Exhaust safety system for an engine

Information

  • Patent Grant
  • 11624333
  • Patent Number
    11,624,333
  • Date Filed
    Thursday, April 14, 2022
    2 years ago
  • Date Issued
    Tuesday, April 11, 2023
    a year ago
Abstract
Engine systems which are safer and have reduced risk of fire are desirable in a wide range of equipment markets. The present engine systems utilize sensors and control systems which reduce the probability of fire or spark exiting the exhaust system. The sensors may monitor a wide range of conditions within the exhaust system to alter the operating parameters of the engine to prevent ignition of objects adjacent the engine system during use. By altering operation of the engine, conditions such as exhaust temperature or unburned fuel can be controlled to minimize risk of undesired ignition.
Description
BACKGROUND

The present invention generally relates to control systems for internal combustion engines, and more particularly to systems and devices or apparatuses for such engines. Internal combustion engines utilize a variety of emissions and exhaust control devices. Engine exhaust from internal combustion engines is generally very hot, and can be a source of ignition. Various methods are utilized to control engine exhaust for safety and other reasons. The present disclosure provides solutions for engine exhaust control.


Improvements are desired to ensure that hot engine exhaust does not present a fire hazard to operators, surrounding property, or the environment. This beneficially ensures that these internal combustion engines can be operated in dry or other potentially hazardous conditions. Equipment safety is improved, resulting in greater utility of engine powered equipment in all environmental conditions and locations.


SUMMARY

The present application discloses systems to improve control of exhaust of an internal combustion engine. The engine system selectively controls engine operation in response to characteristics of the engine or its exhaust.


In some implementations, the engine system has an internal engine, a control unit, and a first sensor. The engine has an intake having a fuel/air mixer, a first combustion chamber fluidly coupled to the intake, a first ignition source operably coupled to the first combustion chamber, and an exhaust system fluidly coupled to the first combustion chamber and extending from the first combustion chamber to an outlet. The control unit is configured to control at least one of the fuel/air mixer or the first ignition source. The first sensor is configured to sense a first condition of exhaust within the exhaust system. In response to a first signal from the first sensor, the control unit transitions from 1) a first state where the fuel/air mixer delivers fuel to the first combustion chamber and the fuel is ignited via the first ignition source to 2) a second state where the control unit either controls the fuel/air mixer to cease delivery of fuel to the first combustion chamber or controls the first ignition source to prevent ignition of the fuel.


In other implementations, the engine system has an internal combustion engine, a control unit, and a first sensor. The engine has an intake having a fuel/air mixer, a first combustion chamber fluidly coupled to the intake, a first ignition source operably coupled to the first combustion chamber, and an exhaust system fluidly coupled to the first combustion chamber and extending from the first combustion chamber to an outlet. The control unit is configured to control at least one of the fuel/air mixer or the first ignition source. The first sensor is configured to sense a first condition of exhaust within the exhaust system, the first sensor outputting a first signal which is received by the control unit. In response to the first signal exceeding a first predetermined threshold while the engine is in a running state, the control unit either causes the fuel/air mixer to cease delivery of fuel or the first ignition source to prevent ignition of the fuel.


In yet other implementations, a method of controlling an internal combustion engine is disclosed. In step a), an engine is provided, the engine having an intake comprising a fuel/air mixer, a first combustion chamber fluidly coupled to the intake, a first ignition source operably coupled to the first combustion chamber, and an exhaust system fluidly coupled to the first combustion chamber and extending from the first combustion chamber to an outlet, the engine in a running state. In step b), a sensor operably coupled to the exhaust system senses a first condition of exhaust within the exhaust system exceeding a first predetermined threshold. In step c), fuel delivery from the fuel/air mixer is interrupted or ignition of the fuel by the first ignition source is prevented. In step d), the sensor monitors the first condition of the exhaust until the first condition of the exhaust is less than a second predetermined threshold. During step e), fuel delivery from the fuel/air mixer and ignition of the fuel by the first ignition source are resumed.


Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred implementation of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:



FIG. 1 is a schematic view of a lawn mower utilizing an internal combustion engine according to the present invention.



FIG. 2 is a perspective view of a representative internal combustion engine as may be utilized in the lawn mower of FIG. 1.



FIG. 3 is a perspective view showing an exhaust system as may be utilized with the engine of FIG. 2.



FIG. 4 is a cutaway view showing the internal construction of the exhaust system.



FIG. 5 is a perspective view of an exemplary control module as may be utilized in combination with the exhaust system.



FIG. 6 is a perspective view of an exemplary sensor as may be utilized in combination with the exhaust system.



FIG. 7 is a plurality of graphs showing data measured during operation of the exhaust safety system in various states.



FIG. 8 is a plurality of graphs showing data measured during operation of the exhaust safety system in various states with additional annotations.



FIG. 9 is a bottom perspective view of an engine showing a flame exiting the exhaust system.



FIG. 10 is a top perspective view of the engine showing a flame exiting the exhaust system.



FIG. 11 is a graph showing air/fuel ratio data measured during operation of the exhaust safety system in various states.



FIG. 12 is a flow chart illustrating a method of controlling an internal combustion engine.





All drawings are schematic and not necessarily to scale. Features shown numbered in certain figures which may appear un-numbered in other figures are the same features unless noted otherwise herein.


DETAILED DESCRIPTION

The features and benefits of the invention are illustrated and described herein by reference to non-limiting examples in which aspects of the disclosure may be embodied. This description of examples is intended to be read in connection with the accompanying drawings or photos, which are to be considered part of the entire written description. Accordingly, the disclosure expressly should not be limited to such examples illustrating some possible non-limiting combination of features that may exist alone or in other combinations of features disclosed herein.


