The invention relates to an exhaust-gas turbocharger according to the preamble of claim 1.
In the case of such an exhaust-gas turbocharger, provision is made of a variable turbine geometry (VTG), in which guide vanes are adjusted by means of a unison ring. In order to be able to provide the best possible control, the least possible hysteresis and thus the least possible friction of the system is desirable. The radial bearing of the unison ring also has an influence on this, for example. In the case of known exhaust-gas turbochargers, rollers on pins or else a rolling bearing are provided for this. In view of this, it is an object of the present invention to provide an exhaust-gas turbocharger of the type indicated in the preamble of claim 1, the structure of which has a simpler and thus more cost-effective design.
This object is achieved by the features of claim 1.
This advantageously gives rise firstly to a saving in the number of components, for example for rollers on pins as are provided in the case of known bearings.
A very beneficial relationship between friction radius and rolling radius in the given installation space is advantageously also obtained.
Since the roller element (roller block) can rotate through 360°, it has lateral guide faces.
The dependent claims contain advantageous developments of the invention.
Claims 9 and 10 define a VTG cartridge according to the invention as an object which can be marketed independently.
Further details, features and advantages of the invention become apparent from the following description of exemplary embodiments with reference to the drawing, in which:
The exhaust-gas turbocharger 1 also has a turbine 2, which comprises a turbine wheel 3 surrounded by an intake duct 4, which is provided with a so-called VTG cartridge 5. This VTG cartridge 5 will be described in detail hereinbelow with reference to
The exhaust-gas turbocharger 1 also of course has all the other common parts of an exhaust-gas turbocharger, such as a rotor 20, which is mounted rotatably in a bearing housing 21 and which bears the turbine wheel 3 at one end and a compressor wheel 23 of a compressor 22 at the other end. These parts are likewise shown only in schematically greatly simplified form in
The VTG cartridge, which, as mentioned, will be explained in detail hereinbelow with reference to
A VTG cartridge is understood to mean a structural unit which, between a vane bearing ring 7 and a disk 6, delimits the intake duct 4 for the passage of exhaust gases to the turbine wheel 3. Furthermore, such a VTG cartridge has a plurality of vanes, which are arranged in the intake duct 4 but cannot be seen in
Each vane lever 10 has a lever head 11, which engages into an associated groove 12 in a unison ring 13.
For radially mounting the unison ring 13, provision is made of a radial bearing, which according to the invention is formed by at least one roller element 8.
In the first embodiment shown in
In this embodiment, too, provision is made of a roller element (roller block 8) which, in turn, has a semicircularly rounded, first supporting region 8A, which engages into the depression 14 in the vane bearing ring 7 which is open on one side.
This roller block 8, too, has a second supporting region 8B which engages into the bearing groove 15. In this embodiment, however, the second supporting region 8B has a recess 17, into which a driver projection 18 of the unison ring 13 engages, as becomes apparent in detail from the illustrative representation in
Both embodiments shown in
Furthermore, in both embodiments, provision can preferably be made of three, four or five roller elements 8, which can be arranged distributed over the circumference of the VTG cartridge.
In addition to the above written disclosure, reference is hereby explicitly made to the illustrative representation of the invention in
1 Exhaust-gas turbocharger
3 Turbine wheel
4 Intake duct
5 VTG cartridge
7 Vane bearing ring
8 Roller element/roller block
8A, 8B Supporting regions
9 Vane shafts
10 Vane lever
11 Lever heads
13 Unison ring
15 Bearing groove
15G Opposing wall face
16 End face
18 Driver projection
19 Covering plate
21 Bearing housing
23 Compressor wheel
K1 and K2 Lateral contact points for carrying along the roller element 8
K Contact point for rolling bearing
L Charger longitudinal axis
Number | Date | Country | Kind |
---|---|---|---|
102012008590.7 | Apr 2012 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/037307 | 4/19/2013 | WO | 00 |