The invention is based on an exhaust gas posttreatment arrangement for reducing pollutants and on a method for exhaust gas posttreatment as generically defined by the preambles to the independent claims.
To meet the demands for exhaust gas quality in vehicles, what is known as the SCR method (for “selective catalytic reduction”) is employed for reducing nitrogen oxides in diesel vehicles, and especially utility vehicles.
This method has already been used for some time in heating power plants for reducing nitrogen oxide emissions. There, ammonia is added to the untreated exhaust gas from the heating stage. The ammonia-laden exhaust gas is conducted via a catalytic converter, which selectively catalyzes the reaction of ammonia with nitrogen monoxide in the presence of oxygen. The temperatures of the catalytic converter are in a range from 250° C. to 500° C. As a rule, a catalytic converter which has a catalytically active coating of divanadium pentoxide on tungsten-oxide-stabilized titanium dioxide (the so-called anatase phase) is used. Ammonia and nitrogen monoxide react in the catalytic converter to harmless substances, specifically water and nitrogen.
In vehicles, instead of ammonia, urea is used as the reducing agent. The catalytic reduction of the nitrogen oxides is preceded by a catalytic hydrolysis of the urea into ammonia and carbon dioxide. After that, ammonia reacts with the nitrogen oxides further in accordance with the aforementioned reaction. Particularly in motor vehicles, still other suitable catalytic converter materials may be employed, such as transition metal compounds applied to gamma aluminum oxide, and iron-doped gamma aluminum oxide. Zeolites replaced or impregnated with transition metal ions, can also be employed.
In direct metering of gaseous ammonia into the exhaust system, there are advantages over denitrification of exhaust gas that is based on an aqueous urea solution with the tradename “AdBlue”, such as the avoidance of the use of a corrosive and freezable fluid. Moreover, famishing the reducing agent is independent of the exhaust gas temperature.
From International Patent Disclosure WO 99/01205, it is known to store ammonia by incorporation in salts and to initiate a thermal desorption as needed. It is furthermore known, for heating a solid reservoir medium, to use the waste heat of the engine coolant and/or of the exhaust gas and as needed to provide a buffer volume for ammonia that has already dissolved out of the ammonia reservoir.
From European Patent Disclosure EP 1 561 017, it is known to provide exhaust lines, discharging on opposed ends of an ammonia reservoir, in order to release an auxiliary exhaust gas posttreatment agent that originates in a reactor and is temporarily stored in the ammonia reservoir, and in a further step, to be able to transfer it into the exhaust system.
The exhaust gas posttreatment arrangement according to the invention and the method for exhaust gas posttreatment according to the invention, having the definitive characteristics of the bodies of the independent claims, have the advantage over the prior art of energy-efficient temperature control of a reducing agent reservoir, in particular an ammonia reservoir, and thus to furnish an energy-efficient arrangement for reducing nitrogen oxides contained in the exhaust gas, for instance, and to ensure energy-efficient exhaust gas posttreatment. In particular, the additional fuel consumption required for an electrical energy demand can be reduced. It can considered a further advantage that because of integration of the storage tank in the vicinity of the exhaust system, the waste heat of the exhaust gas can not only be optimally utilized for releasing the reducing agent, such as gaseous ammonia, from the reservoir or for releasing a reservoir substance contained in the reservoir, but also and at the same time, a space-saving arrangement can be furnished and furthermore, possible problems with the voltage stability of an electrical on-board system of the motor vehicle can be lessened or even avoided entirely.
By means of the provisions recited in the dependent claims, advantageous further refinements of and improvements to the arrangements and methods recited in the independent claims are possible. It is especially advantageous to provide a direct heat-conducting interaction, for instance by means of a special shaping of the reservoir, adapted to the longitudinal dimension of the exhaust system and disposed directly on or inside the exhaust gas-carrying line, as a result of which the heat transfer can be maximized on the one hand, and on the other, the space required for the entire arrangement can be minimized.
Further advantages will become apparent from further characteristics recited in the dependent claims and in the description.