In the description of examples disclosed herein, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present invention. Relative terms such as “lower,” “upper,” “horizontal,” “vertical,”, “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivative thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation. Terms such as “attached,” “affixed,” “connected,” “coupled,” “interconnected,” and similar refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise.


As used throughout, any ranges disclosed herein are used as shorthand for describing each and every value that is within the range. Any value within the range can be selected as the terminus of the range.



FIG. 1 shows a perspective view of a riding type lawn mower 10 having an engine 100 which may utilize a control system according to the present disclosure. In one exemplary implementation, the lawn mower 10 includes an engine system 100, an ignition switch 102, an energy storage device 104, a fuel supply 106, two cutting blades 108 in a mower deck 110, a safety switch 112, a seat 114, a machine wiring harness 116, and a transmission 118. The engine system 100 includes an internal combustion engine 120, a stator 130, one or more ignition coils 136, one or more ignition sources 150, a control unit 138, an engine wiring harness 140, and a fuel air mixer 144. Optionally, the ignition source 150 may be a spark plug. In alternate implementations, the ignition coils 136 and ignition sources 150 may be replaced by a glow plug or other passive ignition source. In yet other implementations, the ignition coils 136 may be replaced by a magneto or other device to provide ignition to the engine 120.


The engine system 100 may also include a starter motor 148 to start the engine 120 without the need for manual starting. The engine 120 of the engine system 100 has an output shaft 146 which operatively connects to the transmission 118. The transmission 118 provides engine power to the cutting blades 108 and motive power for the lawn mower 10. In some implementations, the energy storage device 104 may be a battery. In other implementations, the energy storage device 104 may be a capacitor or other device for storing electrical energy. Under normal operating conditions, the energy storage device 104 provides all electrical energy required to start and run the engine 120 from a non-running state.


The lawn mower 10 of the exemplary implementation is typically operated by turning the ignition switch 102 to the “on” position, which provides electrical energy from the energy storage device 104 to the engine system 100 via the machine wiring harness 116. This electrical energy is then distributed to the various components of the engine system 100 as required. For instance, the control unit 138 and the coil 136 would typically be powered when the ignition switch 102 is in the on position. The safety switch 112 is typically deactivated by the operator sitting on the seat 114, allowing starting of the engine. At this time, the ignition switch 102 may be turned to the start position and the engine 120 started. The engine 120 typically continues to run as long as the fuel supply 106 continues to supply fuel to the engine 120, until the safety switch 112 is activated (ie. altered to a second state), or until the ignition switch 102 is turned to the “off” position. While the engine is running, the first stator 130 is supplying charging current to the energy storage device 104, recharging it for future running cycles of the engine 120.



FIG. 2 shows a representative engine 120 as may be installed in the lawn mower 10 or other engine powered equipment. The engine 120 has an intake 164 optionally including an air filter 165. The engine 120 also has a fuel/air mixer 144 such as a carburetor or a combination of a fuel injector and a throttle body. The fuel/air mixer 144 forms a part of the intake 164 of the engine 120. Two spark plugs serve as ignition sources 150. The spark plugs, in combination with one or more ignition coils 136, generate the spark required to ignite an air/fuel mixture. The engine 120 has two cylinders. Each cylinder has a combustion chamber where the ignition of the air/fuel mixture occurs. The combustion chambers are internal to the engine 120 and in fluid communication with the intake 164. The ignition source 150 is operably coupled to the combustion chambers to ensure that the air/fuel mixture can be ignited effectively. In other implementations, the engine 120 may not have cylinders, instead having alternate internal engine configurations. Nonetheless, the engine 120 has one or more combustion chambers.


The engine 120 also has an exhaust system 166 which may incorporate a muffler or other sound reduction device. The exhaust system 166 is fluidly coupled to the combustion chamber of the engine 120 to facilitate removal of exhaust gases which are generated by ignition of the air/fuel mixture. The exhaust system 166 extends from the combustion chamber to an outlet 167, with exhaust exiting the exhaust system 166 at the outlet 167. The exhaust system 166 may have a pair of runners, a catalyst, and a muffler as discussed in greater detail below. An oxygen sensor 160 and a temperature sensor 162 are mounted to the exhaust system 166 to sense conditions of exhaust within the exhaust system 166. The oxygen sensor 160 and the temperature sensor 162 may measure conditions of the exhaust. These conditions may include oxygen content, air/fuel ratio, temperature, or any other characteristic within the exhaust at any location within the exhaust system 166. For instance, temperature may be measured at different points within the exhaust system 166, generating additional characteristic data. These various characteristics may be used to alter operation of the engine 120.


Optionally, one, two, or more than two combustion chambers may be utilized. Similarly, any number of ignition sources 150 may be utilized. It is conceived that each combustion chamber may have a single ignition source 150 or more than one ignition source 150. The intake 164 may have a plurality of distinct intake runners, which may be separate or may be interconnected. Similarly, the exhaust system 166 may have a plurality of distinct exhaust runners, which may be separate or interconnected. Thus, a plurality of outlets 167 and a plurality of mufflers may form the exhaust system 166.


Turning to FIGS. 3 and 4, the exhaust system 166 is shown in greater detail. The exhaust system extends from one or more ports 168 to one or more outlets 167. The ports 168 typically interface with corresponding ports on an engine block or head to provide fluid connection between the combustion chamber and the exhaust system 166. In some implementations multiple combustion chambers may couple to a single port 168 of the exhaust system 166. In the present example, the exhaust system 166 has two ports 168. Runners 169 extend from the ports 168 to a central cavity 170.


