The present disclosure relates to an exhaust gas recirculation (EGR) mixer for an internal combustion engine.
A power system may comprise an internal combustion engine and an EGR system for recirculating a portion of the engine's exhaust flow back to an intake manifold. This portion of the exhaust flow is commonly referred to as EGR flow and is useful for reducing the concentration of oxygen available for combustion, thus lowering the combustion temperatures, slowing reactions, and decreasing nitrous oxides (NOx) formations. While, as just mentioned, EGR flow means the exhaust flow that is recirculated into the engine, fresh air flow, conversely, means the flow that is entering the power system from the atmosphere.
In some cases, the intake manifold needs to supply a precise ratio of EGR flow to fresh air flow, because too small of a ratio may cause an increase in NOx emissions, while too large of a ratio may cause an increase in soot emissions. To achieve both low NOx and soot emissions simultaneously, it is important that the ratio of the EGR flow to air flow be optimized and that also the ratio be consistent amongst all of the engine's cylinders. To do this, what is needed in the art is an EGR mixer that adequately mixes the EGR and fresh air flows.
Disclosed is an EGR mixer for mixing a fresh air flow and an EGR flow. The EGR mixer comprises an air duct that comprises an air duct opening, and the air duct is configured for allowing fresh air flow to flow therethrough. Additionally, the EGR mixer comprises an EGR duct positioned adjacent to the air duct, wherein the EGR duct, configured for allowing the EGR flow to flow therethrough, comprises an EGR duct opening. Further yet, the EGR mixer comprises a mixing duct positioned downstream of the air duct and also downstream of the EGR duct. The mixing duct, which is configured to mix the fresh air flow and the EGR flow into a mixed flow, comprises a first mixing section and a second mixing section. The air duct opening and EGR duct opening both open into the first mixing section, and positioned downstream of the first mixing section is the second mixing section.
Still further, the EGR mixer comprises a supplemental duct, and the supplemental duct, more specifically, comprises inlet and outlet openings. The supplemental duct is positioned so that it fluidly connects the EGR duct to the second mixing section. The inlet opening of the supplemental duct is positioned upstream of the first mixing section, while in contrast, the outlet opening of the supplemental duct is positioned downstream of the first mixing section.
The disclosed EGR mixer effectively and consistently mixes the EGR and fresh air flows and may achieve a maximum variation of just +/−5% flow from the mean EGR flow for each respective cylinder. This means that for an operating condition with an average composition of 20% EGR flow (i.e., where 20% of the mixed flow is EGR flow), the EGR flow in all cylinders would be between 19% and 21%. By so effectively mixing the flows, the amount of EGR flow may be reduced. The result may be reduced engine pumping, increased fuel economy, and/or easier compliance with emissions regulations.
The detailed description of the drawings refers to the accompanying figures in which:
Referring to
As illustrated, the power system 10 comprises a turbocharger 65, which may be viewed, more specifically, as the combination of a shaft 17 connecting a turbine 50 and the compressor 15. In other embodiments, the power system 10 may comprise, for example, a dual turbocharger arrangement. Exemplarily, the turbocharger 65 may be a variable geometry turbocharger, a fixed geometry turbocharger, or a wastegate turbocharger.
In the illustrated embodiment, the exhaust system 14 includes an exhaust manifold 45 for delivering a portion of the exhaust flow to a diesel oxidation catalyst (DOC) 55 and then a diesel particulate filter (DPF) 60. The DOC 55 may be used for oxidizing hydrocarbons and carbon monoxide present in the exhaust flow, and also for capturing particulates present in the exhaust flow, such as carbon, oil particulates, and ash. The DPF 60 may be regenerated by burning or oxidizing the captured particulates if the temperatures of the DPF 60 or exhaust flow flowing therethrough are sufficiently high.
Also provided, in the power system 10, is an exhaust gas recirculation (EGR) system 16 comprising an EGR valve 70 that is configured to selectively reroute a metered portion of the EGR flow 87 to the engine 40. In other embodiments of the power system 10, the exhaust system 14 may also include a selective catalytic reduction system (not shown) for reducing NOx levels beyond what the EGR system 16 can achieve acting alone.
Referring to
As shown in
The EGR flow 87 travels in pulses correlating to the exhaust strokes of the cylinders (not shown) of the engine 40. So, if the engine 40 has, for example, four cylinders, then the EGR flow 87 travels in one pulse per every 180° of crank rotation. The fresh air flow 89 also travels in pulses, but these pulses correlate to, for example, the operation of the turbocharger 65 and intake valves (not shown), resulting in the pulses of the fresh air flow 89 traveling at unique times and frequencies relative to the pulses of the EGR flow 87. As a result of all of this, the EGR and fresh air flows 87, 89 mix turbulently in the first mixing section 230.
