The disclosure of Japanese Patent Application No. 2008-299740 filed on Nov. 25, 2008 including the specification, drawings and abstract is incorporated herein by reference in its entirety.
1. Field of the Invention
The invention relates to an exhaust manifold and, more specifically, to an exhaust manifold that includes a double collecting pipe that guides exhaust gas from exhaust ports of a set of cylinders.
2. Description of the Related Art
Generally, an internal combustion engine (engine) has a catalyst arranged in an exhaust passage to purify exhaust gas. However, when the temperature of the catalyst is lower than its active temperature, it is difficult to ensure favorable exhaust gas purification performance. Therefore, it is necessary to promptly heat the catalyst to the active temperature, for example, when the engine is started.
Japanese Patent Application Publication No. 7-224649 (JP-A-7-224649) describes a double exhaust pipe. The double exhaust pipe includes an inner pipe and an outer pipe that are arranged via a heat insulating layer, such as an air layer. Exhaust gas flows through the inner pipe.
In the above double exhaust pipe, the outer pipe ensures structural strength, and the thickness of the inner pipe that constitutes an exhaust gas passage is reduced to make it possible to decrease the heat capacity of a portion that contacts exhaust gas. In addition, the heat insulating layer is provided between the inner pipe and the outer pipe, so it is possible to reduce radiation of heat through the outer pipe.
Thus, when the engine is started, the temperature of an inner wall of the exhaust manifold may be quickly increased. Hence, the effect of insulating heat of exhaust gas is improved to make it possible to quickly heat the catalyst to the active temperature.
In addition, Japanese Patent Application Publication No. 10-252457 (JP-A-10-252457) describes an exhaust manifold of this type. Upstream pipes are respectively connected to exhaust ports of an engine. Each of the upstream pipes has a double pipe structure formed of an inner pipe and an outer pipe. The exhaust manifold includes a double collecting pipe that collects a set of the upstream pipes, each of which is formed of the double pipe. The shapes of these upstream pipes and double collecting pipe are simplified to reduce the size of the exhaust manifold.
The double collecting pipe is formed of a common inner pipe and a common outer pipe. The common inner pipe includes a collecting pipe portion and branch pipe portions that are bifurcated from the collecting pipe portion. The common outer pipe covers an outer peripheral portion of the common inner pipe with a certain gap from the common inner pipe. Exhaust gas exhausted from the set of exhaust ports is collected at the double collecting pipe. Thus, the shapes of these upstream pipes and double collecting pipe are simplified to make it possible to reduce the size of the exhaust manifold.
In addition, the double collecting pipe is formed so that the common inner pipe is directly welded to the common outer pipe to attach the common inner pipe to the common outer pipe.
However, in the exhaust manifold described in JP-A-10-252457, the common inner pipe is welded to the common outer pipe. However, a difference in thermal expansion increases between the thin common inner pipe exposed to high-temperature exhaust gas and the thick common outer pipe exposed to outside air. Thus, the common inner pipe deforms against the common outer pipe.
That is, when the thin common inner pipe deforms at a high temperature, the thick common outer pipe does not follow the deformation of the common inner pipe. Therefore, stress at the branched portion of the common inner pipe increases, and the branch pipe portions of the common inner pipe get close to each other. This causes a deformation such that a portion between the branched portions of the branch pipe portions lifts. For this reason, the branched portion of the branch pipe portions forms cracks and is damaged, thus decreasing reliability of the exhaust manifold.
The invention provides an exhaust manifold that is able to prevent damage to a branch portion by reducing stress of branch pipe portions of an inner pipe when the inner pipe is subjected to high-temperature exhaust gas, and that can improve reliability.
