The present invention relates to internal combustion engines, and particularly to exhaust gas recirculation (EGR) systems in engines. More particularly, the invention relates to more effective recirculation of exhaust gases.
The invention is an approach for smoothing out (i.e., minimizing pulses) a flow of exhaust gas being recirculated in an engine.
For emissions control in an internal combustion engine (e.g., a diesel engine) some of the exhaust gas from the engine may be redirected or recirculated back into the cylinders of the engine. The introduction of inerts (i.e., exhaust gas) into the cylinder may minimize or prevent NOx production which is a pollutant of concern. The present approach may be referred to exhaust gas recirculation (EGR). EGR systems may be open loop or depend on a coordination of actuators such as a vane position of a variable nozzle turbine (VNT), which may coordinate a flow of exhaust gas back into the engine. The present system may improve exhaust recirculation by adding a storage device to the RGR system.
The interface 44 may be a valve that, at certain times, permits a one way flow of exhaust gas 14 into the storage device 42. Interface 44 may permit exhaust gas 14 to enter the storage device 42 during pressure pulses of the exhaust gas 14 or when the exhaust gas 14 exceeds a certain pressure. That means a certain pressure of the exhaust gas in the storage device 42 may be achieved. This improved pressure may assist an exhaust gas 43 at a pressure sufficient to go through the EGR valve or flow control mechanism 12 despite the reduced pressure at moments of the incoming exhaust gas 43 and an overall higher pressure in the intake system area 18 than the exhaust system pipe 28 of the engine. The output exhaust gas 43 from the storage device 42 may be free of the pulses. The storage device 42 may smooth out the pressure variations of the overall exhaust gas 14 and 43 and still provide a higher overall pressure at the input of the flow control mechanism 12 relative to the exhaust gas 14 in the exhaust system pipe 28.
The following may provide a basis of the present system. A certain amount of fuel may be added to the mixture 36 (via a carburetor or fuel injectors) before entering or after going through the intake valve to the cylinder. This new mixture 36 may enter the respective cylinder during an intake cycle as permitted by an intake valve 25 to cylinder 17. Subsequently, the intake valve may close and a piston 21 in the cylinder compress the mixture 36 up against a head structure (head), not explicitly shown, that is attached to the top of the block containing the cylinder. The head may cap off and seal the cylinder 17 encompassing a volume between the piston and the head. As the piston moves towards its closest position to the head (i.e., top dead center—TDC) the volume of the mixture 36 may decrease and the pressure increase dramatically while the intake valve 25 and an exhaust valve 26 situated in the head are closed thereby maintaining the seal of the volume of the mixture 36. Also, manifolds 15 and 23 may be attached to the head having ports 19 and 22 connecting the manifolds to their respective valves 25 and 26. The valves 25 and 26 may be round but appear oval in the Figure because of their slanted orientation in the head relative to the top of piston 21. Alternatively, valves 25 and 26 may be situated in the top of the cylinder block of the engine along with the respective intake and exhaust manifolds being attached to the block. The intake valve 25 and exhaust valve 26 may be opened and closed by a camshaft (not shown) that is connected to a crankshaft 24. Other mechanisms may be utilized for bringing fuel mixtures to the engine and removing exhaust gases from the engine. At about the piston's closest point to the head, the compressed mixture 36 may ignite (due to the heat of a highly compressed mixture in a diesel engine or the spark of a plug in a gasoline engine) and expand thereby providing much pressure on the piston and pushing the piston away from the head. The piston 21 may be connected to the crankshaft 24 that is rotated by the force of the burning mixture 36 upon the piston, resulting in a power cycle. As the piston approaches its farthest position from the head (i.e., bottom dead center—BDC), the exhaust valve 26 may open and the piston 21 return back up the cylinder 17 and push a burnt mixture or exhaust gas 14 out of the cylinder 17 through the exhaust valve 26 into an exhaust manifold 23 via an exhaust port 22, resulting in an exhaust cycle. The exhaust valve 26 may close and the intake valve open thereby permitting the piston 21 to draw in another mixture 36 along with some fuel, into the cylinder 17 during its next intake cycle as the piston 21 moves down cylinder 17 away from the head. The sequence or intake, compression, power and exhaust cycles may repeat themselves for a given piston 21 and cylinder 17 over the next two rotations of the crankshaft 24. Each of the other pistons 21 and cylinders 17 may proceed through the same process. However, each piston may have its sequence of cycles offset from the other pistons somewhere from one-half to one-and-one-half revolutions of the crankshaft 24. Thus, in the case of the four cylinder engine 11 shown in
The power of the engine 11 may be increased by compressing the mixture 36, along with the fuel, before it enters the cylinder 17, with a mechanism such as the turbocharger. The exhaust gases 14 exiting the engine 11 into manifold 23 may go to a turbine via an exhaust pipe 28. The exhaust gases 14 may turn or spin the turbine at a relatively high number of revolutions per minute (rpm). After the exhaust gases 14 pass the turbine, they may exit the turbo charger via the exhaust pipe. The turbine in turn may turn a compressor turbine via a shaft. The turbine may draw in fresh air 16 via an intake tube and output into a tube 34 that is connected to the manifold 15. Since the movement of air 16 into tube 34 is much faster than the normal intake of a naturally aspirated engine 11, the air 16 may become compressed as it enters the engine via the manifold 15. If the pressure of compressed air 16 is higher than the pressure of the exhaust gas 14 in pipe 28, then exhaust gas might not go through an open valve 12 and mix with air 16 in tube 34 or manifold 15 to result in an EGR. It is this differential pressure which may be of concern here.
