. The control member 29 is drive-coupled to the membrane 25 by means of an entraining element 30 which cooperates here with an entraining plate 31. The entraining plate 31 is mounted on the membrane 25 and together with the entraining element 30 forms an entraining arrangement.
In the example shown here the entraining arrangement 30, 31 may be designed so that it has a predetermined return stroke. This means that the control element 29 must perform the return stroke only before its stroke adjustment results in an adjusting movement of the membrane 25. In the embodiment shown here, the return stroke is utilized to actuate a cut-off valve 32 with the help of which the recirculation line 7 can be blocked and/or opened. In the exemplary embodiment shown here, a mouth opening 33 of the recirculation line 7 is situated in the fixed wall section 2. The recirculated exhaust gas, represented by an arrow 34, goes through the mouth opening 33 into the Venturi nozzle 10. A valve seat 35 of the cut-off valve 32 is designed in the area of the mouth opening 33, cooperating with a valve member 36. The recirculation line 7 is blocked and the exhaust gas circulation is deactivated when the valve element 36 is retracted into its valve seat 35.
Essentially, said cut-off valve 32 may be designed completely independently of the control mechanism 20. With the special embodiment shown in
The control member 29 is adjustable in stroke in the direction of the distance between the two wall sections 21, 22, i.e., across the flow direction 23. In addition, the control member 29 here penetrates through the membrane 25 and extends through the mouth opening 33 in its stroke direction up to and into the recirculation line 7. Accordingly, the control member 29 crosses through a flow path 37, also represented by an arrow, leading through the Venturi nozzle 10.
In the embodiment illustrated in
For adjusting the stroke of the control member 29, the control mechanism 20 may have a cam 39 to convert a rotational movement, e.g., of a rotary actuator into the lifting movement of the control member 29.
For emergency operation of the internal combustion engine 1, the exhaust gas recirculation device 6 may be equipped with a fail-safe function which adjusts a minimum exhaust gas recirculation rate, in particular at a value of zero, for the exhaust gas recirculation, e.g., by adjusting the Venturi nozzle 10 for maximum flow cross section and/or for minimum pressure drop and by operating in particular the cut-off valve 19 and/or 32 for cutting off the recirculation line 7.
In the embodiments illustrated in
In the embodiment shown in
According to
The drive coupling of the adjustable wall section 21 to the adjusting device 20 is performed in the area of the other end section 26, i.e., the upstream end section here. To do so, the control member 29 in the present case is designed in the form of a wedge and is adjustable in relation to the fresh gas line section 8 in the manner of a slide along a planar wall 42 of the fresh gas line section 8 and thus is adjustable in parallel with the direction of flow 23 in relation to the adjustable wall section 21. The wedge-shaped control member 29 has a ramp 43 on its side facing the flow path 37, the adjustable wall section 21 with its upstream end section 26 resting on said ramp and sliding along the ramp 43 during adjustment movements of the control member 29. For drive coupling of the control member 29 to the control drive 20, the latter has a gear wheel drive 44, for example. By adjusting the control member 29 in the direction of flow 23, the adjustable wall section 21 is pivoted about the pivot axis 40. Then the distance between the adjustable wall section 21 and the fixed wall section 22 changes.
According to
The second partial wall section 46 is mounted in a rotationally fixed manner on a shaft 50 at an end section 49 which is at a distance from the first partial wall section 45 and is arranged here at the outlet of the Venturi nozzle 10. Said shaft 50 is mounted rotatably on the fresh gas line section 8 to rotate about an axis of rotation 51 extending across the direction of flow 23 and parallel to the pivot axis 48. The adjusting mechanism 20 is drive-coupled to the shaft 50, e.g., via gear wheels 52, 53 and thereby drives the second partial wall section 46 to execute pivoting adjustments with respect to the axis of rotation 51. Thus in this embodiment the shaft 50 forms the control member 29 of the control mechanism 20.
In an overlap area 54 the second partial wall section 46 is in contact with the first partial wall section 45 on a side that faces the flow path 37 and slides on it. The second partial wall section 46 here can entrain the first partial wall section 45 in pivoting, whereby the latter is pivoted about its pivot axis 48. In a rotational adjustment which leads to an increase in the distance between the wall sections 21, 22, the first partial wall section 45 is preferably pivoted against the spring force. In retracting the second partial wall section 46, the first partial wall section 45 may automatically follow due to said spring force.
The overlap area 54 may be arranged in the area of the narrowest flow cross section of the Venturi nozzle 10, i.e., essentially centrally, for example.
The inventive exhaust gas recirculation device 6 allows, first of all, an adjustment of the exhaust gas recirculation rate by adjusting the pressure drop in the low-pressure range 11 of the Venturi nozzle 10 accordingly by varying the (narrowest) flow cross section of the Venturi nozzle 10. Secondly, with the inventive exhaust gas recirculation device 6, adequate exhaust gas recirculation can be implemented with the inventive exhaust gas recirculation device 6 even with a comparatively small fresh gas volume flow by reducing the flow cross section of the Venturi nozzle 10 until velocities of flow that create the pressure drop required for the exhaust gas intake in the low pressure range 11 are established in the Venturi nozzle 10. The pressure drop in the Venturi nozzle 10 is adjusted so that the exhaust gas recirculation rate achieves the desired and/or required level. This level and other engine values may be stored as an engine characteristics map in the engine controller, for example.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 009 153 | Feb 2006 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
5611204 | Radovanovic et al. | Mar 1997 | A |
6343594 | Koeslin et al. | Feb 2002 | B1 |
6425356 | Pischinger et al. | Jul 2002 | B1 |
6502397 | Lundqvist | Jan 2003 | B1 |
6886544 | Bui | May 2005 | B1 |
6886545 | Holm | May 2005 | B1 |
7036529 | Berggren et al. | May 2006 | B2 |
7040305 | Sponton | May 2006 | B2 |
20040007220 | Sponton | Jan 2004 | A1 |
20040099257 | Berggren et al. | May 2004 | A1 |
20060124116 | Bui | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
44 29 232 | Sep 1995 | DE |
WO 0190559 | Nov 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20070199549 A1 | Aug 2007 | US |