Exemplary embodiments of the invention are shown in the drawings and explained in further detail in the ensuing description.
a shows a reservoir, and
The exhaust system is embodied such that the exhaust gas flow can be carried away, controlled via valves, in two phases (so-called dual-flow system). The ammonia reservoir substance is accommodated in a storage tank, which is disposed on one of the two exhaust lines, in such a way that a good heat transfer from the exhaust gas to the reservoir substance takes place. The good heat transfer can be reinforced by a suitable choice from among materials with high thermal conductivity and by a suitable structural design, for instance by employing an intermeshing rib structure of the exhaust gas tube and the storage tank. By means of a heat input from exhaust gas flowing past into the ammonia reservoir substance, ammonia is released. By means of the released, gaseous ammonia (and possible byproducts if alternative reservoir materials are used), an overpressure is created in the storage tank embodied as a pressure vessel. Via the metering valve 21, or the closing means mounted on the buffer container, the gaseous ammonia is metered into the exhaust system. The exhaust gas flow for heating the ammonia reservoir substance can be adjusted via the splitting exhaust gas valve 13. The amount of heat that is imported into the ammonia reservoir substance is dependent on the temperature and the flow rate of the exhaust gas flowing through the path 11. Controlling the valve position and thus also the ammonia released can be done by means of a flow rate meter, a temperature sensor, or an exhaust gas pressure sensor. The measured value is detected in the control unit 32 and regulated, in accordance with the position of the splitting exhaust gas valve 13, via control signals 34. The exhaust gas flow in the path 11 is adjusted, at every operating point of the engine, such that whichever quantity of ammonia is required for reducing nitrogen oxides is available. If in certain operating points, the exhaust gas heat proves inadequate for furnishing the reducing agent for nitrogen oxide reduction, then the electric heating element 31 can additionally heat the reservoir, or the reservoir substance, for the release of ammonia. The electric heating can also be employed for an early-onset metering in cold starting of the engine, where otherwise, pollutant-laden exhaust gas leaving the motor vehicle would have to be expected, since the exhaust gas temperatures for releasing the ammonia from the reservoir substance are not yet high enough. In cooperation with the exhaust gas valve control, the heating element also increases the dynamic range of the possible metering of the reducing agent, both in terms of timing, or in other words the response time of the metering system to an electronically controlled demand for increased quantities of reducing agent, and quantitatively, in other words with regard to the maximum possible output quantity of reducing agent per unit of time. The buffer container 24 can also help to shorten the response time of the metering system by keeping a quantity of gaseous ammonia in reserve that can be called up within the briefest possible time, especially upon cold starting of the engine. A buffer volume also serves the general purpose of reserving gaseous ammonia for greater dynamic demands, or in other words in quantitative terms as well, as already explained in conjunction with the electric heating element.
In alternative versions, the arrangement may also be provided without electric heating or without a buffer container. In a further alternative version, the exhaust gas valves can be omitted. Furthermore, a buffer volume may be provided not in the form of a separate container but rather as a partial volume inside the storage tank. The reservoir substance can also be accommodated in a replaceable cartridge, instead of in a container, and the replaceable cartridge can in turn be introduced into the container. In a further variant, the storage tank itself may be embodied as a replaceable cartridge, which improves the heat transfer from the exhaust gas to the reservoir substance, because then, instead of three intermediate walls (exhaust gas tube, wall of the storage tank, wall of the cartridge), now only two intermediate walls divide the exhaust gas from the reservoir substance, namely the wall of the exhaust gas tube and the wall of the storage tank serving as a cartridge. The introduction of the ammonia reservoir substance, magnesium chloride, ensures simple refilling of the exhaust gas posttreatment arrangement with new ammonia by means of standardizably changing cartridges. The arrangement is furthermore suitable for many ammonia reservoir substances from which ammonia is released by means of thermal desorption or thermolysis, that is, the action of temperature. Suitable reservoir substances, in addition to magnesium chloride, may for instance be many other salts, in particular other chlorides and/or sulfates of one or more alkaline earth elements (such as CaCl2) and/or one or more 3d subgroup elements, such as manganese, iron, cobalt, nickel, copper, and/or zinc. Moreover, organic adsorbers and ammonium salts, such as ammonium carbamate, are suitable ammonia reservoir substances that can be employed.
In the present introduction of the storage tank for the ammonia reservoir substance into the exhaust line, the container is exposed directly to the full flow of exhaust gas in the path 11, and as a result the heat transfer region, in comparison to the arrangement of
a again schematically and in enlarged form shows a detail of the preceding exhaust gas posttreatment arrangements, namely a reservoir 18 whose reservoir substance 19 is located in a storage tank 17. For withdrawing reducing agent, the metering valve 21 is disposed on one side of the reservoir. This storage tank 17 can be embodied as a replaceable and standardizable cartridge, as already discussed above.
Number | Date | Country | Kind |
---|---|---|---|
10 2007 042 409.6 | Sep 2007 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/060657 | 8/14/2008 | WO | 00 | 6/7/2010 |