An aspect of the invention relates to an exhaust manifold. The exhaust manifold includes: a double collecting pipe that is formed of an inner pipe and an outer pipe, wherein the inner pipe includes a collecting pipe portion and branch pipe portions that are bifurcated from the collecting pipe portion, and the outer pipe covers an outer peripheral portion of the collecting pipe portion and outer peripheral portions of the branch pipe portions; and an inner pipe retainer that is formed of a pair of semi-circular portions and a connecting portion, wherein the pair of semi-circular portions are respectively connected to outer peripheral portions of branched portions of the branch pipe portions and an inner peripheral portion of the outer pipe, the connecting portion connects the pair of semi-circular portions, and the inner pipe retainer is interposed between the inner pipe and the outer pipe and is connected to the inner pipe and the outer pipe so as to define a certain gap between the inner pipe and the outer pipe. In the above exhaust manifold, exhaust gas exhausted from exhaust ports of a set of cylinders among a plurality of cylinders of an engine is introduced into the collecting pipe portion through the branch pipe portions.
The foregoing and further objects, features and advantages of the invention will become apparent from the following description of example embodiments with reference to the accompanying drawings, wherein like numerals are used to represent like elements and wherein:
Hereinafter, an exhaust manifold according to an embodiment of the invention will be described with reference to the accompanying drawings.
First, the configuration will be described. As shown in
Each of the upstream pipes 12a to 12d includes an inner pipe 12n and an outer pipe 12m. The outer pipe 12m is thicker than the inner pipe 12n. The outer pipe 12m is attached to an outer peripheral portion of the inner pipe 12n with a certain gap S1 (see
The flange portion 15 is fixed to the cylinder head by bolts, or the like. Exhaust gas is exhausted from exhaust ports of cylinders of an engine into the upstream pipes 12a to 12d.
In addition, in the present embodiment, the upstream pipe 12a is in fluid communication with the exhaust port of the first cylinder of the engine, the upstream pipe 12b is in fluid communication with the exhaust port of the second cylinder of the engine, the upstream pipe 12c is in fluid communication with the exhaust port of the third cylinder of the engine, and the upstream pipe 12d is in fluid communication with the exhaust port of the fourth cylinder of the engine.
In addition, the double collecting pipe 13A is connected to the downstream side of the upstream pipe 12b that is in fluid communication with the exhaust port of the second cylinder and the downstream side of the upstream pipe 12c that is in fluid communication with the exhaust port of the third cylinder. The other double collecting pipe 13B is connected to a downstream portion, in the exhaust direction, (hereinafter, simply referred to as “downstream portion”) of the upstream pipe 12a that is in fluid communication with the exhaust port of the first cylinder and a downstream portion of the upstream pipe 12d that is in fluid communication with the exhaust port of the fourth cylinder.
Here, the in-line four-cylinder engine is a four-stroke gasoline engine. The combustion stroke takes place in the order of the first cylinder, the third cylinder, the fourth cylinder and the second cylinder. Exhaust gas is introduced into the double collecting pipe 13A from the exhaust port of the second cylinder and the exhaust port of the third cylinder through the upstream pipes 12b and 12c. The respective combustion strokes of the second cylinder and the third cylinder do not take place at the same time. Exhaust gas is introduced into the double collecting pipe 13B from the exhaust port of the first cylinder and the exhaust port of the fourth cylinder through the upstream pipes 12a and 12d. The respective combustion strokes of the first cylinder and the fourth cylinder do not take place at the same time.
Next, the configuration of each of the double collecting pipes 13A and 13B will be described with reference to
As shown in
As shown in
In addition, the half branch pipe portions 23a and 24a of the half inner pipe 27 are spaced apart from each other via a thin-walled portion 23c. The half branch pipe portions 23b and 24b of the half inner pipe 28 are spaced apart from each other via a thin-walled portion 24c. Upstream ends B of the thin-walled portions 23c and 24c are located on the downstream side with respect to upstream ends C of the half branch pipe portions 23a, 23b, 24a and 24b. Thus, a gap is formed between the upstream portions of the half branch pipe portions 23a and 24a, and a gap is formed between the upstream portions of the half branch pipe portions 23b and 24b. Note that, in the inner pipe 25 integrated by connecting the half inner pipes 27 and 28 at the flange portions 27a and 28a, the thin-walled portions 23c and 24c are termed a thin-walled portion 21.
