The present invention relates generally to a poppet style exhaust gas recirculation valve having a valve stem that is configured such that its longitudinal axis is significantly offset from the centerline of the intake bore.
Control of exhaust gas flow in an internal combustion engine is commonly used to alter the engine's function or modify its performance. Exhaust gas generated by pistons of an engine is released into its exhaust system during an exhaust cycle. This gas flow may be controlled with the use of various valves positioned and operated in the exhaust system of the engine.
In order to control the flow of gas, exhaust gas recirculation (EGR) valves are used. Such EGR valves include sliding valves, poppet valves, and valve-in-bore systems. Poppet style EGR valves have a face-sealing portion of the valve plate, that is moved away from a sealing surface to open the exhaust flow path. Such valves may provide a fail-safe mode in the event of actuation system failure. However, in the presence of a high-pressure differential across the valve plate, a relatively high actuation system force is generally required to open the valve or keep the valve closed (depending on the exhaust flow direction when the valve is open). Furthermore, poppet valves often result in excessive flow restriction due to the fact that the valve shaft is often disposed through the centerline axis of the intake bore. Additionally, having the valve shaft disposed through the centerline axis of the intake bore also increases packaging size since there is greater distance between the valve shaft and the actuator.
Another problem with poppet style valves is that there is often times an inadequate way of thoroughly mixing the exhaust gas with fresh air prior to combustion. For all of the above reasons it is desirable to provide new poppet style EGR valves that have increased packaging and performance benefits as well as providing the benefit of mixing the exhaust gas with fresh air prior to combustion.
The present invention is directed to an EGR valve having a housing with a primary passage and a secondary passage. The primary passage or intake bore is disposed through said housing and permits the flow of fresh air from outside of the vehicle to the intake manifold of an engine. The primary passage has a lateral or centerline axis. The secondary passage is configured to communicate with the primary passage. The secondary passage permits the flow of exhaust gas from the exhaust system into the primary passage where the exhaust gas is combined with fresh air prior to entering the intake manifold. A valve seat is disposed radially within the secondary passage. A poppet valve is disposed within the secondary passage for selectively restricting the flow of fluid from the secondary passage to the primary passage by contacting the valve seat. An actuator is connected to the housing of the EGR valve and controls the movement of the poppet valve relative to the valve seat. A valve shaft is connected at a first end to the poppet valve and at a second to the actuator. The valve shaft has a longitudinal axis that extends through the primary passage at a location other than the centerline axis of the primary passage. In other words, the valve shaft will be offset from the centerline of the primary passage or intake bore.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
Referring to
A secondary passage 16 extends through the housing 14 and connects to the primary passage 14 at a generally perpendicular angle. However, it is within the scope of this invention to configure the valve so the secondary passage does not connect at a perpendicular angle. The secondary passage 16 permits the flow of exhaust gas being recirculated from the exhaust system to the primary passage 14 where the exhaust gas is mixed with the fresh air and is presented to the intake manifold of the engine for combustion. At certain times during the engine cycle it is not desirable to recirculate the exhaust gas; therefore, it may be necessary to block the flow of exhaust gas through the secondary passage 16. Additionally, it is also desirable to control the amount of exhaust gas being permitted to enter into the primary passage 14 since certain engine conditions may require different compositions or ratios of fresh air to exhaust gas in order to optimize combustion. In order to control the flow of exhaust gas through the secondary passage 16 there is a valve seat 18 that is formed along the interior surface of the secondary passage 16. A poppet valve 20 is disposed and configured to interact with a the valve seat 18 in order for the poppet valve to move from a fully closed position, wherein the poppet valve 20 is positioned against the valve seat 18 to a fully opened position where the poppet valve 20 is moved to a distance that is further away from the valve seat 18. In order to facilitate the movement of the poppet valve 20, a valve shaft 24 is connected to the poppet valve 20 at a first end 26 of the valve shaft 24. The valve shaft 24 has a longitudinal axis B-B that extends through the primary passage 14 to a second end 28 of the valve shaft 24 that is connected to a gear train 29. The gear train 29 is connected to an actuator 22 that is connected to the housing 12 of the EGR valve 10. The actuator 22 in combination with the gear train 29 and the valve shaft 24 causes the valve shaft 24 to move along its longitudinal axis B-B in order to move the poppet valve 20 between the open and closed positions, as well as any intermediate position in order to control the amount of exhaust gas flowing through the secondary passage 16. While the present embodiment describes an actuator arrangement that uses a gear train and motor, it is within the scope of this invention for other suitable actuator mechanism to be used that will facilitate the movement of the valve.
One desirable feature of the present invention is the position of the valve shaft 24. As can be seen in both
Another feature of the invention shown in
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
This application claims the benefit of U.S. Provisional Application No. 60/619,971, filed Oct. 19, 2004. The disclosure of the above application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60619971 | Oct 2004 | US |