Exemplary embodiments of the invention relate to an exhaust gas recirculation system for an internal combustion engine and, more particularly, to a system for efficiently providing recirculated exhaust gas to a high pressure intake system of an internal combustion engine.
Exhaust Gas Recirculation (“EGR”) is an important element for both diesel and gasoline engines, particularly engines utilizing charge air boosting or compression (ex. exhaust driven turbocharger or engine driven supercharger,) for both fuel consumption improvements and for the reduction of regulated tailpipe exhaust gas emissions.
In engines utilizing an exhaust driven turbocharger or engine driven supercharger, high pressure EGR may be diverted from a location upstream of the turbocharger and is supplied to the compressed intake charge during high load operation. However, during high load operation of the internal combustion engine, the pressure differential (“ΔP”) between the EGR supply and the compressed intake charge may be negative. Specifically, the supply pressure of the EGR may drop below that of the compressed intake charge making it difficult, if not impossible, to supply EGR to the intake system (PINTAKE>PEGR).
It has been proposed to utilize a venturi system in the intake system to decrease the intake pressure to allow for the ΔP between the EGR supply and the compressed intake charge to be momentarily positive allowing for the delivery of EGR to the intake system under high load operation. In such an instance, including operation of the engine at other than high loads, an even delivery and distribution of the EGR is desirable.
In an exemplary embodiment, an internal combustion engine comprises an intake system to deliver a compressed intake charge to the internal combustion engine, a venturi assembly disposed in the intake system defines a venturi defining a low pressure zone “Z” for the intake charge passing therethrough and an annular exhaust gas recirculation conduit distribution passage extends circumferentially about the venturi and receives diverted exhaust gas from an exhaust system for delivery to the intake charge through exhaust gas recirculation diffuser passages disposed at circumferentially spaced locations about the annular exhaust gas recirculation conduit distribution passage.
In another exemplary embodiment an internal combustion engine comprises an intake system having an intake manifold for to deliver a compressed intake charge to cylinders of the internal combustion engine. An exhaust system has an exhaust manifold configured to deliver exhaust gas from the cylinders of the internal combustion engine to a compressor that is located in fluid communication therewith. The compressor includes a turbine housing, with a high pressure inlet for the exhaust gas, that is in fluid communication, through an exhaust gas recirculation conduit, with the intake system to deliver diverted exhaust gas to the intake manifold, and a compressor housing, with a high pressure outlet, that is in fluid communication with the intake system, through an intake charge conduit, to deliver a compressed intake charge to the intake manifold. A throttle body is disposed between the intake charge conduit and the intake manifold. A venturi assembly is disposed downstream of the throttle body and comprises an inlet having a flow passage with a sectional diameter “A” that receives the intake charge therethrough and an outlet comprising a nozzle section having a sectional diameter “A1” defining a venturi. An intake manifold inlet in fluid communication with the venturi assembly receives the intake charge exiting therefrom through the venturi. An inlet annulus extends centrally through the intake manifold inlet, and comprises a diameter “D” at its inlet end that is equal to the sectional diameter “A1” of the nozzle section wherein the inlet annulus 84 extends axially a distance “L” through which its diameter increases to a second diameter “D2” resulting in a low pressure zone “Z” for the intake charge passing therethrough. An annular exhaust gas recirculation conduit distribution passage extends circumferentially about the inlet annulus and is in fluid communication through an inlet with the exhaust gas recirculation conduit for receipt of diverted exhaust gas from the exhaust system and exhaust gas recirculation diffuser passages are disposed at circumferentially spaced locations about the annular exhaust gas recirculation conduit distribution passage; the exhaust gas recirculation diffuser passages defining spaced passages for the inlet and even distribution of diverted exhaust gas from the annular exhaust gas recirculation distribution passage and into the intake charge passing through the low pressure zone “Z” of the inlet annulus of the intake manifold.
The above features and advantages, and other features and advantages of the invention are readily apparent from the following detailed description when taken in connection with the accompanying drawings.
Other features, advantages and details appear, by way of example only, in the following detailed description of the embodiments, the detailed description referring to the drawings in which:
The following description is merely exemplary in nature and is not intended to limit the present disclosure, its application or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
Referring to
The internal combustion engine 10 includes an intake manifold 18, in fluid communication with the cylinders 16 that receives a compressed intake charge 20 from the intake system 12 through a throttle body assembly 19 and delivers the charge to the plurality of cylinders 16. The exhaust system 14 includes an exhaust manifold 22, also in fluid communication with the cylinders 16 that is configured to remove the combusted constituents of the intake charge/fuel mixture (i.e. exhaust gas 24) and to deliver it to a compressor 26 such as the exhaust driven turbocharger that is located in fluid communication therewith. In another exemplary embodiment, it is contemplated that the compressor 26 may also comprise an engine driven supercharger without deviating from the scope of the invention. The exhaust driven turbocharger 26 includes an exhaust gas turbine (not shown) that is housed within a turbine housing 28. The turbine housing 28 includes a high pressure turbine housing inlet 30 and a low pressure turbine housing outlet 32. The low pressure turbine housing outlet 32 is in fluid communication with the remainder of the exhaust system 14 and delivers the exhaust gas 24 to an exhaust gas conduit 34 which may include various exhaust after treatment devices (not shown) that are configured to treat various regulated constituents of the exhaust gas 24 prior to its release to the atmosphere.
