Exhaust-gas turbocharger

Information

  • Patent Grant
  • 8869525
  • Patent Number
    8,869,525
  • Date Filed
    Thursday, September 10, 2009
    14 years ago
  • Date Issued
    Tuesday, October 28, 2014
    9 years ago
Abstract
The present invention relates to an exhaust-gas turbocharger (1) having a turbine housing (2) and having a manifold section (3) which is connected to the turbine housing (2), wherein the turbine housing (2) and the manifold section (3) are formed as a single-piece cast part.
Description
FIELD OF THE INVENTION

The invention relates to an exhaust-gas turbocharger.


BACKGROUND OF THE INVENTION

Exhaust-gas-turbocharged internal combustion engines are nowadays often fitted with air-gap-insulated exhaust manifolds which are expediently produced in a two-shell design from thin-walled sheet-metal parts. The turbine housing is generally composed of cast materials with correspondingly greater wall thicknesses.


With air-gap-insulated manifold technology, the heat loss from the hot exhaust gas and likewise the surface temperature are reduced in relation to conventional cast manifolds on account of the lower masses. A greater amount of thermal energy is therefore made available to the downstream turbine of the exhaust-gas turbocharger for power conversion.


Air-gap-insulated manifolds are used in combination with both single-channel and also twin-channel turbine housings. Twin-channel turbine housings are used with so-called pulse supercharging, in which, for example in the case of a 4-cylinder or 6-cylinder engine, the exhaust-gas flows of in each case 2 or 3 cylinders are combined in groups and supplied in separate pipe lines to in each case one channel in the turbine housing. The individual channels in the turbine housing are separated from one another from the turbine housing inlet to the outlet from the spiral by a partition. In twin-channel turbine housings, the dynamic energy (pulsation) of the exhaust gases is additionally utilized for power conversion by means of the separation of individual exhaust gas flows.


With such complex components, however, the connecting technology between the thin-walled air-gap-insulated manifold and the comparatively thick-walled cast turbine housing has often proven to be relatively critical. On account of the available installation space, of the heat losses and leakage losses and on account of assembly requirements, the connection between the air-gap-insulated manifold and the cast turbine housing is often formed as a welded connection. With this type of connection in particular, problems arise on account of the materials, which are different for production reasons, of the air-gap-insulated manifold and of the cast turbine housing.


A further disadvantage, at least in the case of the twin-channel design of the turbine housing, is that the gas flows of the separate channels influence one another on account of leaks at the sliding connections within the air-gap-insulated manifold and in the region of the partition at the inlet into the turbine housing. The pulsation effect is therefore reduced as a result of the so-called “crosstalk” of the gas flows.


SUMMARY OF THE INVENTION

It is therefore an object of the present invention to create an exhaust-gas turbocharger which utilizes the advantages of an air-gap-insulated manifold and at the same time makes it possible to avoid the critical connecting technology between the air-gap-insulated manifold and the cast turbine housing.


This object is achieved by means of an exhaust-gas turbocharger in which the turbine housing and the manifold section, which is composed of the exhaust ducts of at least two cylinders, are formed as a single-piece cast part which can be referred to as a turbine-housing/manifold module.


The object is likewise achieved by means of an exhaust-gas turbocharger in which the turbine housing is formed as a cast part and the manifold section is formed as a separate cast part, which cast parts can be connected to one another after being produced by casting.


This embodiment is aimed at applications in which particular mounting conditions of the exhaust-gas turbocharger on the engine and the spatial conditions in the engine bay of the vehicle may result in such a complicated geometry of the manifold section that casting the manifold section together with the turbine housing would be made impossible. In this case, the manifold section and the turbine housing may be cast as separate individual parts that are subsequently connected to one another. The connection of the two individual parts to one another may take place by means of welding, a flange connection, a V-strap connection or similar suitable connecting methods.


The turbine housing may be of either single-channel or twin-channel design.


For a twin-channel turbine housing, the manifold section is designed such that, for the separation of the channels, each turbine housing duct extends separately up to the cylinder head and is acted on with exhaust gas from in each case one cylinder or from a plurality of cylinders combined in groups, and the dynamic energy (pulsation) of the exhaust gas is therefore additionally used for power conversion. To receive the exhaust-gas flows from the other cylinders, for example cylinders 1 and 4 in a 4-cylinder engine or cylinders 1, 2 and 5, 6 in a 6-cylinder engine, the manifold section is provided with openings at the sides, to which openings the exhaust lines of the cylinders are then connected by means of a plug-type connection or the like. The plug-type connections of the exhaust lines of further cylinders to one another and to the manifold section should be designed such that length variations as a result of thermal expansions can be compensated.


