This application claims the benefit of priority under 35 U.S.C. ยง119 of German patent application DE 10 2009 024 534.0 filed Jun. 10, 2009 the entire contents of which are incorporated herein by reference.
The present invention pertains to an exhaust gas treatment device for an exhaust system of an internal combustion engine, especially of a motor vehicle.
Exhaust gas treatment device are, for example, catalytic converters and particle filters as well as combinations thereof. For example, an oxidation-type catalytic converter unit as well as a particle filter unit may be arranged one after another in a common housing to achieve a compact design. Hydrocarbons being carried in the exhaust gas can be reacted by means of the oxidation-type catalytic converter. The particle filter removes particles being carried in the exhaust gas, especially soot. Fuel, which is reacted at the catalytic converter exothermally, may be dispensed upstream of the oxidation-type catalytic converter to regenerate the particle filter. As a result, the particle filter arranged downstream in relation thereto can be heated to an ignition temperature, at which the soot particles deposited in the filter burn off in order to thus bring about the regeneration of the particle filter.
The oxidation-type catalytic converter unit may become worn more or less in the course of the operation of the exhaust gas treatment device. Furthermore, residues that cannot be burned off may remain in the particle filter unit, and these residues increasingly collect over time and gradually clog the particle filter in question. It may be correspondingly necessary to maintain the unit in question and to replace it with a new one if necessary. A comparatively great effort is needed to remove the oxidation-type catalytic converter unit and/or the particle filter unit from the common housing.
The object of the present invention is to propose an improved embodiment for an exhaust gas treatment device of the type mentioned in the introduction, which is characterized in that the accessibility to the respective unit for maintenance purposes and the like is simplified.
The present invention is based on the general idea of axially rigidly arranging a bracket at the particle filter unit and of axially fixing said bracket to the housing by means of a clamp connection, which detachably connects at least two housing parts adjoining each other axially with one another. The clamp connection, which is present anyway, assumes an additional function hereby, because it fixes the two adjacent housing parts to one another, on the one hand, and because it fixes the bracket to the housing, on the other hand. By releasing the clamp connection, the housing parts are mobile in relation to one another, on the one hand, whereas the bracket is also mobile relative to the housing, on the other hand. In particular, the particle filter unit can then be removed from the housing in an especially simple manner.
Corresponding to an advantageous embodiment, a middle housing part may be provided, which is arranged axially between an inlet housing part and an outlet housing part. At least one axial section of the particle filter unit is arranged in this middle housing part. Furthermore, it is connected to the inlet housing part via an inlet-side clamp connection and to the outlet housing part via an outlet-side clamp connection. Simplified accessibility is obtained to the interior of the housing by removing the middle housing part.
In a variant, the middle housing part may be arranged axially rigidly at the particle filter unit. The above-mentioned, at least one bracket may be formed on the middle housing part or may be formed by this, and at least one of the clamp connections detachably connects the middle housing part with the respective adjacent housing part via the corresponding bracket. This means that the respective bracket forms a flange at the middle housing part, which is connected to a corresponding flange of the respective adjacent housing part via the respective clamp connection. Since the respective bracket forms part of the middle housing part, axial fixation of the bracket and hence of the particle filter unit to the housing is achieved due to the fastening of the middle housing part to the adjacent housing parts.
In another embodiment, which makes do without such a middle housing part, the clamp connection connects the inlet housing part with an outlet housing part. The bracket coupled with the particle filter unit now cooperates with this one clamp connection such that the bracket is fixed axially to both housing parts. The bracket is integrated due to this design in the clamp connection, so that the desired axial fixation of the particle filter unit in the housing takes place automatically due to the connection of the two housing parts. For example, the bracket may have two flanges for this, which cooperates with flanges of the two housing parts, which said flanges are complementary thereto, in order to establish the clamp connection.
Further important features and advantages of the present invention appear from the subclaims, from the drawings and from the corresponding description of the figures on the basis of the drawings.
It is obvious that the above-mentioned features, which will also be explained below, can be used not only in the particular combination indicated, but in other combinations or alone as well, without going beyond the scope of the present invention.
Preferred exemplary embodiments of the present invention are shown in the drawings and will be explained in more detail in the following description, wherein identical reference numbers designate identical or similar or functionally identical components. The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which preferred embodiments of the invention are illustrated.
In the drawings:
Referring to the drawings in particular, corresponding to
Housing 2 has an inlet housing part 7, which is equipped with an exhaust gas inlet 8 and in which the oxidation-type catalytic converter 5 is arranged. Furthermore, housing 2 has an outlet housing part 9, which has an exhaust gas outlet 10 and into which the particle filter unit 6 protrudes. To obtain an especially compact design, the exhaust gas inlet 8 may be oriented at right angles to the axial direction 3. In addition or as an alternative, the exhaust gas outlet 10 may also be oriented at right angles to the axial direction 3.
