The invention relates to exhaust systems for internal combustion engines, including for emission control.
Exhaust systems for internal combustion engines typically include an exhaust conduit conducting exhaust gas from the engine through a catalyst. It is known to inject air into the exhaust system upstream of the catalyst. The injection air is provided by an air injection pump and supplied through a regulator valve which in turn is controlled by an oxygen sensor in the exhaust conduit.
The present invention arose during continuing development efforts relating to the above technology, and provides improvements in simplification, cost reduction, and elimination of components.
In a preferred embodiment of the present invention, injection air at port 28 is supplied from an alternator blower 32 of an alternator 34 driven by engine 12 as schematically shown at dashed line 36, which alternator and its driven connection to an engine is known in the prior art. An injection air conduit 38 is connected between alternator blower 32 and exhaust conduit 14 at port 28 and supplies injection air from the alternator blower to exhaust conduit 14 upstream of catalyst 18. In the preferred embodiment, injection air is supplied from the alternator blower to exhaust conduit 14 without an air injection pump. A regulator valve 40 and/or 42, to be described, regulates the amount of injection air supplied to catalyst 18 from alternator blower 32. The alternator blower has an outlet 44 with a pressure sensor 46 therein. The respective regulator valve is controlled by the pressure sensor, as shown at dashed lines 48, 50. Air from the alternator blower flows as shown at arrow 52 and then may flow as shown at arrow 54 into injection air conduit 38 and/or may flow as shown at arrow 56 for normal discharge.
In one embodiment, a regulator valve 40 is provided in the injection air conduit 38 and controls air flow therethrough to in turn control the amount of injection air at port 28 into exhaust conduit 14. In another embodiment, a regulator valve 42 is provided at the alternator blower outlet 44 and creates backpressure therein. Regulator valve 42 is a gate or flap or the like which is actuatable, e.g. movable upwardly and downwardly as shown at arrow 58,
Injection air conduit 38 has an inlet at 60 receiving injection air from alternator blower 32. Inlet 60 has a flow orifice selected for desired injection air pressure according to alternator blower output. Alternator blower 32 has a discharge port 62 discharging blower output air. Inlet 60 of injection air conduit 38 receives blower output air in parallel with discharge port 62. In an alternate embodiment,
In the foregoing description, certain terms have been used for brevity, clearness, and understanding. No unnecessary limitations are to be implied therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes and are intended to be broadly construed. The different configurations, systems, and method steps described herein may be used alone or in combination with other configurations, systems and method steps. It is to be expected that various equivalents, alternatives and modifications are possible within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2071119 | Harger | Feb 1937 | A |
3220805 | Lentz et al. | Nov 1965 | A |
4027478 | Masaki et al. | Jun 1977 | A |
5765368 | Matsumoto et al. | Jun 1998 | A |