The present disclosure is related toward a corrugated exhaust nozzle for a gas turbine engine, and more specifically toward an exhaust nozzle incorporating multiple daisy style corrugations.
Gas turbine engines, such as those used to drive propellers in a contra-rotating prop-fan engine, utilize compressed and expanded gasses to produce rotational motion. Such engines include a compressor section, a combustor section, and a turbine section which work cooperatively to drive a shaft. A gas flowpath passes through each of the compressor, combustor and turbine sections and fluidly connects them. Also connected to the shaft, aft of the turbine section, are multiple propellers which generate thrust.
Heated exhaust gasses from the turbine section of the gas turbine engine contact the roots of the propeller blades after being expelled from the turbine section. If the exhaust gasses do not have sufficient time to cool by mixing with ambient air prior to the gasses contacting the propeller blades, the excess heat of the gasses can wear the propeller blades significantly reducing the propeller blade life and possibly damaging the propeller blades.
In order to mitigate this effect, the prior art has relied on applying costly thermal barrier coatings to the affected areas of the blades to prevent damage from the hot exhaust gasses. Such methods are undesirable in some engines as they require periodic checks and periodic maintenance of any damaged thermal barrier coatings. Thermal barrier coating systems also include a potential risk of in-flight thermal barrier coating damage which can lead to damage to the propeller blades and affect the available thrust.
A turbine engine according to an exemplary embodiment of this disclosure, among other possible things includes a compressor section, a combustor in fluid communication with the compressor section, a turbine section in fluid communication with the combustor, an exhaust nozzle in fluid communication with the turbine section, the exhaust nozzle includes a plurality of exhaust stream mixers circumferentially disposed about the exhaust nozzle, each of the exhaust stream mixers includes a radially inward base portion and a plurality lobes protruding radially outward from the base portion.
In a further embodiment of the foregoing turbine engine, each of the exhaust stream mixers is defined by a single continuously curved wall.
In a further embodiment of the foregoing turbine engine, each of the exhaust stream mixers is further defined by a cross section normal to an axis defined by the turbine engine, the cross section has a circumferential length at least twice the circumferential length of a circle inscribing the exhaust stream mixer.
In a further embodiment of the foregoing turbine engine, each of the base portions is defined by a pair of convex walls.
In a further embodiment, the foregoing turbine engine further includes at least four exhaust stream mixers.
In a further embodiment, the foregoing turbine engine further includes at least 8 exhaust stream mixers.
In a further embodiment of the foregoing turbine engine, each of the exhaust stream mixers has a radial height less than one half the total radius of the exhaust nozzle.
In a further embodiment of the foregoing turbine engine, each of the exhaust stream mixers has a radial height of less than one quarter the total radius of the exhaust nozzle.
In a further embodiment of the foregoing turbine engine, each of the exhaust stream mixers is defined by at least three radially protruding lobes and a valley between each of the radially protruding lobes and each adjacent of the radially protruding lobes.
In a further embodiment of the foregoing turbine engine, each of the lobes has a smaller cross sectional area than the base portion.
A method for mixing exhaust gas exiting an exhaust nozzle of a turbine engine according to an exemplary embodiment of this disclosure, among other possible things includes passing exhaust gasses through an exhaust stream mixer, the exhaust stream mixer includes at least one daisy style corrugation, thereby generating stream-wise vortices and transverse vortices in the exhaust stream.
In a further embodiment of the foregoing method, the step of passing the exhaust gasses through an exhaust stream mixer includes passing the gas through an exhaust stream mixer defined by at least a base portion having two convex walls and a plurality of lobes extending radially outward from the base portion, thereby maximizing a circumference of the exhaust nozzle while maintaining a desired cross sectional area.
In a further embodiment of the foregoing method, the step of passing the exhaust gasses through the exhaust stream mixer further includes maturing the vortices until the vortices are of sufficient size that each of the vortices interfaces with adjacent vortices.
In a further embodiment of the foregoing method, the stream-wise vortices and the transverse vortices facilitate intermixing between the exhaust gasses and a surrounding ambient air flow.