EGR may be accomplished by means of a pipe 35, or other device for conveyance, which may connect the exhaust manifold 23 or exhaust pipe 28 to the intake manifold or air intake tube 34. In the EGR flow pipe 35, an on/off valve, a proportional flow valve or a reed valve may be situated in the pipe as the valve 12. When the on/off valve or the proportional flow valve is used, either one may be controlled at a conventional, slow time scale to modulate EGR as a function of load and speed of the crankshaft 24 of engine 11. In both these cases, the exhaust pressure should be greater than the intake pressure to provide an EGR flow in the right direction. The intake pressure and the exhaust pressure may be measured by pressure sensors 37 and 38, respectively. Sensors 37 and 38 may be connected to a controller 40. Signals from the sensors 37 and 38 may be utilized to determine the differential pressure across the flow control mechanism 12. This pressure may also be detected by a differential or delta pressure sensor appropriately situated. The speed or revolution rate or count of the crankshaft may be detected by a sensor 39 that is proximate to a flywheel 51 which is attached to crankshaft 24. Sensor 39 may be connected to controller 40. The valve or mechanism 12 may be connected to controller 40 via connection 53. Controller 40 may utilize mathematical models and appropriate control logic, look-up tables, or other schemes, in computing control signals from engine-related parameters for the flow control mechanism 12.
When the reed valve is used, the EGR flow may be dependent on the characteristics of such valve which are not actively controlled. In a well designed highly turbocharged engine 11, such as a diesel engine, the turbocharger may create an intake boost which is higher than the engine exhaust manifold pressure. Thus, in order to induce a flow of exhaust gas 14 from the exhaust manifold 23 or pipe 28 to the intake tube 34 or manifold 15, the time averaged exhaust manifold 23 pressure should be raised above the intake manifold 15 pressure. This may be a problem, because in essence, the intake pressure being higher than the exhaust pressure may negate the positive pumping contribution of the turbocharger and result in a loss of efficiency and fuel economy by the engine. Furthermore, since the exhaust pressure may be pulsing, due to individual cylinder events, pulses from the exhaust may be transmitted to the intake manifold 15. Some of the exhaust gas 14 flow accomplished during pressure pulses may be reversed when the exhaust manifold 23 pressure falls and the intake manifold 15 pressure is momentarily higher then the exhaust. To obtain a net result that is to accomplish the desired EGR rate, the engine may be “back-pressured” by, for example, obstructing the exhaust gas 14 flow in pipe 28, which may result in a fuel economy loss of the engine. Furthermore, as higher levels of EGR are required, the fuel economy penalty increases, and in some cases the engine will not be able to achieve the required EGR levels due to limitations in the turbocharger and engine 11 thermodynamics.