A catalyst 171 is located within the central cavity 170. Baffles and tubes may be located within the central cavity 170 to facilitate sound reduction, while the catalyst 171 facilitates reactions within the exhaust gases to reduce pollution emitted from the engine 120. For instance, the catalyst 171 may promote reaction of unburned fuel, nitrous oxides, and similar reaction byproducts to nitrogen, carbon dioxide, and other exhaust components which are less harmful. Optionally, the catalyst 171 may be omitted. A tailpipe 172 extends from the central cavity 170 and terminates at the outlet 167, allowing exhaust to vent to the outside environment. The temperature sensor 162 is mounted in the tailpipe 172 proximate the outlet 167, the temperature sensor 162 measuring a temperature of the exhaust exiting the exhaust system 166.


The temperature sensor 162 outputs a signal which corresponds to the temperature of the exhaust exiting the exhaust system 166. In some implementations, this may be a voltage or current which has a known relationship to the measured temperature. In yet other implementations, the temperature sensor 162 may utilize a variable resistance with a known relationship to the measured temperature. Any known temperature sensing method may be used by the temperature sensor 162. Optionally, the temperature sensor 162 may be located such that it senses temperature in the runners 169 or a portion of the central cavity 170. The temperature sensor 162 may be located either upstream or downstream of the catalyst 171. In yet other variations, the catalyst 171 may be a separate component connected by exhaust tubing, and need not be internal to the central cavity 170 of the exhaust system. The catalyst 171 may be upstream or downstream of the central cavity 170 which serves as the muffler in the present example.


The signal from the temperature sensor 162 is delivered to the control unit 138. Optionally, the control unit 138 may be configured as a single control module performing all engine control functions. In other implementations, the control unit 138 may be configured as a plurality of individual modules which perform different functions. These individual modules may be linked via a communication link such as a bus or other interconnection method. Thus, the control unit 138 may be configured in a wide range of different ways to achieve control of the engine 120. In some implementations, the control unit 138 may also perform control of some or all functions of the equipment into which the engine 120 is integrated.


The oxygen sensor 160 may also be operably coupled to the exhaust system 166, the oxygen sensor 160 providing information regarding oxygen content in the exhaust. The oxygen sensor 160 may be utilized to determine an air/fuel ratio of the air/fuel mixture provided to the combustion chamber and make corrections to the amount of fuel or air which is delivered to the combustion chamber. This may be useful for a variety of purposes such as reducing emissions, increasing power, or improving fuel efficiency, among others. The oxygen sensor 160 is mounted to detect the air/fuel ratio of the exhaust within the central cavity 170 upstream of the catalyst 171. However, in other implementations two or more oxygen sensors 160 may be utilized. These oxygen sensors 160 may be installed upstream and downstream of the catalyst 171 to measure catalyst efficiency or may be mounted in the runners 169 to permit measurement of the air/fuel ratio in individual combustion chambers. In yet other implementations, the oxygen sensor 160 may be omitted.


The oxygen sensor 160 generates a signal that corresponds to the oxygen content of the exhaust. The oxygen content then has a known relationship to the air/fuel ratio of the mixture which is delivered to the combustion chamber, assuming that the mixture is properly combusted. The oxygen sensor 160 may be a “wide band” type sensor which is capable of measuring oxygen content over a wide range, as opposed to a “narrow band” type sensor which is generally limited to measuring oxygen content around the stoichiometric ratio for a given fuel. The signal generated by the oxygen sensor 160 is then delivered to the control unit 138 and used to alter engine operating parameters such as the quantity of fuel delivered.


In a first configuration, the system operates by monitoring the temperature of the exhaust in the tailpipe 172. More particularly, the temperature sensor 162 provides a signal to the control unit 138 which indicates the temperature of the exhaust in the tailpipe 172 adjacent the outlet 167. During certain operating conditions of the engine, it is possible that the exhaust may reach dangerously high temperatures. At some temperatures, depending on environmental conditions, quantity of unburned fuel, and a variety of other conditions, unburned fuel in the exhaust can ignite and cause a flame or spark to exit the exhaust system 166. Alternately, hot exhaust or sparks within the exhaust can ignite combustible materials which are near the outlet 167 of the exhaust system 166.


Excessive unburned fuel in the exhaust can be caused by an excessively rich fuel mixture, a cylinder which did not receive a spark, or other conditions. For instance, a leaking fuel injector or software fault could cause the fuel/air mixer 144 to deliver too much fuel. Alternatively, a weak ignition coil 136, failing spark plug or other ignition source 150, damaged or disconnected spark wire, or other ignition system faults could cause a weak or no-spark condition in a combustion chamber. This would allow unburned fuel to pass through the combustion chamber to the exhaust system 166. These are a selection of potential faults that could allow unburned fuel to reach the catalyst 171. Numerous other possibilities could result in increased fire risk.


When at operating temperature, the catalyst 171 causes unburned fuel to react. In the event of a large amount of unburned fuel, a flame can extend beyond the outlet 167 of the tailpipe 172. As is apparent, this could result in a fire if dry leaves or other flammable material is nearby. This condition is of particular concern in areas where natural materials might be inadvertently ignited to cause a highly destructive fire. Additionally, an operator or other individual could be injured by an exhaust spark or flame.


In the present example, the system monitors the temperature of the exhaust gas at the tailpipe using the temperature sensor 162. This monitoring is performed by the control unit 138. The signal corresponding to the measured temperature is then compared against a first predetermined threshold, the first predetermined threshold being selected to be less than the probable ignition temperature of the unburned fuel or the probable ignition temperature of environmental materials such as leaves. When the engine 120 is in a running condition and the measured temperature has not exceeded the first predetermined threshold, the system is in a first state. Thus, the first state is the state at which normal engine operation occurs and there is minimal risk of undesired ignition of environmental materials.


