This application is a U.S. National Phase Application under 35 U.S.C. 371 of International Application No. PCT/CN2015/094450 filed on Nov. 12, 2015 and published in Chinese as WO 2016/078539 A1 on May 26, 2016. This application is based on and claims the benefit of priority from Chinese Patent Application No. 201410671762.4 filed Nov. 21, 2014. The entire disclosures of all of the above applications are incorporated herein by reference.
The present invention relates to an exhaust postprocessing component, belonging to the technical field of engine exhaust postprocessing.
As the standards for exhaust emission in various countries all over the world are increasingly becoming more strict, higher requirements are put forward for a urea injection system used for exhaust processing. A conventional exhaust postprocessing system generally comprises a urea injection system and various sensor elements mounted on an exhaust pipe. The urea injection system comprises a urea tank, a pump, and nozzles. is The above-mentioned urea tank, pump and nozzles are generally connected to one another with various pipelines. A problem that arises is the very large number of pipelines, causing confusion.
Furthermore, the above-mentioned problem is especially obvious with exhaust postprocessing in high-power engines, and erroneous mounting occurs comparatively easily.
Thus, there is a need to provide an integrated exhaust postprocessing component for solving the above-mentioned problem.
The aim of the present invention is to provide an exhaust postprocessing component that facilitates mounting with other assemblies.
To achieve the above-mentioned aim, the following technical solution is adopted for the present invention: an exhaust postprocessing component, comprising an exhaust pipe, a first support mounted on said exhaust pipe, a common rail mounted on said first support, an inlet pipeline and an outlet pipeline connected to said common rail, a sensor, and a wiring harness connected to said sensor; said common rail comprises a housing, and a pressure detecting device and a pressure adjusting device installed on said housing, said housing comprising an inlet passage and an outlet passage, said pressure detecting device being connected to said inlet passage; said pressure adjusting device being connected between said inlet passage and said outlet passage, to be capable of connecting or disconnecting said inlet passage and said outlet passage; and said engine exhaust postprocesing component further comprises a second support, said wiring harness, said inlet pipeline and said outlet pipeline being gathered at said second support.
As a further improved technical solution of the present invention, said exhaust postprocessing component is provided with a mounting block disposed between said first support and said exhaust pipe to create a clearance between said first support and said exhaust pipe.
As a further improved technical solution of the present invention, said mounting block is welded to said exhaust pipe; said exhaust postprocessing component is further provided with heat insulation cotton filled in said clearance.
As a further improved technical solution of the present invention, said exhaust postprocessing component is provided with a pair of mounting plates for mounting said common rail onto said first support, said pressure adjusting device being located between said pair of mounting plates.
As a further improved technical solution of the present invention, one end of said mounting plate is welded to said first support, and the other end of said mounting plate is fixed by screws to the housing of said common rail.
As a further improved technical solution of the present invention, said second support comprises a fixed portion directly or indirectly fixed to said exhaust pipe and a mounting portion forming an included angle with said fixed portion, said mounting portion being provided with a plurality of mounting holes, and said wiring harness, said inlet pipeline and said outlet pipeline all being gathered in a corresponding mounting hole.
As a further improved technical solution of the present invention, said fixing portion and said mounting portion are formed by bending a metal plate, said mounting portion being perpendicular to said fixed portion.
As a further improved technical solution of the present invention, said housing comprises a plurality of conveyance ports connected to said inlet pipeline and a plurality of back-flow ports connected to said outlet passage, said housing roughly taking the shape of a cuboid, comprising a first end face, a second end face, a third end face, and a fourth end face, wherein said first end face and said second end face are disposed opposite each other, and said third end face and said fourth end face are disposed opposite each other; said inlet passage and said outlet passage pass through said first end face and/or said second end face, said conveyance port passing through said third end face, said back-flow port passing through said fourth end face.
As a further improved technical solution of the present invention, said common rail is provided with conveyance connectors connected to each conveyance port and back-flow connectors connected to each back-flow port, said inlet passage and said outlet passage being parallel to each other, said conveyance connectors being perpendicular to said inlet passage, said back-flow connectors being perpendicular to said outlet passage.
As a further improved technical solution of the present invention, the number of said back-flow connectors is the same as the number of said conveyance connectors; the direction of said conveyance connectors is opposite that of said back-flow connectors, and each of the conveyance ports is aligned with the corresponding back-flow port.