The present device or valve 12 may solve the problem of inducing flow of EGR without increasing back pressure. This may be accomplished by first recognizing that the exhaust gas 14 pressure has pulses, and that the magnitude of these pressure pulses are such that they exceed the intake mixture 36 pressure for certain periods of time. These pressure pulses may be detected by sensor 38. By closing the EGR path in tube or pipe 35 during unfavorable or negative pressure gradients, the present flow control mechanism or valve 12 may prevent reverse EGR flow; however, it then may re-open the path during positive or forward pressure with minimum flow restriction. The benefit is that the engine back-pressure requirement to induce the desired EGR flow may be lowered or eliminated. Thus, EGR may be able to flow “up-hill”, i.e., in the appropriate direction from the exhaust manifold 23 or pipe 28 to the intake manifold 15 or tube 34 via tube 35, even where the time averaged intake manifold pressure is higher than the time averaged exhaust manifold pressure. The flow or flow rate of the fluid (e.g., gas 14) may be detected and measured with a flow sensor which may be connected to controller 40 via line 53. The flow sensor may be situated in tube 35 proximate to the flow control mechanism 12 or within the mechanism 12.
To accomplish this phenomenon, the present device or valve 12 may have a controllable open “window” area such that the flow area, time of opening and time of closing can be controlled to coincide with the favorable pressure pulses, thus opening only when forward flow will occur and only for a duration compatible with desired EGR flow rate. The valve may very rapidly control a flow of a fluid (i.e., a gas or liquid) with the opening and closing of the window with a moveable mechanical obstruction.
The valve 12 areas of opening and timing may be controlled on a cylinder by cylinder basis to accomplish a customized EGR flow for each exhaust pulse and to nominally equalize the EGR flow with respect to each pulse. Each cylinder may have an individual pressure sensor (not shown) connected to controller 40 via a connection line 52. This may be particularly useful if there is considerable cycle to cycle variation in the strength of the exhaust pulse which results in cycle to cycle and cylinder to cylinder variation in the exhaust gas recirculation rate. That could mean that if the cylinders are providing different amounts of power, recirculated gas may be provided in adjusted and different amounts in a timely fashion to each of the cylinders so as to result in the same amounts of power from each of the cylinders. This evenness of power from the cylinders may result in a very smooth running and efficient engine.
Since emissions from a given cylinder event may be particularly sensitive to an EGR rate, control of EGR rate as a function of exhaust pressure pulse strength may be particularly beneficial in terms of emissions, economy and power. This control strategy may be strengthened by the use of various other kinds of sensors which may be used to measure shock, vibration, pulses, temperatures, mixtures, and other parameters of the engine system. The signals from these sensors may be input to the processor or controller to provide appropriate signals to the flow control mechanism 12 for effective EGR. EGR flow control may be based on the use of pressure sensors and/or other related sensors together with mathematical models and appropriate control logic. Controller 40 may incorporate the mathematical models and the control logic for EGR flow control based on parameter signals from pressure sensors and/or the other related sensors as noted above.