In addition, as indicated by the broken line in
In addition, as shown in
In addition, as shown in
In addition, the outer pipe 26 is attached to the outer peripheral portion of the collecting pipe portion 22 and the outer peripheral portions of the branch pipe portions 23 and 24 so as to cover the collecting pipe portion 22 and the branch pipe portions 23 and 24. As shown in
In addition, as shown in
Note that in
The inner pipe retainer 34 includes semi-circular portions 34a and 34b and a linear connecting portion 34c. The inner pipe retainer 35 includes semi-circular portions 35a and 35b and a linear connecting portion 35c The semi-circular portions 34a, 34b, 35a and 35b are connected to the outer peripheral portions of the branch pipe portions 23 and 24 and the inner peripheral portion of the outer pipe 26. The connecting portion 34c is integrated with the semi-circular portions 34a and 34b, and connects the semi-circular portions 34a and 34b. The connecting portion 35c is integrated with the semi-circular portions 35a and 35b, and connects the semi-circular portions 35a and 35b.
The inner peripheral portions of the semi-circular portions 34a and 34b and semi-circular portions 35a and 35b of the inner pipe retainers 34 and 35 are connected to the outer peripheral portions of the branch pipe portions 23 and 24 by welding, or the like, and the outer peripheral portions of the semi-circular portions 34a and 34b and semi-circular portions 35a and 35b of the inner pipe retainers 34 and 35 are connected to the inner peripheral portion of the outer pipe 26 by welding, or the like. Thus, the inner pipe 25 is fixed to the outer pipe 26 via the inner pipe retainers 34 and 35.
In the present embodiment, the inner pipe 25, the outer pipe 26 and the inner pipe retainers 34 and 35 are made of metal, such as stainless steel plate. The thickness of the outer pipe 26 is larger than the thickness of the inner pipe 25, the thickness of each of the inner pipe retainers 34 and 35 is larger than the thickness of the inner pipe 25 and is smaller than the thickness of the outer pipe 26. In addition, the thickness of the reinforcement pipe 31 is larger than the thickness of the inner pipe 25.
In addition, the connecting portions 34c and 35c of the respective inner pipe retainers 34 and 35 are connected to each other by welding. In the present embodiment, the connecting portions 34c and 35c are connected to clamp the upstream portions of the branch pipe portions 23 and 24, and the reinforcement pipe 31 is connected to the downstream portion of the collecting pipe portion 22. This prevents the branch pipe portions 23 and 24 and the collecting pipe portion 22 from deforming to radially increase the diameter by the pressure of exhaust gas, that is, prevents the inner pipe 25 from deforming in a direction in which the half inner pipes 27 and 28 separate from each other.
In addition, wire meshes 36, 37 and 38 that have a half shape are interposed between the inner pipe 25 and the outer pipe 26 so as to clamp the inner pipe 25. The wire meshes 36, 37 and 38 ensure a gap that forms the air layer S between the inner pipe 25 and the outer pipe 26, and absorbs vibrations when the vibrations occur in the exhaust manifold 11.
In addition, as shown in
In addition, the pipe diameter of the downstream portion of the collecting pipe portion 22 is smaller than the pipe diameter of a portion other than the downstream portion of the collecting pipe portion 22 (hereinafter, the downstream portion of the collecting pipe portion 22 is referred to as small-diameter portion 41). The reinforcement pipe 31 is attached to the small-diameter portion 41.
In addition, the wire mesh 38 is attached to the collecting pipe portion 22 so as to cover a step between the collecting pipe portion 22 and the small-diameter portion 41.
In addition, as shown in
In addition, the downstream portions of the downstream pipes 14a and 14b are collected by a collecting pipe 16. A flange portion 17 is provided for the collecting pipe 16. The flange portion 17 is connected to a catalytic device (not shown).
The catalytic device includes a known three-way catalyst. The catalytic device reduces or oxidizes harmful substances, such as nitrogen oxides, contained in exhaust gas to harmless substances, such as water, carbon dioxide and nitrogen. The catalytic device controls the air-fuel ratio of the engine within a predetermined range, and maintains the concentration of oxygen in exhaust gas within a certain range to obtain highly efficient exhaust gas purification performance.