The turbine housing with the integrally cast manifold section is fastened to flanges, provided specifically for the purpose, on the cylinder head, for example at cylinders 2 and 3, and therefore serves as the main supporting element for the entire exhaust-gas turbocharger (turbine-housing/manifold module). The additional exhaust lines of the other cylinders are themselves fastened to corresponding flanges on the cylinder head.


Correspondingly shaped sheet-metal shells are arranged around the individual exhaust lines including the integrally cast manifold section, which sheet-metal shells form the so-called outer shell. The insulating air intermediate space is thereby formed between the hot lines which conduct exhaust gas and the outer shell. The outer shell is composed of at least two sheet-metal molded parts which are welded in a gas-tight fashion to one another and to the manifold section in the region of the transition to the turbine housing. It is also conceivable to use other connecting techniques, such as folding, brazing, riveting, screw connections etc. or combinations of the different types of connection, for the outer shell instead of welding. The at least two sheet-metal shells are not arranged around the turbine housing.


As a result of this design, specifically providing the channel separation directly at the cylinder head outlet in the case of a twin-channel turbine housing, it is ensured that the so-called “crosstalk” of the individual channels cannot take place and the pulsation effect of the exhaust gas is therefore utilized more effectively for power conversion. A further advantage is that the design-induced and functionally induced leakage flows at the plug-type connections of the exhaust pipe of the individual groups of cylinders likewise cannot influence one another.


In contrast to pulse supercharging in which a 2-channel turbine housing is imperatively necessary, no separation of the exhaust-gas flows takes place with so-called ram supercharging. Here, the exhaust-gas flows of all the cylinders are merged in a so-called collector and are supplied to the turbine wheel through the single-channel turbine housing. The teaching of the invention is expedient here too, specifically a turbine housing having an integrally cast manifold section which is designed in this case as a collector. The supply of the individual exhaust-gas flows to the collector and the fastenings of the turbine housing with “collector manifold” and of the individual exhaust lines take place in the same way as for a 2-channel design.





BRIEF DESCRIPTION OF THE DRAWINGS

Further details, features and advantages of the invention can be gathered from the following description of an exemplary embodiment on the basis of the drawings, in which:



FIG. 1 shows an illustration of an exhaust-gas turbocharger according to the invention,



FIG. 2 shows an illustration of the turbine housing of the exhaust-gas turbocharger according to the invention,



FIG. 3 shows an illustration of the weld seams on the outer shells of the manifold module,



FIG. 4 shows a section through the manifold section and turbine housing.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 illustrates an exhaust-gas turbocharger 1 which is provided with a turbine housing 2 and a manifold section 3. The exhaust-gas turbocharger 1 self-evidently has all the other components of conventional turbochargers, but these are not described below since they are not necessary for explaining the principles according to the invention.


In the embodiment illustrated in FIG. 1, the turbine housing 2 and the manifold section 3 are formed as a single-piece cast part.


The design can also be seen from the enlarged illustration of FIG. 2, wherein it should be emphasized that the embodiment is provided for a twin-channel turbocharger which has separate turbine housing ducts which, in the illustrated embodiment, extend in the form of manifold ducts 4, 5 up to the cylinder head 6. Flanges 11 and 12 are provided for fastening the entire unit to the cylinder head 6.


In the embodiment illustrated in FIGS. 1 and 2, the manifold section 3 also has side openings 7 and 8 which serve for connecting further exhaust lines 9 and 10 which make it possible for the exhaust gases from further cylinders Z1 to Z4 to be supplied to the manifold 3.


In addition to the above written disclosure of the invention, reference is hereby made to the graphic illustration of the invention in FIGS. 1 to 4.