In a further embodiment of the foregoing method, the intermixing between the exhaust gasses and the surrounding ambient air flow cools the exhaust gasses prior to the exhaust gasses contacting a propeller blade, thereby protecting the propeller blade from thermal stresses.
An exhaust nozzle according to an exemplary embodiment of this disclosure, among other possible things includes an axis defined by the exhaust nozzle, a cross section of the exhaust nozzle normal to the axis includes a plurality of daisy style corrugations, each of the daisy style corrugations further comprises a radially inner base portion, and a plurality of lobes protruding radially outward from said base portion.
In a further embodiment of the foregoing exhaust nozzle, each of the daisy style corrugations is defined by a plurality of convex sidewalls.
In a further embodiment of the foregoing exhaust nozzle, each of the plurality of lobes has a smaller cross sectional area than the base section.
In a further embodiment of the foregoing exhaust nozzle, the daisy style corrugation is constructed of a single continuous wall.
These and other features of the present invention can be best understood from the following specification and drawings, the following of which is a brief description.
The heated exhaust gases from the turbine section 40 are expelled directly in front of (fore of) a radially inner portion of the leading edge of the blades of the contra-rotating propellers 60, 62. These hot exhaust gases can reach temperatures as high as 950 F (510 C) during operation of the engine 10. Due to the high energy momentum of the exhaust gases, the exhaust gasses do not mix well with the ambient air flow surrounding the engine 10. If the exhaust gasses are not cooled below a certain threshold, the exhaust gasses affect the structural integrity of the blades of the propellers 60, 62. Further exacerbating this effect is the fact that in order to save weight and cost, the blades of the contra-rotating propellers 60, 62 are often manufactured from epoxy resins, fiberglass, or other lightweight composite materials and are unable to withstand high thermal stresses.
The mixing of the exhaust gases from the turbine section 40 with the ambient air flow causes jet exhaust noise. The exhaust noise is further increased by a shearing action caused by the disparity between the relative speeds between the exhaust gasses and the ambient air flow. Jet exhaust noise levels are undesirable and can be reduced by increasing the mixing rate between the exhaust gasses and the ambient air flow, or when the exhaust gas velocity relative to the velocity of surrounding cold air flow is reduced. This effect is achieved by changing the pattern of the exhaust jet emanating from the exhaust nozzle 52. One way of changing the pattern of the exhaust gas jet is by including exhaust stream mixers, such as corrugations, at the exhaust nozzle 52. In addition to noise mitigation, corrugated exhaust nozzles 52 allow more efficient hot gas/cold ambient air mixing which improves the overall efficiency of the engine 10 and lowers the temperature of the exhaust gas stream.
The exhaust nozzle 52 is shaped with multiple deep daisy style corrugations that function as efficient exhaust stream mixers. Each of the daisy style corrugations is defined by multiple lobes defining peaks 148, valleys 146, and a base portion 142. The particular shaping of the daisy style corrugations imparts both an axial swirl and a circumferential swirl on the exhaust gasses emanating from the gas path 120. The specifics of the swirling are discussed in greater detail below. The swirling aids in breaking down the boundary layer 112, resulting in a swirling mixture 130 of the exhaust gasses and the ambient air 110. The swirling mixture 130, in turn, cools the exhaust gasses prior to the exhaust gasses contacting the propeller blades 60, 62, thereby minimizing wear on the blades.
Daisy style corrugations provide a large ratio of circumference area to cross sectional area of the nozzle 52. In some instances, the daisy style corrugations are limited by performance penalties that restrict the depth of each corrugation, the number of corrugations, or the number of lobes in each corrugation. In order to prevent backpressure and other penalties, the daisy style corrugated nozzle 52 maintains the same cross sectional area as known basic ring shaped nozzles of the prior art.
Daisy style corrugations 210 are defined by a relatively wide base portion 212 having convex walls and multiple lobes 216 (alternately referred to as petals) extending radially outward from the base section 212. A base section width 262 is defined as the shortest distance across the base section 212. A radial height 260 of each daisy style corrugation 210 is defined as the distance that the daisy style extends radially outward from the turbine section 230. Defined between each lobe 216 and each adjacent lobe 216 in a single daisy style corrugation 210 is a valley 214. In contrast, prior art corrugations are defined by a single peak/valley per corrugation or a wave shaped pattern. As described above, the introduction of the lobed daisy style corrugations 210 as exhaust stream mixers increases the mixing between the exhaust gasses and the ambient air 240 in a turbulent jet in a number of ways.