In addition, in the catalytic device, normally, the reducing ability of the three-way catalyst is low at room temperature, and the three-way catalyst is easily damaged when continuously exposed to an excessive high temperature or vibrations. Therefore, it is necessary to warm the engine by heat of exhaust gas so that the reducing ability of the three-way catalyst is activated early after the engine is started.
Next, the operation will be described. During operation of the engine, in the cylinders, that is, the first cylinder to the fourth cylinder, the intake stroke, compression stroke, combustion and expansion stroke, and exhaust stroke are repeated in a predetermined combustion order. Then, for example, when the first cylinder is in the combustion and expansion stroke, the second cylinder to the fourth cylinder are respectively substantially in the exhaust stroke, compression stroke and intake stroke. When the first cylinder is in the exhaust stroke, the second cylinder to the fourth cylinder are respectively substantially in the intake stroke, combustion and expansion stroke and compression stroke. When the first cylinder is in the intake stroke, the second cylinder to the fourth cylinder are respectively substantially in the compression stroke, exhaust stroke and combustion and expansion stroke. When the first cylinder is in the compression stroke, the second cylinder to the fourth cylinder are respectively substantially in the combustion and expansion stroke, intake stroke and exhaust stroke.
In the exhaust manifold 11 according to the present embodiment, which is attached to the above engine, the upstream pipe 12a that is in fluid communication with the first cylinder and the upstream pipe 12d that is in fluid communication with the fourth cylinder are connected to the double collecting pipe 13B. Thus, exhaust gas exhausted from the exhaust port of the first cylinder and the exhaust port of the fourth cylinder is introduced into the double collecting pipe 13B through the upstream pipes 12a and 12d.
In addition, the upstream pipe 12b that is in fluid communication with the second cylinder and the upstream pipe 12c that is in fluid communication with the third cylinder are connected to the double collecting pipe 13A. Thus, exhaust gas exhausted from the exhaust port of the second cylinder and the exhaust port of the third cylinder is introduced into the double collecting pipe 13A through the upstream pipes 12b and 12c.
The upstream pipes 12a to 12d according to the present embodiment each have a double pipe structure, so the heat capacity of each inner pipe 12n is small, and the temperature of each inner pipe 12n early increases. In addition, the inner pipes 12n are covered with the air layer that is defined by the gap S1, so heat radiation from the inner pipes 12n to the outer pipes 12m is reduced to insulate heat of exhaust gas.
In addition, exhaust gas introduced into the double collecting pipes 13A and 13B joins at the collecting pipe portions 22 through the corresponding branch pipe portions 23 and 24, and is introduced into the downstream pipes 14a and 14b having a double pipe structure, and is then exhausted toward the catalytic device while the heat of exhaust gas is insulated by the downstream pipes 14a and 14b.
The double collecting pipes 13A and 13B according to the present embodiment each has a double pipe structure that includes the thin inner pipe 25 and the thick outer pipe 26 that covers the outer peripheral portion of the inner pipe 25 via the gap S. The gap S defines the air layer between the inner pipe 25 and the outer pipe 26. Thus, the heat capacity of the inner pipe 25 is small, and the temperature of the inner pipe 25 early increases. In addition, the inner pipe 25 is surrounded by the air layer, so heat radiation from the inner pipe 25 to the outer pipe 26 is reduced, and heat of exhaust gas is insulated. Thus, when the engine is cold, activation of the catalytic device provided downstream of the double collecting pipes 13A and 13B is facilitated, and the exhaust gas purification performance improves.
On the other hand, the inner pipe 25 is thinner than the outer pipe 26. Therefore, when the inner pipe 25 is exposed to high-temperature exhaust gas, a difference in thermal expansion between the inner pipe 25 and the outer pipe 26 increases. This causes a deformation in the collecting pipe portion 22 and branch pipe portions 23 and 24 of the inner pipe 25. Particularly, as a deformation occurs in the branch pipe portions 23 and 24 in the radial direction, the thin-walled portion 21 deforms to lift. This may cause damage such that cracks, or the like, occur in the thin-walled portion 21.
