The disclosure relates generally to industrial machine exhaust plume control and, more particularly, to a structure for controlling an exhaust plume in, for example, a power generating plant.
A wide variety of industrial machines create exhaust that is distributed to the atmosphere. For example, ground based power generating systems create exhaust that is directed into the atmosphere by a stack, i.e., a chimney, that directs and cools the exhaust prior to allowing it to escape to the environment. Certain agencies may promulgate environmental or safety laws and/or regulations that present operational limitations relative to a system's exhaust plume. For example, where a power generating system is located near an airport, government laws or regulations may limit exhaust stack plume velocity at lower altitudes for safety purposes. The Australian Civil Aviation Safety Authority (CASA), for example, requires exhaust stack plume velocity to be less than 6.1 meters/second (m/s) at an altitude of 380 meters. Mechanisms to control exhaust stack plume velocity typically require controlling upstream, internal operating parameters that negatively impact the power generating system's performance.
A first aspect of the disclosure provides an exhaust plume control structure, comprising: a mounting member configured to mount to an exhaust flow source; at least one divider member operatively coupled to the mounting member and positioned in fluid communication with an initial exhaust flow exiting from the exhaust flow source; and a diverter member operatively coupled relative to the at least one divider member to radially direct at least a portion of the initial exhaust flow exiting from the exhaust flow source radially towards the at least one divider member, each divider member separating the initial exhaust flow into a plurality of exhaust flows; and a plurality of peripherally spaced, radially extending vanes positioned to separate each of the plurality of exhaust flows into a plurality of additional exhaust flows, each of the plurality of additional exhaust flows having a slower velocity than the initial exhaust flow.
A second aspect of the disclosure provides a power generating plant, including: a power generating system, the power generating system creating an initial exhaust flow; a stack configured to direct the initial exhaust flow to the atmosphere; and an exhaust plume control structure, including: a mounting member configured to mount to the stack; at least one divider member operatively coupled to the mounting member and positioned in fluid communication with the initial exhaust flow from the stack; and a diverter member operatively coupled relative to the at least one divider member to radially direct at least a portion of the initial exhaust flow exiting from the stack radially towards the at least one divider member, each divider member separating the initial exhaust flow into a plurality of exhaust flows; and a plurality of peripherally spaced, radially extending vanes positioned to separate each of the plurality of exhaust flows into a plurality of additional exhaust flows, each of the plurality of additional exhaust flows having a slower velocity than the initial exhaust flow.
The illustrative aspects of the present disclosure are designed to solve the problems herein described and/or other problems not discussed.
These and other features of this disclosure will be more readily understood from the following detailed description of the various aspects of the disclosure taken in conjunction with the accompanying drawings that depict various embodiments of the disclosure, in which:
It is noted that the drawings of the disclosure are not necessarily to scale. The drawings are intended to depict only typical aspects of the disclosure and therefore should not be considered as limiting the scope of the disclosure. In the drawings, like numbering represents like elements between the drawings.
As an initial matter, in order to clearly describe the current technology, it will become necessary to select certain terminology when referring to and describing relevant machine components within an industrial machine. To the extent possible, common industry terminology will be used and employed in a manner consistent with its accepted meaning. Unless otherwise stated, such terminology should be given a broad interpretation consistent with the context of the present application and the scope of the appended claims. Those of ordinary skill in the art will appreciate that often a particular component may be referred to using several different or overlapping terms. What may be described herein as being a single part may include and be referenced in another context as consisting of multiple components. Alternatively, what may be described herein as including multiple components may be referred to elsewhere as a single part.
In addition, several descriptive terms may be used regularly herein, and it should prove helpful to define these terms at the onset of this section. These terms and their definitions, unless stated otherwise, are as follows. As used herein, “downstream” and “upstream” are terms that indicate a direction relative to the flow of a fluid, such as an exhaust flow from an exhaust flow source, e.g., an exhaust stack. The term “downstream” corresponds to the direction of flow of the fluid, and the term “upstream” refers to the direction opposite to the flow (i.e., the direction from which the flow originates).