First, the convolution of the lobes 216 increases the initial interface area between primary and secondary flows relative to prior art corrugations and ring nozzles. The combination of lobes 216 and valleys 214 imparts an axial swirl (aligned with the shaft 220) on the exhaust gasses. The axial swirls are alternately referred to as streamwise vortices, and a circumferential swirl (tangential to the circumference of the engine 200) on the exhaust gasses, the circumferential swirls are alternately referred to as transverse vortices, on the exhaust gasses exiting the nozzle. The tangential swirls aid in breaking down the boundary layer 112 (illustrated in
A second way that the daisy style corrugations increase mixing drives from the stream-wise vortices. The stream-wise vortices increase the interface area between the exhaust gasses and the ambient air 240 due to an interaction between counter rotating vortices. A cross stream convection associated with the stream-wise vortices increases the interface gradients between the ambient air and the exhaust gasses thereby further increasing the mixing.
Furthermore, by imparting the streamwise and transverse vortices on the exhaust gas, the instability of the boundary layer 112 between the exhaust gas and the ambient air is increased (causing the boundary layer 112 to break down faster) and the mixing rate is increased. Horseshoe vortices can also be generated in the exhaust stream as a result of the daisy style corrugations 210; however, their impact on the overall mixing between the exhaust gasses from the nozzle 52 and the ambient air 240 is minimal compared to the effects from the streamwise and transverse vortices.
The daisy style corrugation exhaust stream mixer 300 also provides a larger circumference of the exhaust nozzle relative to a ring nozzle or standard corrugation without increasing the cross sectional area. The circumference of the exhaust nozzle in a ring nozzle is Cn=πDn, where Cn is the circumference of the exhaust nozzle and Dn is the diameter of the exhaust nozzle. Inclusion of daisy style corrugations such as is illustrated in
A typical daisy style corrugation's circumference is approximately twice the circumference of the circle in which the corrugation can be inscribed. Hence, to increase the overall circumference of a nozzle 52 by a factor of eight, four daisy style corrugations are used. The daisy style corrugations provide the added benefit of reducing the overall diameter of the nozzle 52. In one example, we use eight daisy style corrugations, for an exhaust nozzle 52 with a diameter of 300 mm; the required average height of each lobed mixer is ¼ of the overall diameter of nozzle 52, 75 mm. Further increasing the number of the daisy style corrugations leads to even smaller requirements for individual mixer heights. The optimal design is dictated by the specific engine parameters, including cost, for a specific installation.
The increased surface area of the daisy-style exhaust nozzle, relative to existing ring nozzles or known corrugated nozzles having the same cross sectional area allows for significant improvements in cooling. In one example the heated exhaust gasses can be cooled to around 450 F (230 C) using the daisy style corrugations. This low temperature allows the propeller blades to be created of lower heat tolerant materials, such as phenolic-composite resin, without the need for turbine blade coatings or active cooling.
Referring now to
As can be seen the number of lobes 516 can be increased beyond three, with a corresponding increase in the circumference of the daisy style corrugation 500. To compensate for the decrease in lobe 516 cross-sectional area resulting from an increase in the number of lobes 516, the base section is enlarged, thereby maintaining a consistent exhaust nozzle cross sectional area and preventing excessive back pressure at an exhaust nozzle.
Further defining daisy style corrugations 500 is the continuous nature of the walls 520, 522 defining the base portion 512 and the lobes 516. The walls 520, 522 are continuous in order to prevent corners or grooves which act as stress risers, and where debris (i.e., dust, sand, soot, dirt, grime, etc.) can build up.
As can be appreciated by one of skill in the art having the benefit of this disclosure, the particular lengths, widths and numbers of the proposed daisy-style lobes can be selected to tailor the above described affects to a particular engine or configuration while still falling within the above disclosure.