In the present embodiment, the pair of inner pipe retainers 34 and 35 that have a half shape are interposed between the inner pipe 25 and the outer pipe 26 so as to define the certain gap S between the inner pipe 25 and the outer pipe 26. The inner pipe retainers 34 and 35 are welded to the inner pipe 25 and the outer pipe 26. Then, the inner pipe retainers 34 and 35 are formed to include the semi-circular portions 34a, 34b, 35a and 35b and the connecting portions 34c and 35c. The semi-circular portions 34a, 34b, 35a and 35b are connected to the outer peripheral portions of the branch pipe portions 23 and 24 and the inner peripheral portion of the outer pipe 26. The connecting portions 34c and 35c are integrated with the semi-circular portions 34a and 34b, 35a and 35b and connect the semi-circular portions 34a and 34b, 35a and 35b, respectively. Thus, the inner pipe 25 is fixed to the outer pipe 26 via the inner pipe retainers 34 and 35 in a state where the pair of branch pipe portions 23 and 24 are held by the inner pipe retainers 34 and 35.
Therefore, even when a difference in temperature increases between the outer pipe 26 exposed to low-temperature outside air and the inner pipe 25 exposed to high-temperature exhaust gas, the inner pipe retainers 34 and 35 interposed between the inner pipe 25 and the outer pipe 26 allows heat of the inner pipe 25 to be transferred to the inner pipe retainers 34 and 35. This can reduce a difference in temperature between the inner pipe 25 and the inner pipe retainers 34 and 35.
Thus, it is possible to reduce a deformation of the inner pipe 25 with respect to the inner pipe retainers 34 and 35. In addition to this, the semi-circular portions 34a and 34b, 35a and 35b connected to the outer peripheral portions of the branch pipe portions 23 and 24 are connected by the connecting portions 34c and 35c, so the pair of branch pipe portions 23 and 24 are connected by the inner pipe retainers 34 and 35. This reduces a deformation in a direction in which the branch pipe portions 23 and 24 of the inner pipe 25 get close to each other. Thus, it is possible to reduce stress of the thin-walled portion 21 of the branch pipe portions 23 and 24. As a result, this suppresses a lift of the thin-walled portion 21 of the branch pipe portions 23 and 24, and it is possible to prevent damage such that cracks, or the like, occur in the thin-walled portion 21 of the branch pipe portions 23 and 24. Thus, it is possible to improve reliability of the exhaust manifold 11. In addition, it is possible to reduce stress of the welding surfaces between the branch pipe portions 23 and 24 and the inner pipe retainers 34 and 35, so the strength at which the inner pipe 25 is attached may be ensured, and reliability of the exhaust manifold 11 may be further improved.
In addition, in the present embodiment, the thickness of the outer pipe 26 is larger than the thickness of the inner pipe 25, and the thickness of each of the inner pipe retainers 34 and 35 is larger than the thickness of the inner pipe 25 and is smaller than the thickness of the outer pipe 26. Thus, the heat capacity of the inner pipe 25 exposed to high-temperature exhaust gas is reduced, and the air layer (heat insulating layer) having a sufficient size may be provided between the inner pipe 25 and the outer pipe 26. Hence, it is possible to insulate heat of exhaust gas.
In addition, the thickness of each of the inner pipe retainers 34 and 35 is larger than the thickness of the inner pipe 25, so a difference in temperature between the inner pipe 25 and the inner pipe retainers 34 and 35 may be further reduced, and it is possible to further reduce a deformation of the inner pipe 25 with respect to the inner pipe retainers 34 and 35.
