This application claims the benefit of priority under 35 U.S.C. §119 of German Patent Application DE 10 2013 219 640.7 filed Sep. 27, 2013, the entire contents of which are incorporated herein by reference.
The present invention pertains to an exhaust gas treatment device with an inlet pipe for admitting a combustion waste gas, an outlet pipe for discharging the combustion waste gas, an essentially gas-tight inner housing connected with the inlet pipe, on the one hand, and with the outlet pipe, on the other hand, for receiving a particle filter, a connection element arranged in a connection area of the inner housing, which said connection area fluidically faces the outlet pipe, for mechanically connecting the particle filter with the inner housing, and an oxidation catalytic converter arranged in the inner housing upstream of the particle filter for catalyzing an oxidation reaction of the combustion waste gas, and to an internal combustion engine with the exhaust gas treatment device.
Methods for the mechanical, catalytic or chemical treatment of the combustion waste gases of furnaces, waste incinerators or other industrial plants, gas turbines or engines are combined under the general term exhaust gas treatment. An exhaust gas treatment carried out according to the state of the art, optionally combined with further measures affecting the mixture formation or combustion, reduces the pollutant output of conventional internal combustion engines.
While so-called regulated three-way catalytic converters have been part of the legally required minimum equipment for participation in public road traffic for, e.g., motor vehicles with spark ignition engines for a long time in numerous states, the state of the art provided for only insufficient exhaust gas treatment for the exhaust gases of comparable diesel engines over many years, because the higher air-to-fuel ratios of this engine variant compared to spark ignition engines imposes special functional requirements on corresponding means. In addition, the load of the diesel engine is set only by adapting the quantity of injected fuel, unlike in case of a spark ignition engine, in which it is set by adapting the total volume of the air-fuel ratio. Consequently, the particulate emission can be affected only slightly by limiting the fuel supply in case of diesel engines of this class.
The strict limitation of such particulate emissions required by law is therefore achieved in the state of the art with soot filters, which are also called soot particle filters (SPF) according to the composition of the particles to be filtered or diesel particle filters (DPF) according to the origin of these particulate emissions and aim to achieve a reduction of the concentration of these combustion residues remaining in the discharged exhaust gas stream. A catalytic converter (cat), which, combined with a diesel engine, often corresponds to the usual principles of action of a so-called oxidation catalytic converter or of the selective catalytic reduction (SCR), is also used for reducing emission of pollutants. Assembly units comprising such and other filters, catalytic converters or thermal reactors shall be combined under the term “exhaust gas treatment device” in the following descriptions.
Special attention is paid above all to the so-called pressure loss or pressure drop of the different exhaust gas treatment elements besides further fluidic operating parameters. In case of filters of this class, such a pressure difference arises already from the inherent flow resistance coefficient of the filter body in the original state thereof, which is due to the design and the material. However, the continual embedding and deposition of the solids separated from the exhaust gas stream, for example, in the form of a so-called filter cake, often increases the flow resistance considerably during the ongoing operation of the exhaust gas treatment device, so that the counterpressure exerted by the filter increases steadily as well. The rising counterpressure leads, in turn, to a steady reduction of the volume flow through the entire means.
A basic object of the present invention is therefore to create an exhaust gas treatment device which permits continuous monitoring of the counterpressure exerted by a filter on the exhaust gas stream. Another object of the present invention is to provide a corresponding internal combustion engine.
According to the invention, an exhaust gas treatment device is provided comprising an inlet pipe for admitting a combustion waste gas, an outlet pipe for discharging the combustion waste gas, a particle filter and an essentially gas-tight housing connected with the inlet pipe and connected with the outlet pipe. The gas-tight housing receives the particle filter. A connection element is arranged in a connection area of the gas-tight housing. The connection area fluidically faces the outlet pipe, for mechanically connecting the particle filter with the gas-tight housing. An oxidation catalytic converter is arranged in the gas-tight housing, upstream of the particle filter, for catalyzing an oxidation reaction of the combustion waste gas. A counterpressure-measurement point is provided fluidically between the oxidation catalytic converter and the connection element for measuring a counterpressure exerted by the particle filter during operation of the exhaust gas treatment device.