It is further understood that any of the above described concepts can be used alone or in combination with any or all of the other above described concepts. Although an embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
This application claims priority to U.S. Provisional Application No. 61/832,198, which was filed on Jun. 7, 2013, and to U.S. patent application Ser. No. 14/298,331 each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2798661 | Willenbrock, Jr. | Jul 1957 | A |
3084505 | Cherchi | Apr 1963 | A |
3084507 | Kleinhans et al. | Apr 1963 | A |
3249306 | Altseimer | May 1966 | A |
3568792 | Urquhart | Mar 1971 | A |
3678690 | Shohet | Jul 1972 | A |
3710890 | True | Jan 1973 | A |
3927522 | Bryce | Dec 1975 | A |
3946554 | Neumann | Mar 1976 | A |
4066214 | Johnson | Jan 1978 | A |
4078576 | Punch | Mar 1978 | A |
4149375 | Wynosky | Apr 1979 | A |
4165609 | Rudolph | Aug 1979 | A |
4302934 | Wynosky et al. | Dec 1981 | A |
4401269 | Eiler | Aug 1983 | A |
4487017 | Rodgers | Dec 1984 | A |
4543784 | Kirker | Oct 1985 | A |
4571936 | Nash | Feb 1986 | A |
4592201 | Dusa | Jun 1986 | A |
4686826 | Koshoffer | Aug 1987 | A |
4754924 | Shannon | Jul 1988 | A |
4813230 | Braithwaite | Mar 1989 | A |
4836469 | Wagenfeld | Jun 1989 | A |
4936748 | Adamson | Jun 1990 | A |
4951461 | Butler | Aug 1990 | A |
5076053 | McVey | Dec 1991 | A |
5103635 | Lardellier | Apr 1992 | A |
5638675 | Zysman | Jun 1997 | A |
5692372 | Whurr | Dec 1997 | A |
5992140 | Hammond | Nov 1999 | A |
6082967 | Loisy | Jul 2000 | A |
6124031 | Yoshida | Sep 2000 | A |
6301877 | Liang et al. | Oct 2001 | B1 |
6578355 | Mundt | Jun 2003 | B1 |
7966824 | Mengle | Jul 2011 | B2 |
8087250 | Gutmark et al. | Jan 2012 | B2 |
9970386 | Ribarov | May 2018 | B2 |
20040006968 | Oishi | Jan 2004 | A1 |
20040088967 | Webster | May 2004 | A1 |
20050034444 | Sanders | Feb 2005 | A1 |
20050193716 | Schlinker | Sep 2005 | A1 |
20060112675 | Anderson | Jun 2006 | A1 |
20070000234 | Anderson | Jan 2007 | A1 |
20070028622 | Steyer | Feb 2007 | A1 |
20080175703 | Lugg | Jul 2008 | A1 |
20080253881 | Richards | Oct 2008 | A1 |
20090324093 | Miarecki | Dec 2009 | A1 |
20110056183 | Sankrithi | Mar 2011 | A1 |
20130104555 | Dindar | May 2013 | A1 |
20150291285 | Gallet | Oct 2015 | A1 |
20150330866 | Yang | Nov 2015 | A1 |
20150337761 | Marini | Nov 2015 | A1 |
20160258297 | Cortequisse | Sep 2016 | A1 |
20160305663 | Lebel | Oct 2016 | A1 |
20160329193 | Sieber | Nov 2016 | A1 |
20190264800 | Fisher | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
2587037 | May 2013 | EP |
Entry |
---|
D. C. McCormick, and J. C. Bennett Jr., Vortical and Turbulent Structure of a Lobed Mixer Free Shear Layer, AIAA Journal vol. 32, No. 9, Sep. 1994, pp. 1852-1859. (Year: 1994). |
A. Waitz, Y. J. Qiu, T. A. Manning, A. K. S. Fung, J. K. Elliot, J. M. Kerwin, J. K. Krasnodebski, M. N. O'Sullivan, D. E. Tew, E. M. Greitzer, F. E. Marble, C. S. Tan and T. G. Tillman, Enhanced Mixing With Streamwise Vorticity, Prog. Aerospace Sci. vol. 33, pp. 323-351. (Year: 1997). |
Number | Date | Country | |
---|---|---|---|
20180187629 A1 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
61832198 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14298331 | Jun 2014 | US |
Child | 15906201 | US |