The exhaust driven turbocharger 26 also includes a combustion charge compressor wheel (not shown) that is housed within a compressor housing 36. The compressor housing 36 includes a low pressure inlet 38 that is typically in fluid communication with ambient air 64 and a high pressure outlet 40. The high pressure outlet 40 is in fluid communication with the intake system 12 and delivers the compressed intake charge 20 through an intake charge conduit 42 to the intake manifold 18 for delivery to the cylinders 16 of the internal combustion engine 10. In an exemplary embodiment, disposed inline of intake charge conduit 42, between the outlet 40 of the compressor housing 36 and the intake manifold 18, is an intake charge cooler 44. The intake charge cooler 44 receives heated (due to compression) compressed intake charge 20 from the intake charge conduit 42 and, following cooling of the compressed intake charge 20 therein, delivers it to the intake manifold 18 through a subsequent portion of the intake charge conduit 42. The intake charge cooler 44 may comprise an inlet 46 and an outlet 48 for the circulation of a cooling medium 50 (such as a typical glycol-based automotive coolant or ambient air) therethrough. In a known manner, the intake charge cooler 44 transfers heat from the compressed intake charge 20 to the cooling medium 50 to thereby reduce the temperature and increase the density of the compressed intake charge 20 as it transits the intake charge cooler 44.
Located in fluid communication with the exhaust system 14, and in the exemplary embodiment shown in
The EGR valve 54 is in signal communication with a control module such as engine controller 58 that is configured to operate the EGR valve 54 to adjust the volumetric quantity of diverted exhaust gas 56 that is introduced to the intake system 12, based on the particular engine operating conditions at any given time. The engine controller 58 collects information regarding the operation of the internal combustion engine 10 from sensors 61a-61n, such as the temperature of the exhaust system, engine coolant, compressed combustion charge, ambient, etc., as well as pressure, exhaust system conditions and driver demand to determine the appropriate, if any, flow of diverted exhaust gas 56 to be recirculated to the intake system 12 of the internal combustion engine 10 through the EGR conduit 52.
Referring now to
Referring to
Referring now to
Referring now to
While the invention has been described thus far to include a venturi having a low pressure zone “Z” to facilitate the delivery of diverted exhaust gas 56 to the intake manifold 18 of the intake system 12, it is contemplated that in some applications of the internal combustion engine 10, the use of the venturi 76 and the venturi nozzle assembly 59 may not be required. In such cases, the inlet annulus 84 having an annular EGR distribution passage 86 extending circumferentially about the inlet annulus 84 and in fluid communication through inlet 94 with EGR conduit 52 for receipt of diverted exhaust gas 56 from the exhaust system 14 may still be utilized to deliver exhaust gas, through a series of EGR diffuser passages 88 disposed at circumferentially spaced locations about the annulus and to the intake system, without deviating from the scope of the invention. In addition it is contemplated that, in such a case, the inlet annulus 84 may be disposed about a portion of the intake system 12 other than the intake manifold 18; such as the throttle body assembly 19 or the intake charge conduit 42.
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed, but that the invention will include all embodiments falling within the scope of the present application.
This patent application claims priority to U.S. Patent Application Ser. No. 61/433,585 filed Jan. 18, 2011 which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1539126 | Link | May 1925 | A |
1632881 | Burtnett | Jun 1927 | A |
3680534 | Chavant | Aug 1972 | A |
4123800 | Mazzei | Oct 1978 | A |
4461150 | Grohn | Jul 1984 | A |
5611204 | Radovanovic et al. | Mar 1997 | A |
5863128 | Mazzei | Jan 1999 | A |
6003316 | Baert et al. | Dec 1999 | A |
6216458 | Alger et al. | Apr 2001 | B1 |
6237336 | Feucht et al. | May 2001 | B1 |
6267106 | Feucht | Jul 2001 | B1 |
6272851 | Mori et al. | Aug 2001 | B1 |
6425382 | Marthaler et al. | Jul 2002 | B1 |
6427671 | Holze et al. | Aug 2002 | B1 |
6502397 | Lundqvist | Jan 2003 | B1 |
6609373 | Coleman et al. | Aug 2003 | B2 |
6609374 | Feucht et al. | Aug 2003 | B2 |
6640542 | Rampenthal et al. | Nov 2003 | B2 |
6729315 | Onodera et al. | May 2004 | B2 |
6732524 | Sponton | May 2004 | B2 |
6742335 | Beck et al. | Jun 2004 | B2 |
7028680 | Liu et al. | Apr 2006 | B2 |
7140357 | Wei et al. | Nov 2006 | B2 |
7353811 | Weisz | Apr 2008 | B2 |
7389770 | Bertilsson et al. | Jun 2008 | B2 |
7552722 | Shieh et al. | Jun 2009 | B1 |
7568340 | Marsal et al. | Aug 2009 | B2 |
7845340 | Fuchinoue et al. | Dec 2010 | B2 |
8001780 | Onodera | Aug 2011 | B2 |
8033714 | Nishioka et al. | Oct 2011 | B2 |
8056340 | Vaught et al. | Nov 2011 | B2 |
20030111065 | Blum | Jun 2003 | A1 |
20090165755 | Shieh et al. | Jul 2009 | A1 |
20110173954 | Wenzel | Jul 2011 | A1 |
20110265772 | Teng et al. | Nov 2011 | A1 |
20120216530 | Flynn et al. | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
4429232 | Sep 1995 | DE |
857870 | Aug 1998 | EP |
2356223 | May 2001 | GB |
11324812 | Nov 1999 | JP |
2013087720 | May 2013 | JP |
Entry |
---|
Office Action regarding related CN App. No. 2012100151106; dated Dec. 13, 2013; 9 pgs. |
Number | Date | Country | |
---|---|---|---|
20120180478 A1 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
61433585 | Jan 2011 | US |