In response to the measured temperature exceeding the first predetermined threshold, the control unit 138 triggers fuel cutoff and the system enters a second state. The control unit 138 may cause a fuel cutoff valve to close, cease fuel injector operation, or otherwise halt fuel flow to the engine. In yet other implementations, only spark or both fuel and spark may be halted, ensuring an immediate shutdown of the engine. Otherwise stated, the fuel/air mixer 144 may cease delivery of fuel and/or the ignition source 150 may be controlled to cease ignition of the fuel/air mixture. Either or both approaches prevent continued fuel burn and reduce the chance of flame or spark exiting the exhaust system. Excess fuel resulting from a lack of ignition can be vented to atmosphere safely so long as the catalyst 171 or other parts of the exhaust system 166 do not exceed the ignition temperature of the fuel.


Optionally only a single combustion chamber's fuel flow or ignition source may be halted. In other configurations all fuel flow may be halted. The engine 120 may remain in a running state while the system is in the second state. The engine 120 may continue running by coasting or by power provided by another combustion chamber or bank of combustion chambers. The system may then return to the first state once the measured temperature drops below a second predetermined threshold. The second predetermined threshold may be greater than, less than, or equal to the first predetermined threshold. The system may remain in the second state for a predetermined period of time to ensure that measurement noise or other errors do not result in undesired switching between modes, resulting in erratic operation.



FIG. 5 illustrates a control module 139 which forms a part of the control unit 138. The control module 139 connects to the temperature sensor 162 via a first connector 135 and interprets the signals from the temperature sensor 162. This information is then passed to other modules within the control unit 138 via a second connector 137 to permit switching from the first state to the second state. As discussed previously, the control module 139 may be integrated into a single control unit 138 rather than being a separate module 139 within the control unit 138. Alternately, the control module 139 may perform additional functions beyond interpreting signals from the temperature sensor 162.



FIG. 6 illustrates an exemplary temperature sensor 162 such as may be used in the present system. The temperature sensor 162 has a probe 161 that may mount to the tailpipe 172 via a threaded connection, press fit, or any of a number of alternate mounting methods. The temperature sensor 162 may be a voltage, current, or resistance type sensor, or it may operate using a digital communications protocol to transmit the signal containing the temperature measurement information. The temperature sensor 162 may be a thermistor, thermocouple, or other temperature sensing device. Signals are transferred via a connector 163 to the first connector 135 of the control module 139. The connector 163 may be any type suitable for mating with the first connector 135 of the control module. Preferably, the probe 161 is mounted as near to a center of the tailpipe 172 adjacent the outlet 167 to provide fast response time and accurate measurement of the exhaust temperature. Alternately, the probe 161 may be mounted anywhere within the exhaust system 166 and need not be in the center of exhaust gas flow.



FIG. 7 shows three graphs of experimental data illustrating a variety of measured data. All of the data was recorded concurrently as evidenced by the time scale shown at the bottom of each of the graphs. The time scale is measured in seconds. Turning to the top graph, exhaust gas temperature (“EGT”) of cylinders 1 and 2 of the engine 120 are plotted. EGT of cylinders 1 and 2 is measured as it exits the combustion chamber and before it reaches the muffler or catalyst. These temperatures are measured in the runners 169 of the exhaust system 166 where no significant mixing of the exhaust gas occurs. EGT Outlet is the temperature of the exhaust gas at the outlet 167 of the tailpipe 172 as measured by the temperature sensor 162. Pre Cat EGT is the temperature of the exhaust gas upstream of the catalyst 171 but downstream of the cylinder 1 and cylinder 2 measurements. This measurement is taken in the central cavity 170 where the exhaust gas from cylinder 1 and cylinder 2 has mixed. In other words, the Pre Cat EGT is measured immediately upstream of the catalyst 171. RPM, or revolutions per minute, indicates the engine speed.


Turning to the middle graph of FIG. 7, manifold air pressure (“MAP”) in kPa, throttle position (“TPS”) in percent of full opening, thermal safety status, and engine output torque are plotted. The bottom graph of FIG. 7 shows cylinder 1 air/fuel ratio (“AFR”), cylinder 2 AFR, pre-catalyst AFR, and post-catalyst AFR. The AFR's are measured at substantially the same positions as the exhaust gas temperatures noted above using oxygen sensors 160.


At approximately 360 seconds, ignition is shut off in cylinder 2. As can be seen, EGT for cylinder 2 rapidly drops as unburned fuel flows through the engine to the exhaust. However, EGT at the tailpipe rapidly climbs beyond 1800 degrees F. This causes a dangerous condition where fire is highly likely. As can be seen in the middle graph, the thermal safety status is triggered at approximately 376 seconds, which corresponds to a first predetermined threshold of 1500 degrees at the outlet 167 of the tailpipe 172. A thermal safety status of 100 corresponds to a value greater or equal to the first predetermined threshold at the outlet 167 while a thermal safety status of 0 corresponds to a value less than the second predetermined threshold for the outlet 167. In this instance, the first and second predetermined thresholds are the same. For the purposes of testing, fuel flow was not halted as evidenced by the RPM not dropping to zero when the thermal safety status reaches 100. However, the engine would quickly shut down as a result of halting the fuel flow, reducing the temperature at the outlet 167 rapidly and keeping it below the first predetermined threshold.


As can be seen from FIG. 7, ignition in cylinder 2 was restored at approximately 450 seconds. EGT outlet temperature rapidly dropped as the amount of unburned fuel reaching the catalyst decreased. At approximately 481 seconds, the thermal safety status went from 100 to 0, indicating a safe exhaust temperature. The test was repeated, with ignition shut off at approximately 620 seconds and resumed at approximately 740 seconds. Once again, EGT outlet temperature climbs until the first predetermined threshold of 1500 degrees F. is reached. At that time, the thermal safety status is 100 and the system transitions from the first state to the second state. Thermal safety status returns to 0 when the EGT outlet temperature has dropped below the second predetermined threshold of 1500 degrees F., subsequent to the ignition being restored. The system then transitions from the second state to the first state. As noted above, the first and second predetermined thresholds are the same in this test, but they may be different in other implementations. Thus, the removal of ignition from cylinder 2 was used to simulate a malfunction where excess fuel is passed through one of the combustion chambers. This verified proper operation of the system and illustrated issues that can result from excess unburned fuel.