The present invention is consequently based on the basic discovery that a measurement point suitable for monitoring the counterpressure of a diesel particle filter does not necessarily have to be arranged directly upstream of the filter in question, contrary to the common opinion among experts. The design of modern exhaust gas treatment device, in which the diesel soot particle filter is accommodated by an essentially gas-tight inner housing fluidically connected with the inlet pipe and outlet pipe, rather makes possible a far more flexible positioning. Therefore, nearly any measurement point located in the area between an oxidation catalytic converter arranged upstream of the filter, on the one hand, and a connection element arranged downstream of the filter, on the other hand, is suitable, in principle, for determining the exact counterpressure.
One should think in this case, in principle, of any desired position on the circumference of the inner housing. A large number of design embodiment variants will thus become available to the person skilled in the art, and he can select from among these the counterpressure measurement point most advantageous from the viewpoint of the practical aspects of manufacture technology and from application-specific points of view.
In a preferred embodiment, the counterpressure-measurement point is designed in the form of a bushing, which is in contact with the inner housing on the end face and whose shape makes it possible to receive a pressure-measuring device of this class in an accurately fitting manner. The embodiment of such a bushing as a threaded bushing with a suitable screw thread makes it possible in this scenario to amplify the moderate circumferential force to be applied by the installer while screwing in the measuring device to a considerable axial force to such a degree that the bushing and the measuring device can become connected in a positive-locking and non-positive manner, which can likewise be released in a corresponding manner when needed. The resulting conversion of a comparatively great circumferential motion into an only slight axial motion will, moreover, enable the installer to perform an uncomplicated adjustment of the counterpressure-measuring means within the bushing thereof.
The counterpressure-measurement point provided according to the present invention does not rule out the design option of an additional outer housing of the exhaust gas treatment device by any means. It is rather possible without appreciable design measures to pass through such an outer housing, even in case the latter has a double-walled design, by means of the (threaded) bushing described.
The possible heat insulation of the exhaust gas treatment device by means of an insulation mat enclosed between the outer shell and the inner shell of the outer housing is not in conflict with the solution proposed, either. The bushing according to the present invention passes through the outer and inner housing shells as well as the insulating material enclosed between them in such a variant without going beyond the scope of the present invention. Orientation of the bushing at right angles to the wall of the outer housing is especially advantageous in this embodiment variant in order not to compromise the insulation properties.
Other design additions to the exhaust gas treatment device may be used, e.g., to further increase the desired reduction of the emission in respect to the output of nitrogen oxides, which is problematic precisely in diesel engines, compared to a simple soot particle filtration or to the use of a nitrogen oxide storage catalytic converter by means of selective catalytic reduction (SCR), while maintaining combustion conditions favorable for consumption.
Further important features and advantages of the present invention appear from the subclaims, from the drawings and from the corresponding description of the figures on the basis of the drawings.
It is apparent that the above-mentioned features, which will also be explained below, may be used not only in the particular combination indicated, but in other combinations or alone as well, without going beyond the scope of the present invention.
Preferred exemplary embodiments of the present invention are shown in the drawings and will be explained in more detail in the following description, where identical reference numbers designate identical or similar or functionally identical components.
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which preferred embodiments of the invention are illustrated.
Referring to the drawings in particular,
This principle of action appears more clearly on the basis of the section shown in
The design of the exhaust gas treatment device 1 in plane B-B in
Five optional counterpressure-measurement points 10, 11, 12 (
Contrary to this, the second and third counterpressure-measurement points 11, 12, which are marked according to
A large number of conceivable counterpressure-measurement points, which are clearly shown in
While specific embodiments of the invention have been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.
Number | Date | Country | Kind |
---|---|---|---|
10 2013 219 640.7 | Sep 2013 | DE | national |