LIST OF REFERENCE SYMBOLS




  • 1 Exhaust-gas turbocharger


  • 2 Turbine housing


  • 3 Manifold section


  • 4, 5 Manifold ducts


  • 6 Cylinder head


  • 7, 8 Lateral openings


  • 9, 10 Exhaust lines


  • 11, 12 Connecting flanges


  • 15 Connecting points of the outer sheet-metal shells


  • 16 Outer sheet-metal shells

  • Z1, Z2, Z3, Z4 Cylinders 1, 2, 3 and 4


Claims
  • 1. An exhaust-gas turbocharger (1) comprising: a turbine housing (2);a manifold section (3) connected to the turbine housing (2), wherein the turbine housing (2) and the manifold section (3) are formed as a single-piece cast part, wherein the manifold section (3) is provided with openings (7, 8) at the sides for connecting further exhaust lines (9, 10); andat least two sheet-metal shells (16) arranged around the manifold section (3) and the exhaust lines (9, 10) so as to form an air gap between the at least two sheet-metal shells and the manifold section and the exhaust lines, wherein the at least two sheet-metal shells are not arranged around the turbine housing, and wherein the at least two sheet-metal shells are connected to one another in a gas-tight fashion at connecting points (15).
  • 2. The exhaust-gas turbocharger as claimed in claim 1, wherein the turbine housing (2) is designed as a twin-channel turbine housing with two turbine housing ducts (4, 5) which extend in each case separately up to a cylinder head (6) via the manifold section (3).
  • 3. The exhaust-gas turbocharger as claimed in claim 1, wherein the manifold section (3) is provided with connecting flanges (11, 12).
  • 4. The exhaust-gas turbocharger as claimed in claim 1, wherein the manifold section (3) is designed as a collector into which all of the exhaust lines from the respective engine cylinders open out.
Priority Claims (1)
Number Date Country Kind
10 2008 047 448 Sep 2008 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2009/056428 9/10/2009 WO 00 2/28/2011
Publishing Document Publishing Date Country Kind
WO2010/033414 3/25/2010 WO A
US Referenced Citations (36)
Number Name Date Kind
3930747 Woollenweber Jan 1976 A
3948052 Merkle et al. Apr 1976 A
4187678 Herenius Feb 1980 A
4294073 Neff Oct 1981 A
5463867 Ruetz Nov 1995 A
5761905 Yamada et al. Jun 1998 A
6062024 Zander et al. May 2000 A
6122911 Maeda et al. Sep 2000 A
6247552 Kovar et al. Jun 2001 B1
6256990 Itoh Jul 2001 B1
6343417 Bonny et al. Feb 2002 B1
6892532 Bruce et al. May 2005 B2
7089737 Claus Aug 2006 B2
7234302 Koerner Jun 2007 B2
7434390 Nording et al. Oct 2008 B2
7610758 Augstein et al. Nov 2009 B2
7731241 Aoki et al. Jun 2010 B2
7836692 Leroy Nov 2010 B2
8375707 Muller Feb 2013 B2
8549851 Grussmann et al. Oct 2013 B2
20020174650 Durr et al. Nov 2002 A1
20040083730 Wizgall et al. May 2004 A1
20050072143 Diez Apr 2005 A1
20050126163 Bjornsson, Sr. Jun 2005 A1
20050144946 Claus Jul 2005 A1
20050183414 Bien et al. Aug 2005 A1
20060131817 Kerelchuk Jun 2006 A1
20070289954 Bien et al. Dec 2007 A1
20080289323 Diez et al. Nov 2008 A1
20090031722 An et al. Feb 2009 A1
20090188247 Phillips et al. Jul 2009 A1
20100038901 Schmidt et al. Feb 2010 A1
20100047054 Doerle et al. Feb 2010 A1
20100126156 Diez et al. May 2010 A1
20100223911 Gockel et al. Sep 2010 A1
20130014497 Wu et al. Jan 2013 A1
Foreign Referenced Citations (14)
Number Date Country
7372 Feb 2005 AT
2252705 May 1974 DE
3925802 Feb 1991 DE
4342572 Nov 1994 DE
102004054726 Jun 2006 DE
69927233 Jul 2006 DE
60312535 Nov 2007 DE
102009030014 Dec 2010 DE
1536141 Jun 2005 EP
2060066 Apr 1981 GB
63215809 Sep 1988 JP
2000161056 Jun 2000 JP
2003221639 Aug 2003 JP
2008055588 May 2008 WO
Related Publications (1)
Number Date Country
20110171017 A1 Jul 2011 US