Compared with the prior art, the present invention, by gathering an inlet pipeline, an outlet pipeline, and a wiring harness on said second support, integrates the entire component, facilitating mounting with other assemblies.
As shown in
Said engine (200) is a high-power diesel engine with a power rating above 500 kilowatts. Accordingly, it can be understood that the present invention relates to a common rail (5) applied to a high-power diesel engine. Since the power of said engine (200) is high, in order to achieve a satisfactory exhaust processing effect, a plurality of said nozzles (6) are provided in the illustrated implementation mode of the present invention. Under the control of said controller (41), said nozzles (6) are used to inject a urea solution into an exhaust pipe (201). The atomized urea solution is decomposed into ammonia in said exhaust pipe (201), and said ammonia reacts with nitrogen oxides in the engine exhaust to reduce the emission of nitrogen oxides. Considering that the principle of such exhaust processing technology is known to those of ordinary skill in the art, a detailed description of it is omitted here.
As shown in
As shown in
As shown in
As shown in
The pressure control valve installed on said common rail (5) has three functions: 1. helping to build up the pressure in the urea pipeline, 2. stabilizing and controlling the pressure after the pressure has built up, 3. with the aid of contra-rotations of said pump (42), drawing the air in said urea tank (1) into the pipeline of said urea injection system to evacuate the urea solution from said pipeline before said urea injection system (100) stops.
To be specific, when the system just starts to build up pressure, a lot of air may exist in the pipeline. However, the compressibility of air easily leads to a pressure buildup failure. The pressure control valve designed in the present invention skillfully solves the problem. When the system just starts to build up pressure, said controller (41) controls the opening of said pressure control valve (for example, keeps said pressure control valve at a fixed opening angle or a changing opening angle) to connect said inlet passage (531) and said outlet passage (541) to provide one channel to release the air in the pipeline so that pressure can quickly be built up in the pipeline.
After the pressure buildup of the system is completed, said controller will quickly adjust the opening angle of said pressure control valve to ensure that the urea pressure in said common rail (5) is maintained around a set pressure and basically remains constant, thus achieving the aim of adjusting the pressure by controlling the back-flow volume of the urea solution.
Before said urea injection system (100) stops, said controller (41) opens said pressure control valve, said pump (42) contra-rotates to draw the air in said urea tank (1) into the pipeline of said urea injection system to evacuate the urea solution from said pipeline. It should be noted that “before said urea injection system (100) stops” means that said controller (41) has already received a signal indicating that the system is to stop. At this time, said nozzle (6) has stopped injection, but said pump (42) is still rotating (for example, contra-rotating). The purpose of evacuating the urea solution from said pipeline is to prevent the system from being damaged by freezing or expansion of the urea solution.
As shown in
In the illustrated implementation mode of the present invention, three of said nozzles (6) are provided. Each nozzle (6) is equipped with a conveyance pipeline (61) connected to said conveyance port (55) and a back-flow pipeline (62) connected to said back-flow port (56). With such settings, on the one hand, said nozzles (6) can spray a urea solution into said exhaust pipe (201) for a chemical reaction, and on the other hand, the urea solution flowing back can be utilized to cool said nozzles (6). The urea solution flowing back first all gathers in said common rail (5) through the back-flow pipeline (62), and then uniformly flows back into said urea tank (1) through the back-flow pipeline (300). In the prior art, a solution where said back-flow pipelines (62) are directly introduced into said urea tank (1) is usually adopted. In such a solution, each nozzle (6) requires an independent back-flow pipeline (62), and thus the cost is very high. In addition, in the applications of the present invention, especially in the exhaust processing system of a high-power engine, the pipelines between said urea tank (1) and said nozzles (6) are often long, and the prior back-flow design cannot satisfy the requirements.
As shown in
S1: The urea injection system (100) is started and said pump (42) starts to work; said pressure adjusting device is opened at a fixed angle or changing angle under the control of said controller (41) to connect said inlet passage (531) and said outlet passage (541); said pump (42) quickly discharges the residual air in the pipeline of said urea injection system (100) into said urea tank (1) to realize quick pressure buildup.
S2: Said pressure detecting device (51) detects the pressure in said inlet passage (531), sends the detection signal to said controller (41), and said controller (41) adjusts the opening angle of said pressure adjusting device (52) according to the signal and adjusts the pressure in said urea injection system (100) to the set pressure.