As can be seen, the AFR of cylinder 2 indicates approximately 18-20 on the graph when the ignition in cylinder 2 is shut off. This is due to the excess of oxygen resulting from the fuel not being burned. The actual air/fuel ratio cannot be accurately determined in the absence of spark. However, it provides yet another indicator of a potential malfunction. The AFR of cylinder 1 also shows some erratic decreases in measured AFR from the steady values before and after interruption of ignition in cylinder 2. This may be caused by some slight mixing of exhaust between the two runners 169 or other factors.



FIG. 8 shows the same graphs as the top and middle graphs of FIG. 6, but have been annotated with arrows showing that as the EGT outlet temperature reaches the first predetermined threshold of 1500 degree F., the thermal safety status is 100. This highlights the ability of the control module 139 to detect and respond to temperatures exceeding the first predetermined threshold. The first and second predetermined thresholds may be any desired value and may vary depending on environmental conditions, fuel type, engine type, and so on. The first and second predetermined thresholds may be changed in response to selected inputs such as ambient temperature. The system may utilize the control module 139 or another module within the control unit 138 such as the engine controller to monitor inputs and transition from the first state to the second state and vice versa. Furthermore, the first and second predetermined thresholds may be altered by another module within the control unit 138 via a communication bus such as CAN bus. The first and second predetermined thresholds may be altered based on sensor data transmitted over the CAN bus that is utilized to compute a new predetermined threshold or the predetermined threshold value may be transmitted directly, with no additional computation required to determine the predetermined threshold value. In the case of predetermined thresholds that may vary, these thresholds may be dictated by an algorithm that takes into account various risk factors to adjust the predetermined threshold values.


Where the engine has more than one combustion chamber, there may be third and fourth predetermined thresholds that correspond to the second combustion chamber and so on. In other words, each combustion chamber may have two predetermined thresholds which relate to the value at which the transition from a normal state to a safety state. Each combustion chamber may also have two states. Thus, a first combustion chamber may transition from a first state to a second state when a first condition of the exhaust rises to the first predetermined threshold. The first combustion chamber may transition from the second state to the first state when the first condition of the exhaust drops below the second predetermined threshold. A second combustion chamber may transition from a third state to a fourth state when a second condition of the exhaust rises to a third predetermined threshold. The second combustion chamber may transition from the fourth state to the third state when the second condition of the exhaust drops below a fourth predetermined threshold. Thus, each combustion chamber may have separate predetermined thresholds which are dictated by different conditions within the exhaust system. These conditions may be temperature, air fuel ratio, or any other parameter which may indicate potential danger.



FIGS. 9 and 10 show a flame exiting the tailpipe 172 of the exhaust system 166 of the engine 120. These flames were generated during controlled tests and were intentionally generated for testing purposes. As can be seen, the flames extend a significant distance from the tailpipe and present a significant safety hazard.


Turning to an alternative configuration, FIG. 11 shows air/fuel ratio measurements from cylinders 1 and 2 during testing. As can be seen, the AFR of cylinder 2 deviates substantially from the steady state value. An alternative system may omit the temperature sensor 162 at the outlet 167 and may instead cut fuel based on the AFR readings from oxygen sensors 160 located in the runners 169. In the event of a large deviation from the expected value, the control unit 138 can trigger a transition from the first state to the second state or from the third state to the fourth state. This discontinues ignition and/or fuel delivery. This has the advantage of quicker response times but does not directly measure temperature of the exhaust at the outlet 167.


Optionally, the temperature sensor 162 may be maintained to provide two sources of feedback. Otherwise stated, two or more conditions of the exhaust within the exhaust system 166 may be concurrently monitored. This may allow a hybrid algorithm to be implemented which can result in a predetermined threshold that is adjusted based on weighting of signals from the various sensors 160, 162 to deliver enhanced safety and eliminate false positives. Thus, the predetermined thresholds may take the form of an algorithm which weights various signals from various sensors 160, 162.



FIG. 12 illustrates a method of controlling an internal combustion engine 200. Step 210 involves providing an engine 120. The engine 120 has an intake 164 having a fuel/air mixer 144, a first combustion chamber fluidly coupled to the intake 164, a first ignition source 150 operably coupled to the first combustion chamber, and an exhaust system 166 fluidly coupled to the first combustion chamber and extending from the first combustion chamber to an outlet 167. Optionally, the engine 120 may be in a running state.


Step 220 involves sensing via a sensor, such as the oxygen sensor 160 or temperature sensor 162, a first condition of exhaust within the exhaust system 166. The first condition may be a temperature, oxygen content, or air/fuel ratio at a specific location within the exhaust system 166. The sensor, in combination with a control unit 138, monitors the first condition until the first condition exceeds a predetermined threshold. The first predetermined threshold may be a single value or may be dictated by an algorithm that weighs various additional factors to compute the predetermined threshold.


During step 230, the control unit 138 interrupts fuel delivery from the fuel/air mixer 144 or prevents ignition of fuel by the first ignition source 150 in response to the first condition exceeding the first predetermined threshold. As a result of step 230, the system transitions from a first state to a second state. Subsequently, in step 240, the sensor monitors the first condition of the exhaust until the first condition drops below a second predetermined threshold. The second predetermined threshold may be greater, less than, or equal to the first predetermined threshold. Finally, in step 250 the fuel delivery is resumed from the fuel/air mixer 144 and/or the ignition of the fuel is resumed by the first ignition source 150. This allows the system to return to the first state from the second state. The cycle may continue so long as the engine is running of the control unit 138 is active, with the system returning to step 220 to continue monitoring the first condition of the exhaust. In the event that the first condition exceeds the first predetermined threshold, the process repeats as described.