In addition, the exhaust gas treatment device 1 is equipped with at least one clamp connection 11, by means of which two housing parts, which axially adjoin one another, are detachably connected to one another. The embodiment shown in
Corresponding to
The respective bracket 13 cooperates with at least one clamp connection 11, doing so such that the respective clamp connection 11 axially fixes the respective bracket 13 at the housing 2 or at least one housing part 7, 9, 12. Due to the axial fixation of the respective bracket 13 at housing 2, the particle filter unit 6, which is axially rigidly coupled with the respective bracket 13, is automatically fixed axially in the housing 2 as well. At the same time, this means that when the clamp connection 11 is released, fixation of the respective bracket 13 is abolished, as a result of which the fixation of the position of the particle filter unit 6 is abolished as well. As a consequence, the particle filter unit 6 can be removed from the outlet housing part 9 when housing 2 is opened.
In the embodiment shown in
Bracket 13 is integrated in the clamp connection 11 in the embodiment shown in
In the embodiments being shown here, the respective bracket 13 has a V-section 21 in the axial section. This V-section 21 has an inlet-side flank 22 as well as an outlet-side flank 23. The inlet housing part 7 has a ring collar 24, which fits the inlet-side flank 22 and forms a connecting flange of the inlet housing part 7. The outlet housing part 9 correspondingly has a ring collar 25, which fits the outlet-side flange 23 and forms a connecting flange of the outlet housing part 9. Furthermore, the respective clamp connection 11 has a clamp 26, which prestresses the respective ring collar 24 or 25 axially against the respective flank 22 and 23. An inlet-side sealing element 27 may be optionally arranged between the ring collar 24 of the inlet housing part 7 and the inlet-side flank 22. An outlet-side sealing element 28 may likewise be arranged between the ring collar 25 of the outlet housing part 9 and the outlet-side flank 23 of the outlet-side sealing element 28.
Clamp 26 is equipped with a V-section 29 here, whose flanks, not designated more specifically, extend over and axially prestress the respective ring collars 24, 25 as well as the respective bracket 13. Clamp 26 can therefore also be called a V-clamp. Clamp 26 has, besides a tightening strap in the example, which extends circumferentially in the circumferential direction and cooperates with a tightening means, not shown here, in order to make it possible to introduce a tensile stress oriented in the circumferential direction into clamp 26. Clamp 26 can therefore also be called a band clamp and especially also a V-band clamp.
In the embodiment shown in
In the embodiment shown in
In the example shown in
Corresponding to
The oxidation-type catalytic converter unit 5 comprises a catalytic converter tube 36, in which at least one catalytic converter element 37 is positioned by means of a mounting mat 38. The catalytic converter tube 36 may be supported axially at the front and axially in the rear at the tubular body 33 of the inlet housing part 7 and define an annular space 39 with the tubular body 33 between its axial ends. This annular space 29 may likewise form an air gap insulation. Furthermore, it may also be filled with an insulating material. Connection sites 40 for probes may be provided in the area of inlet housing part 7.
The outlet housing part 9 may have, corresponding to the embodiments being shown here, an inner shell 41 and an outer shell 42, between which a distance is maintained, which makes possible an air gap insulation and which may be filled with an insulating material. Furthermore, ports 44 for probes and the like may also be provided at the outlet housing part 9.
The particle filter unit 6 is equipped in the example being shown with an axial pad 45 as well as with a wire mesh ring 46 in order to axially support the particle filter element 16 on the discharge flow side at the particle filter tube 15.
In addition, a mounting mat 47, via which the middle housing part 12 is supported at the particle filter unit 6 or at the particle filter tube 15 thereof, is provided in the embodiment shown in
Corresponding to
The inlet side 51 is formed by a single inlet opening 52 in the embodiment shown in
In the embodiment shown in
Corresponding to
An inlet opening 53 may be provided in the embodiments according to
The inlet funnel 49 is, on the whole, truncated cone-shaped or has at least one truncated cone-shaped section in the embodiments according to
Inlet funnel 49 makes possible the homogenization of the flow arriving at the oxidation-type catalytic converter unit 5 with extremely compact installation conditions, even in case of an exhaust gas inlet 8 oriented at right angles to the axial direction 3.
While specific embodiments of the invention have been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.
Number | Date | Country | Kind |
---|---|---|---|
10 2009 024 534.0 | Jun 2009 | DE | national |