The present disclosure relates to exhaust manifolds, and more specifically to engagement between a mounting flange and a manifold body of an exhaust manifold.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
An engine assembly typically includes an exhaust manifold coupled to an engine to direct an exhaust gas flow therefrom. The exhaust manifold may include a manifold body fixed to a flange that couples the exhaust manifold to the engine. The manifold body may be welded to the flange generally at an end surface thereof that generally abuts the engine after assembly. The manifold body and flange are typically formed from similar materials to account for the thermal expansion experienced during the welding process.
An exhaust manifold may include a manifold body and a flange. The manifold body may include a first tube that forms an exhaust gas inlet. The flange may be coupled to the manifold body and may fix the manifold body to an engine and place the manifold body in communication with an exhaust gas from the engine. The flange may include a first aperture having first and second portions located along an axial extent of the first aperture. The first portion may extend to a first end surface of the flange and the second portion may extend to a second end surface of the flange. The first portion may have a first radial width that is less than a second radial width of the second portion. The second portion may receive an end of the first tube therein. The first tube may be fixed to the flange at a location within the first aperture between the first portion and the second end surface.
A method may include inserting an end of a first tube that forms an exhaust gas inlet to an exhaust manifold into a first aperture of a flange that mounts the exhaust manifold to an engine. The first aperture may include first and second portions located along an axial extent of the first aperture. The first portion may extend to a first end surface of the flange and the second portion may extend to a second end surface of the flange. The first portion may have a first radial width that is less than a second radial width of the second portion. The method may further include aligning the end axially within the first aperture at a location between the first portion and the second end surface and fixing the end of the first tube to an inner surface of the first aperture.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
Referring to
With reference to
Flange 28 may be formed, for example, from a powdered metal. In this example, tubes 30, 32, 34, 36 and flange 28 may be formed from different materials. Tubes 30, 32, 34, 36 may therefore have a different coefficient of thermal expansion than flange 28. The powdered metal of flange 28 may have a density of at least 6.8 g/cm3. Flange 28 may include a series of apertures 48, 50, 52, 54 extending between first and second end surfaces 56, 58 thereof. First end surface 56 may be a mating surface for engagement with engine 12. With additional reference to
First portion 60 may extend to first end surface 56 and second portion 62 may extend to second end surface 58. First portion 60 may have a radial width that is less than a radial width of second portion 62. More specifically, and with additional reference to
Stepped region 64 may extend at an angle relative to the longitudinal axis of aperture 48. For example, stepped region 64 may extend at an angle (θ) of between 10 and 90 degrees. Alternatively, stepped region 64 may extend at an angle of between 90 and 135 degrees to provide a generally closed recess. Stepped region 64 may be located a distance (x) from first end surface 56 of between 25 and 75 percent of the axial extent (y) of aperture 48. More specifically, stepped region 64 may be located at approximately the midpoint of the axial extent (y) of aperture 48. End 40 of tube 30 may extend into aperture 48 at a location between first end surface 56 and second end surface 58. For example, an end face 41 of end 40 may be located axially between first portion 60 and second end surface 58. It is understood that the description of tube 30 and aperture 48 applies equally to tubes 32, 34, 36 and apertures 50, 52, 54.
With additional reference to
End 40 of tube 30 may be fixed to an inner wall of aperture 48 at a location between first and second end surfaces 56, 58. For example, end 40 of tube 30 may be fixed to flange 28 at a location between first portion 60 and second end surface 58, and more specifically at recess 66. Due to the fixation of tube 30 within aperture 48 at a location between first and second end surfaces 56, 58, rather than at first end surface 56, the axial extent of tube 30 within aperture 48 may vary without requiring additional machining operations. For example, at least two of tubes 30, 32, 34, 36 may have different axial extents within apertures 48, 50, 52, 54. One of tubes 30, 32, 34, 36 may have an axial extent that is up to 2.0 mm greater than another of tubes 30, 32, 34, 36, and more specifically between 1.0 and 2.0 mm greater than another of tubes 30, 32, 34, 36.
Tube 30 may be fixed to flange 28 by a weld bead 68. A weld tip may be inserted into aperture 48 and may apply weld bead 68 within recess 66. The angular extent of stepped region 64 discussed above may generally facilitate insertion of the weld tip for the welding operation. Weld bead 68 may have a radially inward extent relative to first portion 60 that is, for example, less than or equal to 1 mm. As such, weld bead 68 may provide little or no additional flow restriction within aperture 48. The location of weld bead 68 within recess 66 at a location proximate the midpoint of the axial extent of aperture 48 may generally limit warpage of first end surface 56 that is typically caused by the heat generated during welding. More specifically, warpage of first end surface 56 may be generally less than a warpage caused by welding directly on first end surface 56. The reduced warpage may eliminate or reduce the amount of machining required on first end surface 56.