In the present specification, some of the matter may be of a hypothetical or prophetic nature although stated in another manner or tense.
Although the invention has been described with respect to at least one illustrative example, many variations and modifications will become apparent to those skilled in the art upon reading the present specification. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the prior art to include all such variations and modifications.
Number | Name | Date | Kind |
---|---|---|---|
1833802 | Violet | Nov 1931 | A |
3744461 | Davis | Jul 1973 | A |
4005578 | McInerney | Feb 1977 | A |
4055158 | Marsee | Oct 1977 | A |
4252098 | Tomczak et al. | Feb 1981 | A |
4345572 | Suzuki et al. | Aug 1982 | A |
4383441 | Willis et al. | May 1983 | A |
4426982 | Lehner et al. | Jan 1984 | A |
4438497 | Willis et al. | Mar 1984 | A |
4456883 | Bullis et al. | Jun 1984 | A |
4485794 | Kimberley et al. | Dec 1984 | A |
4506633 | Britsch | Mar 1985 | A |
4601270 | Kimberley et al. | Jul 1986 | A |
4653449 | Kamei et al. | Mar 1987 | A |
4917054 | Schmitz | Apr 1990 | A |
5044337 | Williams | Sep 1991 | A |
5076237 | Hartman et al. | Dec 1991 | A |
5089236 | Clerc | Feb 1992 | A |
5108716 | Nishizawa | Apr 1992 | A |
5123397 | Richeson | Jun 1992 | A |
5233829 | Komatsu | Aug 1993 | A |
5282449 | Takahashi et al. | Feb 1994 | A |
5349816 | Sanbayashi et al. | Sep 1994 | A |
5365734 | Takeshima | Nov 1994 | A |
5398502 | Watanabe | Mar 1995 | A |
5452576 | Hamburg et al. | Sep 1995 | A |
5477840 | Neumann | Dec 1995 | A |
5494020 | Meng | Feb 1996 | A |
5560208 | Halimi et al. | Oct 1996 | A |
5570574 | Yamashita et al. | Nov 1996 | A |
5598825 | Neumann | Feb 1997 | A |
5609139 | Ueda et al. | Mar 1997 | A |
5611198 | Lane et al. | Mar 1997 | A |
5690086 | Kawano et al. | Nov 1997 | A |
5692478 | Nogi et al. | Dec 1997 | A |
5746183 | Parke et al. | May 1998 | A |
5765533 | Nakajima | Jun 1998 | A |
5771867 | Amstutz et al. | Jun 1998 | A |
5785030 | Paas | Jul 1998 | A |
5788004 | Friedmann et al. | Aug 1998 | A |
5846157 | Reinke et al. | Dec 1998 | A |
5893092 | Driscoll | Apr 1999 | A |
5942195 | Lecea et al. | Aug 1999 | A |
5964199 | Atago et al. | Oct 1999 | A |
5974788 | Hepburn et al. | Nov 1999 | A |
6029626 | Bruestle | Feb 2000 | A |
6035640 | Kolmanovsky et al. | Mar 2000 | A |
6048620 | Zhong | Apr 2000 | A |
6055810 | Borland et al. | May 2000 | A |
6058700 | Yamashita et al. | May 2000 | A |
6067800 | Kolmanovsky et al. | May 2000 | A |
6076353 | Freudenberg et al. | Jun 2000 | A |
6105365 | Deeba et al. | Aug 2000 | A |
6153159 | Engeler et al. | Nov 2000 | A |
6161528 | Akao et al. | Dec 2000 | A |
6170259 | Boegner et al. | Jan 2001 | B1 |
6171556 | Burk et al. | Jan 2001 | B1 |
6178743 | Hirota et al. | Jan 2001 | B1 |
6178749 | Kolmanovsky et al. | Jan 2001 | B1 |
6216083 | Ulyanov et al. | Apr 2001 | B1 |
6237330 | Takahashi et al. | May 2001 | B1 |
6242873 | Drozdz et al. | Jun 2001 | B1 |
6263672 | Roby et al. | Jul 2001 | B1 |
6273060 | Cullen | Aug 2001 | B1 |
6279551 | Iwano et al. | Aug 2001 | B1 |
6295815 | Bechle et al. | Oct 2001 | B1 |
6312538 | Latypov et al. | Nov 2001 | B1 |
6321538 | Hasler | Nov 2001 | B2 |
6328003 | Gaertner et al. | Dec 2001 | B1 |
6338245 | Shimoda et al. | Jan 2002 | B1 |
6347619 | Whiting et al. | Feb 2002 | B1 |
6360159 | Miller et al. | Mar 2002 | B1 |
6360541 | Waszkiewicz et al. | Mar 2002 | B2 |
6360732 | Bailey et al. | Mar 2002 | B1 |
6379281 | Collins et al. | Apr 2002 | B1 |
6425371 | Majima | Jul 2002 | B2 |
6427436 | Allansson et al. | Aug 2002 | B1 |