S3: Before said urea injection system (100) stops, said controller (41) opens said pressure adjusting device (52), said pump (42) contra-rotates to draw the air in said urea tank (1) into the pipeline of said urea injection system (100) to evacuate the urea solution from said pipeline.
As shown in
Said exhaust postprocessing component (400) is also equipped with a mounting block (73) located between said first support (71) and said exhaust pipe (201). Said mounting block (73) is welded to said exhaust pipe (201), with a certain clearance (7) reserved between said first support (71) and said exhaust pipe (201). Providing said clearance (7) can relieve high-temperature transfer from the exhaust pipe (201) to said first support (71) to protect said common rail (5) being affected. Preferably, heat insulation cotton is filled in said clearance (7). In addition, said common rail (5) is welded to said first support (71) with a pair of said mounting plates (5062), that is to say, said common rail (5) is separated from said exhaust pipe (201) by a distance said first support (71) to further relieve the high-temperature effect on the exhaust pipe (201). Said second support (72) comprises a fixed portion (721) welded on said exhaust pipe (201) and a mounting portion (722) forming an included angle with said fixed portion (721). In the illustrated implementation mode of the present invention, said fixed portion (721) is perpendicular to said mounting portion (722). Said mounting portion (722) is equipped with a plurality of mounting holes (7221), and said wiring harness (9), said inlet pipeline (532), and said outlet pipeline are all gathered in a corresponding mounting hole (7221). Of course, in other implementation modes, said fixed portion (721) can indirectly be installed on said exhaust pipe (201) in other ways. In the illustrated implementation mode of the present invention, said fixed portion (721) and said mounting portion (722) are formed by wholly bending a metal plate. In the illustrated implementation mode of the present invention, said exhaust postprocessing component (400) is further equipped with cable clips (91) used to separate said wiring harness (9) and pipe clips (92) used to separate said pipelines or pipes.
Said sensors (8) include pressure sensors (81), temperature sensors (82), and nitrogen-oxygen sensors (83) connected to said wiring harness (9). Of course, the types of said sensors (8) can be flexibly selected according to the design requirements of the system, and will not be described here.
In summary, the structure and layout of the entire exhaust postprocessing component (400) are made clear by gathering said wiring harness (9), said inlet pipeline (532), and said outlet pipeline (542) onto the mounting portion (722) of said second support (72). In addition, the gathering together of various interfaces greatly facilitates the installation of said exhaust postprocessing component (400) with other assemblies.
In addition, the above-mentioned embodiments are only used to describe the present invention, but not restrict the technical solutions described for the present invention. The understanding of the specification, for example, “passing through from front to back”, which means passing through before any other part is installed, and the description of directions such as front, back, left, right, top, and bottom, should be based on those skilled in the art. Although a detailed description of the present invention is given in the specification by reference to the above-mentioned embodiments, those skilled in the art should understand that a person skilled in the art can still make modifications to or equivalent replacements in the present invention. Technical solutions and improvements thereto without departing from the spirit and scope of the present invention shall all fall within the scope of the claims of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2014 1 0671762 | Nov 2014 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2015/094450 | 11/12/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/078539 | 5/26/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
8959895 | Zapf | Feb 2015 | B2 |
9359928 | Fan | Jun 2016 | B2 |
9874131 | Ryu | Jan 2018 | B2 |
20060101810 | Angelo | May 2006 | A1 |
20080314027 | Barber | Dec 2008 | A1 |
20140238504 | Kregling et al. | Aug 2014 | A1 |
20140290224 | Kanamori | Oct 2014 | A1 |
20160030886 | Dougnier | Feb 2016 | A1 |
20170122172 | Fan | May 2017 | A1 |
Number | Date | Country |
---|---|---|
101493027 | Jul 2009 | CN |
203098002 | Jul 2013 | CN |
203669975 | Jun 2014 | CN |
204267135 | Apr 2015 | CN |
204267138 | Apr 2015 | CN |
104763497 | Jul 2015 | CN |
204646374 | Sep 2015 | CN |
102006019051 | Oct 2007 | DE |
Entry |
---|
European Search Report, dated Jun. 22, 2018. |
Number | Date | Country | |
---|---|---|---|
20170328261 A1 | Nov 2017 | US |