In addition, when exhaust gas is introduced into the double collecting pipes 13A and 13B, the branch pipe portions 23 and 24 and the collecting pipe portion 22 radially deform because of the pressure of exhaust gas. In the present embodiment, the connecting portions 34c and 35c of the inner pipe retainers 34 and 35 that are thicker than the inner pipe 25 are connected to clamp the upstream portions of the branch pipe portions 23 and 24, and the reinforcement pipe 31 that is thicker than the inner pipe 25 is connected to the downstream portion of the collecting pipe portion 22 to reinforce the upstream portions and downstream portion of the inner pipe 25. This prevents a deformation such that the branch pipe portions 23 and 24 and the collecting pipe portion 22 radially increase their diameters by the pressure of exhaust gas.
Incidentally, when the opening diameter of each of the branch pipe portions 23 and 24 and collecting pipe portion 22 is constant, stress concentrates on portions of the branch pipe portions 23 and 24 and collecting pipe portion 22 located at end portions (indicated by the arrows R1 in
In the present embodiment, the large-diameter portions 40 are respectively formed at the upstream portions of the branch pipe portions 23 and 24 of the inner pipe 25, and the small-diameter portion 41 is formed at the downstream portion of the collecting pipe portion 22. Thus, the inner diameter of each large-diameter portion 40 is varied from the inner diameter of each of the branch pipe portions 23 and 24 located downstream of the large-diameter portions 40, and the inner diameter of the small-diameter portion 41 is varied from the inner diameter of the collecting pipe portion 22 located upstream of the small-diameter portion 41.
Thus, stress that radially acts on the branch pipe portions 23 and 24 and the collecting pipe portion 22 because of exhaust gas may be distributed by the large-diameter portions 40 and the small-diameter portion 41 of which the diameters are variable. This can prevent concentration of stress on the portions, corresponding to the end portions R1 of the inner pipe retainers 34 and 35, of the branch pipe portions 23 and 24 and the portion, corresponding to the end portion R2 of the reinforcement pipe 31, of the collecting pipe portion 22. Thus, it is possible to prevent damage to the portions of the branch pipe portions 23 and 24 and collecting pipe portion 22, which are located at the end portions R1 and R2 of the inner pipe retainers 34 and 35 and the reinforcement pipe 31.
In addition, in the present embodiment, the front slits 29 are formed at the upstream portions of the branch pipe portions 23 and 24 in the exhaust direction in which exhaust gas flows, and the inner peripheral side of the branch pipe portions 23 and 24 is in fluid communication with the gap S between the inner pipe 25 and the outer pipe 26 via the front slits 29. Thus, immediately before exhaust gas introduced to the upstream sides of the branch pipe portions 23 and 24 in the exhaust direction is introduced into the collecting pipe portion 22, part of the exhaust gas may be exhausted into the gap S between the inner pipe 25 and the outer pipe 26 via the front slits 29. This can reduce a deformation that occurs in the thin-walled portion 21 of the branch pipe portions 23 and 24 because of high-temperature exhaust gas exhausted from the exhaust ports of the cylinders to the pair of branch pipe portions 23 and 24.
That is, the pair of branch pipe portions 23 and 24 correspond to inlets of exhaust gas, and exhaust gas introduced into the pair of branch pipe portions 23 and 24 joins at the collecting pipe portion 22 that is in fluid communication with the pair of branch pipe portions 23 and 24. Thus, the flow rate of exhaust gas steeply increases to increase the pressure of exhaust gas, and, therefore, exhaust gas introduced into the branch pipe portions 23 and 24 has an extremely high temperature. This easily causes a deformation of the thin-walled portion 21 of the branch pipe portions 23 and 24.