As shown in
As shown in
The second mixing section 232 may comprise first, second, and third segments 235, 240, 245. The second segment 240 is downstream of the first segment 235, and the third segment 245 is downstream of the second segment 240. Exemplarily, as shown in
As shown in the combination of
As shown, in the illustrated embodiment, the supplemental duct 255 may fluidly connect the EGR duct 75 to the first segment 235, but in other embodiments, the supplemental duct 255 may fluidly connect the EGR duct 75 to, for example, the second segment 240. The EGR mixer 30 may also comprise a second supplemental duct 260 that fluidly connects the EGR duct 75 to the second mixing section 232. In such embodiments, the supplemental duct 255 is a first supplemental duct 255. As shown in
The second supplemental duct 260 may fluidly connect the EGR duct 75 to the first segment 235, or as shown in the illustrated embodiment, the second supplemental duct 260 may fluidly connect the EGR duct 75 to, for example, the second segment 240.
The first and second supplemental ducts 255, 260 allow a portion of the EGR flow 87 to enter the mixing duct 225 in the second mixing section 232, rather than in the first mixing section 230. The first and second supplemental ducts 255, 260 provide a cross stream of a portion of the EGR flow 87 to the mixed flow 91, resulting in turbulent mixing of the two. Moreover, the cross stream may also impact the mixing duct 225, thus even further increasing the amount of turbulent mixing that occurs therein.
As shown in the combination of
Exemplarily, the EGR mixer 30 may comprise a second wall 320 positioned between the EGR duct 75 and the combination of the first and second mixing sections 230, 232. As shown in
Further yet, the EGR mixer 30 may also comprise a third wall 190, and the first wall 302 may be formed therein. The first wall 302 may be positioned between the second wall 320 and the third wall 190, and may be substantially perpendicular to the third wall 190. The first side 305 of the first wall 302 and a first side 210 of the third wall 190 may form a second edge, and likewise the second side 310 of the first wall 302 and the first side 210 of the third wall 190 may form a third edge. The second wall 320 and the third wall 190 may be substantially parallel. The third wall 190 forms a side of the first, second, and third segments 235, 240, 245.
Referring back to
In the embodiment shown, the EGR mixer 30 may additionally comprise a mount 142 comprising an aperture 144; a mount 155 comprising an aperture 160; a mount 115 comprising an aperture 120; a mount 135 comprising an aperture 125; a mount 165 comprising an aperture 170; a mount 175 that comprises an aperture 180 and an aperture 185; a mount 107 comprising an aperture 130; and, finally, a mount 200 comprising an aperture 205. Further, the EGR mixer 30 may also comprise an aperture 195.
While the disclosure has been illustrated and described in detail in the drawings and foregoing description, such illustration and description is to be considered as exemplary and not restrictive in character, it being understood that illustrative embodiments have been shown and described and that all changes and modifications that come within the spirit of the disclosure are desired to be protected. It will be noted that alternative embodiments of the present disclosure may not include all of the features described yet still benefit from at least some of the advantages of such features. Those of ordinary skill in the art may readily devise their own implementations that incorporate one or more of the features of the present disclosure and fall within the spirit and scope of the present invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3141447 | Jernigan | Jul 1964 | A |
5611204 | Radovanovic et al. | Mar 1997 | A |
6935321 | Sullivan et al. | Aug 2005 | B1 |
6945237 | Sullivan et al. | Sep 2005 | B1 |
8096289 | Braun | Jan 2012 | B2 |
20010027782 | Bianchi | Oct 2001 | A1 |
20040112345 | Bertilsson et al. | Jun 2004 | A1 |
20040144372 | Ricart-Ugaz et al. | Jul 2004 | A1 |
20090000297 | Joergl | Jan 2009 | A1 |
20090165756 | Shieh | Jul 2009 | A1 |
20120090581 | De Almeida | Apr 2012 | A1 |
20130000617 | Luft | Jan 2013 | A1 |
20140373819 | Gerty | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
3324343 | Aug 1988 | DE |
102007035556 | Jan 2009 | DE |
20000045878 | Feb 2000 | JP |
20050097509 | Oct 2005 | KR |
02070888 | Sep 2002 | WO |
20090149868 | Dec 2009 | WO |
2011069566 | Jun 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20140165974 A1 | Jun 2014 | US |