While the foregoing description and drawings represent examples of the present invention, it will be understood that various additions, modifications and substitutions may be made therein without departing from the spirit and scope and range of equivalents of the accompanying claims. In particular, it will be clear to those skilled in the art that the present invention may be embodied in other forms, structures, arrangements, proportions, sizes, and with other elements, materials, and components, without departing from the spirit or essential characteristics thereof. In addition, numerous variations in the methods/processes as applicable described herein may be made without departing from the spirit of the invention. One skilled in the art will further appreciate that the invention may be used with many modifications of structure, arrangement, proportions, sizes, materials, and components and otherwise, used in the practice of the invention, which are particularly adapted to specific environments and operative requirements without departing from the principles of the present invention. The presently disclosed examples are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being defined by the appended claims and equivalents thereof, and not limited to the foregoing description or examples. Rather, the appended claims should be construed broadly, to include other variants of the invention, which may be made by those skilled in the art without departing from the scope and range of equivalents of the invention.

Claims
  • 1. An engine system comprising: an internal combustion engine comprising: an intake comprising a fuel/air mixer;a first combustion chamber fluidly coupled to the intake;a first ignition source operably coupled to the first combustion chamber; andan exhaust system fluidly coupled to the first combustion chamber and extending from the first combustion chamber to an outlet, the exhaust system comprising a tailpipe adjacent the outlet;a control unit configured to control at least one of the fuel/air mixer or the first ignition source; anda first sensor configured to sense a first condition of exhaust within the exhaust system, the first sensor configured to sense the exhaust at the tailpipe;wherein, in response to a first signal from the first sensor, the control unit transitions from 1) a first state where the fuel/air mixer delivers fuel to the first combustion chamber and the fuel is ignited via the first ignition source to 2) a second state where the control unit either controls the fuel/air mixer to cease delivery of fuel to the first combustion chamber or controls the first ignition source to prevent ignition of the fuel.
  • 2. The system according to claim 1 wherein the control unit transitions from the first state to the second state when the first signal exceeds a first predetermined threshold.
  • 3. The system according to claim 2 wherein the control unit transitions from the second state to the first state when the first signal is less than a second predetermined threshold.
  • 4. The system according to claim 1 wherein the first signal indicates a temperature of the exhaust within the exhaust system.
  • 5. The system according to claim 1 wherein the first signal indicates a ratio of air to fuel.
  • 6. The system according to claim 1 wherein the exhaust system comprises a catalyst located between the first combustion chamber and the tailpipe, the first sensor configured to sense the exhaust within the exhaust system between the catalyst and the outlet.
  • 7. The system according to claim 1 wherein the system comprises a second sensor, the engine comprises a second combustion chamber, and the exhaust system comprises a first runner fluidly coupled to the first combustion chamber and a second runner fluidly coupled to the second combustion chamber, wherein the first sensor senses the first condition of the exhaust within the first runner and the second sensor senses a second condition of the exhaust within the second runner.
  • 8. The system according to claim 7 wherein, in response to a second signal from the second sensor, the control unit transitions from 1) a third state where the fuel/air mixer delivers fuel to the second combustion chamber and the fuel is ignited via the second ignition source to 2) a fourth state where the control unit either controls the fuel/air mixer to cease delivery of fuel to the second combustion chamber or controls the second ignition source to prevent ignition of the fuel.
  • 9. The system according to claim 8 wherein the control unit transitions from the first state to the second state independently from the third state to the fourth state.
  • 10. The system according to claim 1 wherein the engine remains in a running state while in the second state.
  • 11. An engine system comprising: an internal combustion engine comprising: an intake comprising a fuel/air mixer;a first combustion chamber fluidly coupled to the intake;a first ignition source operably coupled to the first combustion chamber; andan exhaust system fluidly coupled to the first combustion chamber and extending from the first combustion chamber to an outlet, the exhaust system comprising a tailpipe, the outlet formed by the tailpipe;a control unit configured to control at least one of the fuel/air mixer or the first ignition source; anda first sensor configured to sense a first condition of exhaust within the exhaust system, the first sensor outputting a first signal which is received by the control unit, the first sensor operably coupled to the tailpipe to sense the exhaust at the tailpipe;wherein, in response to the first signal exceeding a first predetermined threshold while the engine is in a running state, the control unit either causes the fuel/air mixer to cease delivery of fuel or the first ignition source to prevent ignition of the fuel.
  • 12. The system according to claim 11 wherein, in response to the first signal being less than a second predetermined threshold, the control unit causes the fuel/air mixer to resume delivery of the fuel or the first ignition to resume igniting the fuel.
  • 13. The system according to claim 11 wherein the first signal indicates a temperature of the exhaust within the exhaust system.
  • 14. The system according to claim 11 wherein the first signal indicates a ratio of air to fuel.
  • 15. The system according to claim 11 wherein the exhaust system comprises a catalyst located between the first combustion chamber and the outlet, the first sensor configured to sense the exhaust within the exhaust system between the catalyst and the outlet.
  • 16. The system according to claim 11 wherein the system comprises a second sensor, the engine comprises a second combustion chamber, and the exhaust system comprises a first runner fluidly coupled to the first combustion chamber and a second runner fluidly coupled to the second combustion chamber, wherein the first sensor senses the first condition of the exhaust within the first runner and the second sensor senses a second condition of the exhaust within the second runner.
  • 17. The system according to claim 16 wherein the first and second conditions of the exhaust are air/fuel ratios.
  • 18. A method of controlling an internal combustion engine comprising: a) providing an engine comprising an intake comprising a fuel/air mixer, a first combustion chamber fluidly coupled to the intake, a first ignition source operably coupled to the first combustion chamber, and an exhaust system fluidly coupled to the first combustion chamber and extending from the first combustion chamber to an outlet, the engine in a running state;b) sensing, via a sensor mounted to a tailpipe of the exhaust system located adjacent the outlet, a first condition of exhaust within the exhaust system exceeding a first predetermined threshold;c) interrupting fuel delivery from the fuel/air mixer or preventing ignition of the fuel by the first ignition source;d) monitoring, via the sensor, the first condition of the exhaust until the first condition of the exhaust is less than a second predetermined threshold;e) resuming fuel delivery from the fuel/air mixer or ignition of the fuel by the first ignition source.
  • 19. The method of claim 18 wherein the first condition is a temperature adjacent the outlet of the exhaust system.
  • 20. The method of claim 18 wherein the first condition is an oxygen content in a runner of the exhaust system.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of priority to U.S. Provisional Application No. 63/177,000 filed Apr. 20, 2021, which is incorporated herein by reference in its entirety.