In the present embodiment, part of exhaust gas introduced into the upstream side of the branch pipe portions 23 and 24 in the exhaust direction is exhausted into the gap S between the inner pipe 25 and the outer pipe 26 through the front slits 29 to reduce the flow rate of exhaust gas to thereby decrease the pressure of exhaust gas. Thus, it is possible to suppress an increase in temperature of exhaust gas introduced into the branch pipe portions 23 and 24. Therefore, it is possible to further reduce a deformation that occurs in the thin-walled portion 21 of the branch pipe portions 23 and 24. In addition, in the present embodiment, the rear slits 30 are formed at the downstream portion of the collecting pipe portion 22 in the exhaust direction, and the inner peripheral side of the collecting pipe portion 22 is in fluid communication with the gap S between the inner pipe 25 and the outer pipe 26 via the rear slits 30. Thus, part of exhaust gas that joins at the collecting pipe portion 22 through the branch pipe portions 23 and 24 may be exhausted to the gap S between the inner pipe 25 and the outer pipe 26 via the rear slits 30. This suppresses an increase in pressure of exhaust gas in the collecting pipe portion 22 due to exhaust gas that joins from the pair of branch pipe portions 23 and 24. Therefore, it is possible to suppress a deformation of the inner pipe 25 due to the pressure of exhaust gas.
In addition, in the present embodiment, as indicated by the broken line in
That is, when welding is applied over the entire range of the flange portions 27a and 28a in the extending directions, the upstream ends and downstream ends of the flange portions 27a and 28a in the extending directions respectively overlap the start end and termination end of welding. This causes concentration of stress on the upstream ends and downstream ends of the flange portions 27a and 28a in the extending directions due to the pressure of exhaust gas. Thus, the flange portions 27a and 28a deform in a direction to separate from each other, and there is a possibility that the welded portions peel off and reliability of welding deteriorates.
In the present embodiment, the welded portions A are set at the portions, other than the upstream portions and downstream portions, of the flange portions 27a and 28a in the extending directions. Thus, it is possible to concentrate stress on the start ends and termination ends of the welded portions away from the upstream ends and downstream ends of the flange portions 27a and 28a in the extending directions.
Therefore, the flange portions 27a and 28a are allowed to deform in a direction to separate non-welded portions at the upstream ends and downstream ends of the flange portions 27a and 28a about the start ends and termination ends of the welded portions located away from the upstream ends and downstream ends of the flange portions 27a and 28a in the extending directions. This can prevent the welded portions A from peeling off, and it is possible to improve reliability of welding.
In addition, in the present embodiment, the double collecting pipe 13A is connected to the upstream pipes 12a and 12d that are respectively in fluid communication with the first cylinder and the fourth cylinder of which the exhaust strokes do not take place at the same time, and the double collecting pipe 13B is connected to the upstream pipes 12b and 12c that are respectively in fluid communication with the second cylinder and the third cylinder of which the exhaust strokes do not take place at the same time. Thus, it is possible to reliably suppress exhaust interference between the cylinders of which combustion strokes take place sequentially. Hence, it is possible to reliably prevent a decrease in torque performance at a low rotational speed range of the engine.
Note that the structure in which the double collecting pipes 13A and 13B are connected to the upstream pipes 12a to 12d according to the present embodiment is not limited to the above. Instead, it is also applicable that the adjacent upstream pipes 12a and 12b are connected to the double collecting pipe 13A and the adjacent upstream pipes 12c and 12d are connected to the double collecting pipe 13B. By so doing, the upstream pipes 12a and 12d that are located away from each other are not connected to the double collecting pipe 13B. This can reduce space for attaching the exhaust manifold 11 and further simplify the configuration of the exhaust manifold 11. In addition, the front slits 29 and the rear slits 30 are respectively formed at the facing surfaces of the upstream portions of the branch pipe portions 23 and 24 and the downstream portion of the collecting pipe portion 22; however, the configuration is not limited. Instead, it is also applicable that the front slits 29 and the rear slits 30 are formed at any portions, in the circumferential directions, of the upstream portions of the branch pipe portions 23 and 24 and the downstream portion of the collecting pipe portion 22.
In short, it is only necessary that the inner peripheral side of the branch pipe portions 23 and 24 is in fluid communication with the gap S between the inner pipe 25 and the outer pipe 26 via the front slits, and it is only necessary that the inner peripheral side of the collecting pipe portion 22 is in fluid communication with the gap S between the inner pipe 25 and the outer pipe 26 via the rear slits.
In addition, the embodiment described above is illustrative in all respects and is not restrictive. The scope of the invention is defined by the appended claims rather than the above description. The scope of the invention is intended to encompass all modifications within the scope of the appended claims and equivalents thereof.