It is often required to describe parts that are disposed at differing radial positions with regard to a center axis. The term “radial” refers to movement or position perpendicular to an axis. For example, if a first component resides closer to the axis than a second component, it will be stated herein that the first component is “radially inward” or “inboard” of the second component. If, on the other hand, the first component resides further from the axis than the second component, it may be stated herein that the first component is “radially outward” or “outboard” of the second component. The term “axial” refers to movement or position parallel to the axis. Finally, the term “circumferential” refers to movement or position around the axis. In this disclosure, it will be appreciated that such terms may be applied in relation to a center axis of an exhaust flow source, e.g., a stack.
In addition, several descriptive terms may be used regularly herein, as described below. The terms “first,” “second,” and “third” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. “Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where the event occurs and instances where it does not.
Where an element or layer is referred to as being “on,” “engaged to,” “connected to” or “coupled to” another element or layer, it may be directly on, engaged to, connected to, or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
As indicated above, the disclosure provides an exhaust plume control structure. The structure may include a mounting member configured to mount to an exhaust flow source such as a stack (smoke stack) of an industrial machine that creates exhaust. At least one divider member operatively couples to the mounting member and is positioned in fluid communication with the initial exhaust flow from the exhaust flow source. A diverter member operatively couples relative to the divider member(s) to radially direct at least a portion of the initial exhaust flow towards the divider member(s). Each divider member separates the initial exhaust flow into a plurality of exhaust flows. A number of peripherally spaced, radially extending vanes may also separate the exhaust flows into additional exhaust flows. Each of the additional exhaust flows has a slower velocity than the initial exhaust flow. The structure reduces exhaust flow velocity and may provide back pressure to the initial exhaust flow. A power generating plant including the structure is also disclosed.
Turning to
Gas turbine system 102 may be mechanically coupled by a shaft 106 to a first generator 108, which generates electrical energy. Gas turbine system 102 may include a compressor 110 and a combustor 112. Gas turbine system 102 also includes gas turbine 114 coupled to common compressor/turbine shaft 106. In one embodiment, gas turbine system 102 is a 7HA.03 engine, commercially available from General Electric Company, Greenville, S.C. The present disclosure is not limited to any one particular GT system and may be implanted in connection with other engines including, for example, the other HA, F, B, LM, GT, TM and E-class engine models of General Electric Company and engine models of other companies.
In operation, air enters the inlet of compressor 110, is compressed and then discharged to combustor 112 where gaseous fuel (e.g., natural gas) and/or liquid fuel (e.g., oil) is burned to provide high energy combustion gases that drive gas turbine 114. In gas turbine 114, the energy of the hot gases is converted into work, some of which is used to drive compressor 110 through rotating shaft 106, with the remainder available for useful work to drive a load such as first generator 108 via shaft 106 for producing electricity.
Steam turbine system 104 includes a steam turbine 120 that is operably coupled to another generator 122 through shaft 124. Steam turbine system 104 may include one or more steam turbines, e.g., as shown, a high pressure (HP) turbine 126, an intermediate pressure (IP) turbine 128 and a low pressure (LP) turbine 130, each of which are coupled to shaft 124. Each steam turbine 126, 128, 130 includes a plurality of rotating blades (not shown) mechanically coupled to shaft 124.
The CCPP may also include a steam source 132, which may be include a heat recovery steam generator (HRSG) 134 operably connected to gas turbine system 102 and steam turbine system 104. As understood, exhaust 136 from gas turbine system 102 is used by HRSG 134 to create steam flow(s) 138 for use by steam turbine system 104. HRSG 134 may include a conventional HRSG configuration, such as those used in conventional CCPPs, and/or may be embodied as another type of heat exchanger or similar component for using exhaust energy to produce steam.