US Referenced Citations (164)
Number Name Date Kind
3886739 Lee Jun 1975 A
3916622 Gospodar Nov 1975 A
3955363 Manderscheid May 1976 A
4379387 Iizuka Apr 1983 A
4408584 Yabuhara et al. Oct 1983 A
4484548 Sugasawa Nov 1984 A
4690121 Kawanabe et al. Sep 1987 A
4729220 Terasaka Mar 1988 A
4926826 Nakaniwa et al. May 1990 A
5050551 Morikawa Sep 1991 A
5107432 Martinelli Apr 1992 A
5168701 Yamamoto et al. Dec 1992 A
5168859 Ohsaki Dec 1992 A
5201293 Langner et al. Apr 1993 A
5414994 Cullen et al. May 1995 A
5560200 Maus Oct 1996 A
5647207 Grotjahn et al. Jul 1997 A
5784880 Toshiro et al. Jul 1998 A
5921217 Koike Jul 1999 A
6032753 Yamazaki et al. Mar 2000 A
6057605 Bourne et al. May 2000 A
6068528 Suzuki May 2000 A
6182446 Gunther Feb 2001 B1
6240910 Maekawa Jun 2001 B1
6286993 Boll Sep 2001 B1
6295807 Douta et al. Oct 2001 B1
6532926 Kuroda et al. Mar 2003 B1
6631611 Shi et al. Oct 2003 B2
6711891 Kitamura et al. Mar 2004 B2
6711892 Tamura et al. Mar 2004 B2
6712053 Kobayashi et al. Mar 2004 B2
6729120 Freisinger et al. May 2004 B2
6739122 Kitajima et al. May 2004 B2
6816774 Yasui Nov 2004 B2
6829886 Nakata Dec 2004 B2
6836722 Yook Dec 2004 B2
6865879 Andreas et al. Mar 2005 B2
6895744 Osawa May 2005 B2
6901745 Schnaibel et al. Jun 2005 B2
6920388 Yasui Jul 2005 B2
6922986 Rozario Aug 2005 B2
6935312 Murase et al. Aug 2005 B2
6970800 Park Nov 2005 B2
6996974 Anilovich et al. Feb 2006 B2
7000385 Miyashita Feb 2006 B2
7055312 Osawa Jun 2006 B2
7059115 Yasui Jun 2006 B2
7100362 McGee et al. Sep 2006 B2
7143574 Lewis et al. Dec 2006 B2
7150145 Patchett et al. Dec 2006 B2
7152395 Inoue et al. Dec 2006 B2
7162359 Yasui Jan 2007 B2
7243532 Tsujimura Jul 2007 B2
7249453 Saito et al. Jul 2007 B2
7340885 Colignon Mar 2008 B2
7398645 Zheng et al. Jul 2008 B2
7430853 Kohara et al. Oct 2008 B2
7474956 Nakagawa et al. Jan 2009 B2
7549285 Colignon Jun 2009 B2
7596941 Takubo Oct 2009 B2
7603850 Colignon Oct 2009 B2
7607288 Miyasako et al. Oct 2009 B2
7634907 Colignon Dec 2009 B2
7654252 Kato et al. Feb 2010 B2
7677027 Iida et al. Mar 2010 B2
7694508 Iida et al. Apr 2010 B2
7778764 Ito et al. Aug 2010 B2
7779619 Takubo Aug 2010 B2
7809490 Liu et al. Oct 2010 B2
7832194 Ichimoto Nov 2010 B2
7845160 Takubo Dec 2010 B2
7849674 Masuda et al. Dec 2010 B2
7856307 Atsushi et al. Dec 2010 B2
7895826 Takubo Mar 2011 B2
7934370 Ando et al. May 2011 B2
8024105 Iwazaki Sep 2011 B2
8024108 Hacker Sep 2011 B2
8065049 Sakamoto et al. Nov 2011 B2
8069652 Iihoshi et al. Dec 2011 B2
8316638 Tornambe Nov 2012 B2
8381707 Mizoguchi et al. Feb 2013 B2
8479706 Speers et al. Jul 2013 B2
8544258 Brown et al. Oct 2013 B2
8621847 Gonze et al. Jan 2014 B2
8640447 Nishi et al. Feb 2014 B2
8661797 Gonze et al. Mar 2014 B2
8694227 Tani et al. Apr 2014 B2
8707679 McDonald Apr 2014 B2
8707680 Bisaiji Apr 2014 B2
8707682 Bisaiji Apr 2014 B2
8713923 Morita et al. May 2014 B2
8751187 Hirai et al. Jun 2014 B2
8764607 Gonze et al. Jul 2014 B2
8818690 Tani et al. Aug 2014 B2
8894540 Hashemi et al. Nov 2014 B2
8905007 Iizuka et al. Dec 2014 B2
8918267 Nakagawa Dec 2014 B2
9051853 Gonze et al. Jun 2015 B2
9057309 Yezerets et al. Jun 2015 B2
9140173 Nakamura et al. Sep 2015 B2
9145123 Doering et al. Sep 2015 B2
9145804 Nakagawa Sep 2015 B2
9181838 Drews Nov 2015 B2
9217350 Upadhyay et al. Dec 2015 B2
9228469 Devarakonda Jan 2016 B2
9249712 Tani et al. Feb 2016 B2