As described above, the exhaust manifold according to the aspect of the invention has advantages such that it is possible to prevent damage to the branched portion by reducing the stress of the branch pipe portions of the inner pipe when the inner pipe is subjected to high-temperature exhaust gas, and it is possible to improve reliability of the exhaust manifold. The exhaust manifold according to the aspect of the invention is useful as the exhaust manifold, or the like, that introduces exhaust gas from exhaust ports of a set of cylinders into a double collecting pipe.
In the exhaust manifold according to the aspect of the invention, the thickness of the outer pipe may be larger than the thickness of the inner pipe, and the thickness of the inner pipe retainer may be larger than the thickness of the inner pipe and may be smaller than the thickness of the outer pipe.
In the exhaust manifold according to the aspect of the invention, a slit may be formed in a large-diameter portion, which is an upstream portion of each branch pipe portion in an exhaust direction in which exhaust gas flows, and an inner peripheral side of each branch pipe portion may be in fluid communication with the gap, defined between the inner pipe and the outer pipe, via the slit.
In the exhaust manifold according to the aspect of the invention, a slit may be formed in a small-diameter portion, which is a downstream portion of the collecting pipe portion in an exhaust direction in which exhaust gas flows, and an inner peripheral side of the collecting pipe portion may be in fluid communication with the gap, defined between the inner pipe and the outer pipe, via the slit.
In the exhaust manifold according to the aspect of the invention, the engine may be an in-line four-cylinder engine, a pair of the double collecting pipes may be provided, and exhaust gas from exhaust ports of a set of the cylinders in which exhaust strokes do not take place at the same time may be introduced into the branch pipe portions that constitute one of the double collecting pipes, and exhaust gas from exhaust ports of the remaining set of the cylinders in which exhaust strokes do not take place at the same time may be introduced into the branch pipe portions that constitute the other one of the double collecting pipes.
In the exhaust manifold according to the aspect of the invention, the connecting portion may be integrated with the corresponding pair of semi-circular portions.
In the exhaust manifold according to the aspect of the invention, a pair of the inner pipe retainers may be provided.
In the exhaust manifold according to the aspect of the invention, the connecting portions of the pair of inner pipe retainers may be connected to each other so that the semi-circular portions of the pair of inner pipe retainers clamp the branch pipe portions.
In the exhaust manifold according to the aspect of the invention, the inner pipe retainer may have a half shape.
In the exhaust manifold according to the aspect of the invention, each connecting portion may have a linear shape.
In the exhaust manifold according to the aspect of the invention, an outer peripheral portion of each large-diameter portion may be connected to the inner pipe retainer, and each large-diameter portion may have an inner diameter that is larger than that of a portion of each branch pipe portion, other than the large-diameter portion.
The exhaust manifold according to the aspect of the invention may further include a cylindrical reinforcement member that is connected to the small-diameter portion so as to close part of the slit formed in the small-diameter portion, and the small-diameter portion may have an inner diameter that is smaller than that of a portion of the collecting pipe portion, other than the small-diameter portion.
In the exhaust manifold according to the aspect of the invention, the reinforcement member may suppress an increase in diameter of the small-diameter portion.
In the exhaust manifold according to the aspect of the invention, the inner pipe retainer may suppress an increase in diameter of each large-diameter portion.
Number | Date | Country | Kind |
---|---|---|---|
2008-299740 | Nov 2008 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5419127 | Moore, III | May 1995 | A |
5953912 | Kaiho et al. | Sep 1999 | A |
6155046 | Kato et al. | Dec 2000 | A |
Number | Date | Country |
---|---|---|
7-224649 | Aug 1995 | JP |
9-119314 | May 1997 | JP |
10-252457 | Sep 1998 | JP |
11-62575 | Mar 1999 | JP |
Entry |
---|
U.S. Appl. No. 12/612,296, filed Nov. 4, 2009, Murakami, et al. |
Number | Date | Country | |
---|---|---|---|
20100126157 A1 | May 2010 | US |