In operation, steam from steam source 132 (e.g., HRSG 134 and perhaps other sources) enters an inlet of HP turbine 126, IP turbine 128 and/or LP turbine 130 and is channeled to impart a force on blades thereof causing shaft 124 to rotate. As understood, steam from an upstream turbine may be employed later in a downstream turbine. The steam thus produced by steam source 132 drives at least a part of steam turbine system 104 in which additional work is extracted to drive shaft 124 and an additional load such as second generator 122 which, in turn, produces additional electric power. It is understood that generators 108, 122 and shafts 106, 124 may be of any size or type known in the art and may differ depending upon their application or the system to which they are connected. Common numbering of the generators and shafts is for clarity and does not necessarily suggest these generators or shafts are identical.
While power generating plant 94 has been described as having power generating system 100 as a CCPP, it is understood that power generating plant 94 may include power generating system 100 as a single cycle power plant, e.g., including only GT system 102 creating initial exhaust flow 92 (in dashed lines). As understood in the field, exhaust from power generating system 100 may exit GT system 102 and/or HRSG 134 as initial exhaust flow 92.
Referring to
Exhaust plume control structure 210 (hereinafter “structure 210”) may include a mounting member 220 configured to couple structure 210 to exhaust flow source 212. As shown best in
Base member 222 may be coupled to mounting extension 226 and may be configured to support the rest of structure 210. Base member 222 may include, for example, a circular plate 228 with opening 224 therein. Circular plate 228 may be a single piece of material or a number of sections coupled together. In terms of the latter structure, each base member 222 may include a plurality of plate sections that collectively define opening 224, similar to that shown by the polygonal outer edges of a divider member 240 in
Structure 210 may also include at least one divider member 240 operatively coupled to mounting member 220 and positioned in fluid communication with initial exhaust flow 92 exiting from exhaust flow source 212. In
Each divider member 240 may include a plate 244 having an opening 246 (
As shown in
Structure 210 also includes a diverter member 260 operatively coupled relative to divider member(s) 240 to radially direct at least a portion of initial exhaust flow 92 exiting from exhaust flow source 212 radially towards divider member(s) 240 and eventually out of structure 210. As illustrated in
As illustrated, an outer surface 264 of diverter member 260 is positioned in a spaced relation relative to an inner edge 266 of each opening 246 of divider member(s) 240. Portion(s) 248 of initial exhaust flow 92 passes through the space. A diameter of outer surface 264 of diverter member 260 and/or an inner diameter of opening 246 may be selected to create a desired size spacing. As shown in
In certain embodiments, structure 210 may also include a cover member 270 operatively coupled to diverter member 260. Cover member 270 may support diverter member 260 therefrom, or diverter member 260 may be otherwise supported. Cover member 270 may be a single piece of material or a number of sections coupled together.
Structure 210 also includes a plurality of peripherally spaced, radially extending vanes 280 (hereinafter “vanes 280”) positioned to further separate exhaust flows 242 into additional exhaust flows 282. Vanes 280 support divider member(s) 240 and diverter member 260 in a spaced, vertical relationship. Additional exhaust flows 282 may have a slower velocity than exhaust flows 242 but may also have the same velocity. As shown for example in
Vanes 280 extend radially, i.e., they are not circumferentially extending elements, but have a radial extent. As shown in
Referring to
Embodiments of structure 210 provide reduction of plume flow velocity (momentum) and/or temperature by mixing/diffusing initial exhaust flow 92 in the larger volume of surrounding ambient air thereby controlling the plume rise, velocity and buoyancy effects. Structure 210 can be customized to meet requirements for any desired governmental regulations, e.g., CASA regulations.
Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about,” “approximately” and “substantially,” are not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Here and throughout the specification and claims, range limitations may be combined and/or interchanged; such ranges are identified and include all the sub-ranges contained therein unless context or language indicates otherwise. “Approximately” as applied to a particular value of a range applies to both end values, and unless otherwise dependent on the precision of the instrument measuring the value, may indicate +/−10% of the stated value(s).
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present disclosure has been presented for purposes of illustration and description but is not intended to be exhaustive or limited to the disclosure in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the disclosure. The embodiment was chosen and described in order to best explain the principles of the disclosure and the practical application, and to enable others of ordinary skill in the art to understand the disclosure for various embodiments with various modifications as are suited to the particular use contemplated.