9267458 Sakaguchi et al. Feb 2016 B2
9273583 Bergeal et al. Mar 2016 B2
9388757 Onoe et al. Jul 2016 B2
9394823 Choi Jul 2016 B2
9441566 Takano et al. Sep 2016 B2
9458812 Santoso et al. Oct 2016 B2
9567938 Mori Feb 2017 B2
9593635 Nakagawa Mar 2017 B2
9594049 Yamada et al. Mar 2017 B2
9638125 Tanaka et al. May 2017 B2
9650981 Large et al. May 2017 B1
9664640 Yamada et al. May 2017 B2
9752523 Yoshikawa et al. Sep 2017 B2
9777654 Qi et al. Oct 2017 B2
9816961 Yamada et al. Nov 2017 B2
9845719 Matsuoka et al. Dec 2017 B2
9903262 Edwards et al. Feb 2018 B2
9925974 Leone Mar 2018 B2
9932916 Kondo et al. Apr 2018 B2
9995233 Sasaki et al. Jun 2018 B2
10001073 Gwidt et al. Jun 2018 B2
10006394 Hayashita et al. Jun 2018 B2
10161334 Ulrey Dec 2018 B2
10180109 Okubo et al. Jan 2019 B2
10233854 Attard et al. Mar 2019 B1
10234418 Nakata et al. Mar 2019 B2
10265657 Rhodes et al. Apr 2019 B2
10302588 Matsuoka et al. May 2019 B2
10344643 Otsuka et al. Jul 2019 B2
10443519 Hashizume et al. Oct 2019 B2
10450930 Smith et al. Oct 2019 B2
10473049 Hayashita et al. Nov 2019 B2
10513958 Aed Dec 2019 B2
10578059 Badawy et al. Mar 2020 B2
10584662 Cho Mar 2020 B2
10626775 Umezawa et al. Apr 2020 B2
10634027 Tanaka et al. Apr 2020 B2
10711715 Glugla Jul 2020 B2
10718250 Martin et al. Jul 2020 B2
10774767 Ito Sep 2020 B2
10794311 Wehmeier et al. Oct 2020 B2
10927784 Hayashita et al. Feb 2021 B2
20020069011 Hawkins Jun 2002 A1
20020069638 Glugla et al. Jun 2002 A1
20050216176 Ichimoto et al. Sep 2005 A1
20050262827 Ichimoto et al. Dec 2005 A1
20070095050 Asano May 2007 A1
20100263639 Uhrich et al. Oct 2010 A1
20130151125 Mann Jun 2013 A1
20130275024 Shinji et al. Oct 2013 A1
20150128565 Upadhyay et al. May 2015 A1
20160265414 Devarakonda Sep 2016 A1
20180135484 Hillen et al. May 2018 A1
20190040782 Zenner Feb 2019 A1
20200158030 Hitomi et al. May 2020 A1
20200191071 Hitomi et al. Jun 2020 A1
20200200109 Phillips Jun 2020 A1
20210087995 Procknow Mar 2021 A1
Foreign Referenced Citations (56)
Number Date Country
101709662 May 2010 CN
204024779 Dec 2014 CN
103133094 Apr 2015 CN
106640398 May 2017 CN
106939866 Jul 2017 CN
104395589 Oct 2017 CN
108001442 May 2018 CN
109236481 Jan 2019 CN
106194540 Mar 2019 CN
107642390 Apr 2019 CN
110295978 Oct 2019 CN
110691898 Jan 2020 CN
110863888 Mar 2020 CN
111005790 Apr 2020 CN
111456836 Jul 2020 CN
4430979 Mar 1995 DE
1173665 Jan 2002 EP
1174611 Jan 2002 EP
0890724 Sep 2003 EP
1352163 Oct 2003 EP
1680585 Nov 2008 EP
2360361 Aug 2011 EP
2119884 Jun 2012 EP
2075448 Oct 2016 EP
2987975 Sep 2017 EP
2865860 Oct 2017 EP
3333389 Jun 2018 EP
3404226 Jan 2020 EP
3269954 Oct 2020 EP
S61265336 Nov 1986 JP
H0617640 Jan 1994 JP
H0674025 Mar 1994 JP
H07269407 Oct 1995 JP
H0849585 Feb 1996 JP
H08232722 Sep 1996 JP
H0942024 Feb 1997 JP
H09126014 May 1997 JP
H09317526 Dec 1997 JP
H09317531 Dec 1997 JP
H11182296 Jul 1999 JP
2005036742 Feb 2005 JP
2012218710 Nov 2012 JP
2012241574 Dec 2012 JP
2014141945 Aug 2014 JP
2014213643 Nov 2014 JP
2017089461 May 2017 JP
2019015259 Jan 2019 JP
2020139440 Sep 2020 JP
101048120 Jul 2011 KR
WO2006005862 Jan 2006 WO
WO2014163046 Oct 2014 WO
WO2015181922 Dec 2015 WO
WO2019239025 Dec 2019 WO
WO2020035921 Feb 2020 WO
WO2020166154 Aug 2020 WO
WO2020217642 Oct 2020 WO
Related Publications (1)
Number Date Country
20220333545 A1 Oct 2022 US
Provisional Applications (1)
Number Date Country
63177000 Apr 2021 US