6431160 | Sugiyama et al. | Aug 2002 | B1 |
6463733 | Asik et al. | Oct 2002 | B1 |
6463734 | Tamura et al. | Oct 2002 | B1 |
6470682 | Gray, Jr. | Oct 2002 | B2 |
6470886 | Jestrabek-Hart | Oct 2002 | B1 |
6502391 | Hirota et al. | Jan 2003 | B1 |
6512974 | Houston et al. | Jan 2003 | B2 |
6546329 | Bellinger | Apr 2003 | B2 |
6560528 | Gitlin et al. | May 2003 | B1 |
6571191 | York et al. | May 2003 | B1 |
6579206 | Liu et al. | Jun 2003 | B2 |
6612293 | Schweinzer et al. | Sep 2003 | B2 |
6625978 | Eriksson et al. | Sep 2003 | B1 |
6629408 | Murakami et al. | Oct 2003 | B1 |
6647710 | Nishiyama et al. | Nov 2003 | B2 |
6647971 | Vaughan et al. | Nov 2003 | B2 |
6671603 | Cari et al. | Dec 2003 | B2 |
6672060 | Buckland et al. | Jan 2004 | B1 |
6679050 | Takahashi et al. | Jan 2004 | B1 |
6687597 | Sulatisky et al. | Feb 2004 | B2 |
6705084 | Allen et al. | Mar 2004 | B2 |
6742330 | Genderen | Jun 2004 | B2 |
6758037 | Terada et al. | Jul 2004 | B2 |
6789533 | Hashimoto et al. | Sep 2004 | B1 |
6823667 | Braun et al. | Nov 2004 | B2 |
6823675 | Brunell et al. | Nov 2004 | B2 |
6826903 | Yahata et al. | Dec 2004 | B2 |
6827061 | Nytomt et al. | Dec 2004 | B2 |
6976480 | Miyoshi et al. | Dec 2005 | B2 |
20010002591 | Majima | Jun 2001 | A1 |
20020029564 | Roth et al. | Mar 2002 | A1 |
20020056434 | Flamig-Vetter et al. | May 2002 | A1 |
20020073696 | Kuenstler et al. | Jun 2002 | A1 |
20020098975 | Kimura et al. | Jul 2002 | A1 |
20020170550 | Mitsutani | Nov 2002 | A1 |
20020173919 | Moteki et al. | Nov 2002 | A1 |
20020184879 | Lewis | Dec 2002 | A1 |
20020194835 | Bromberg et al. | Dec 2002 | A1 |
20030022752 | Liu et al. | Jan 2003 | A1 |
20030041590 | Kitajima et al. | Mar 2003 | A1 |
20030089101 | Tanaka et al. | May 2003 | A1 |
20030101713 | Dalla Betta et al. | Jun 2003 | A1 |
20030120410 | Cari et al. | Jun 2003 | A1 |
20030143957 | Lyon | Jul 2003 | A1 |
20030145837 | Esteghlal et al. | Aug 2003 | A1 |
20030150422 | Huh | Aug 2003 | A1 |
20030172907 | Nytomt et al. | Sep 2003 | A1 |
20030200016 | Spillane et al. | Oct 2003 | A1 |
20030213465 | Fehl et al. | Nov 2003 | A1 |
20030221679 | Surnilla | Dec 2003 | A1 |
20030225507 | Tamura | Dec 2003 | A1 |
20040006973 | Makki et al. | Jan 2004 | A1 |
20040007211 | Kobayashi | Jan 2004 | A1 |
20040007217 | Poola et al. | Jan 2004 | A1 |
20040025837 | Hunt et al. | Feb 2004 | A1 |
20040034460 | Folkerts et al. | Feb 2004 | A1 |
20040040283 | Yasui et al. | Mar 2004 | A1 |
20040040287 | Beutel et al. | Mar 2004 | A1 |
20040050037 | Betta et al. | Mar 2004 | A1 |
20040055278 | Miyoshi et al. | Mar 2004 | A1 |
20040060284 | Roberts, Jr. et al. | Apr 2004 | A1 |
20040065309 | Verschoor | Apr 2004 | A1 |
20040074226 | Tanaka | Apr 2004 | A1 |
20040089279 | McLaughlin et al. | May 2004 | A1 |
20040112335 | Makino et al. | Jun 2004 | A1 |
20040118117 | Hartman et al. | Jun 2004 | A1 |
20040128058 | Andres et al. | Jul 2004 | A1 |
20040129259 | Mitsutani | Jul 2004 | A1 |
20040134464 | Mogi | Jul 2004 | A1 |
20040135584 | Nagy et al. | Jul 2004 | A1 |
20040139735 | Zhu | Jul 2004 | A1 |
20040139951 | Fisher et al. | Jul 2004 | A1 |
20040249558 | Meaney | Dec 2004 | A1 |
20060137665 | Khair et al. | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
19528680 | Feb 1997 | DE |
19717846 | Nov 1998 | DE |
10219382 | Nov 2002 | DE |
0980966 | Feb 2000 | EP |
1221544 | Jul 2002 | EP |
1369558 | Oct 2003 | EP |
59190443 | Oct 1984 | JP |
08232771 | Sep 1996 | JP |
WO 9960260 | Nov 1999 | WO |
WO 02101208 | Dec 2002 | WO |
03065135 | Aug 2003 | WO |
WO 2004027230 | Apr 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20070089715 A1 | Apr 2007 | US |