Exhaust valve failure diagnostics and management

Information

  • Patent Grant
  • 11959432
  • Patent Number
    11,959,432
  • Date Filed
    Wednesday, March 8, 2023
    a year ago
  • Date Issued
    Tuesday, April 16, 2024
    7 months ago
Abstract
A method of operating an engine is provided. An exhaust valve actuation fault is detected for a first exhaust valve associated with a first cylinder during a first working cycle. In response to the detection of the exhaust valve actuation fault, fueling to at least the first cylinder is cut off. Actuation of the first exhaust valve is attempted in second working cycles that follow the first working cycle, wherein the second working cycles are not fueled. Whether or not the first exhaust valve actuated properly during the second working cycles is determined. Operation of the first cylinder is resumed when it is determined that the first exhaust valve actuated properly. Operation of the first cylinder is not resumed when it is determined that the first exhaust valve did not actuate properly.
Description
BACKGROUND

The present disclosure relates generally to the identification and management of exhaust valve activation faults.


SUMMARY

To achieve the foregoing and in accordance with the purpose of the present disclosure, a variety of engine controllers and engine control methods are described. In one aspect, in response to the detection of an exhaust valve actuation fault associated with a first cylinder, fueling to at least the first cylinder is cut off. Actuation of the faulting exhaust valve is attempted in a set of one or more second working cycles that follows the faulting (first) working cycle in the faulting cylinder, wherein the one or more second working cycles are not fueled. For each of the one or more second working cycles, whether the first exhaust valve actuated properly during the set of one or more second working cycles is determined. Operation of the first cylinder is resumed when it is determined that the first exhaust valve actuated properly during the set of one or more second working cycles. Operation of the first cylinder is not resumed when it is determined that the first exhaust valve did not actuate properly during the set of one or more second working cycles. If the exhaust valve is controlled as part of a group of exhaust valves, then fuel may be cut off to all of the cylinders associated with all of the exhaust valves in the group of exhaust valves. The group of exhaust valves may include all of the exhaust valves of the engine.


In another aspect, in response to the detection of an exhaust valve actuation fault, fueling to an associated first cylinder is cut off. Actuation of the faulting exhaust valve is attempted in a set of one or more engine cycles that follows the faulting working cycle, wherein the faulting cylinder is not fueled during the one or more engine cycles. An electric motor is utilized to maintain at least one of a desired drive torque and a desired crankshaft rotation speed during the one or more engine cycles. Whether or not to resume operation of the first cylinder is desired is based at least in part on whether at least some of the attempts to actuate the first exhaust valve in the set of one or more engine cycles are successful.


In another aspect, a controller for controlling an engine is provided where in response to the detection of an exhaust valve actuation fault, fueling to at least a first cylinder associated to the faulting exhaust valve is cut off. An attempt to actuate the faulting exhaust valve is made in a set of one or more second working cycles that follows the first working cycle. If the faulting valve works properly operation of the first cylinder is resumed. If the first exhaust valve did not actuate properly during the set of one or more second working cycles, then operation of the first cylinder is not resumed.


These and other features of the present disclosure will be described in more detail below in the detailed description and in conjunction with the following figures.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:



FIG. 1 is a high level flow chart of an embodiment.



FIG. 2 is a schematic illustration of an engine system that may be used in an embodiment.



FIG. 3 illustrates a schematic cross-sectional view of part of the internal combustion engine.





DETAILED DESCRIPTION OF THE EMBODIMENTS

There are a number of internal combustion engine control technologies that contemplate deactivating and subsequently reactivating an engine's intake and/or exhaust valves. For example, Applicant has extensively described dynamic skip fire engine control in which cylinders are selectively skipped or fired. The intake and/or exhaust valves are typically deactivated during skipped working cycles so that air is not pumped through the associated cylinder. There are a number of different valve deactivation technologies. Some contemplate individually deactivating/reactivating intake and exhaust valves, while others contemplate deactivating/reactivating valves in groups—as for example deactivating/reactivating the intake valve(s) and exhaust valve(s) associated with a single cylinder as a group, or deactivating/reactivating a set of exhaust valves or a set of intake valves as a group. A group of intake valves may include all intake valves of the engine. A group of exhaust valves may include all of the exhaust valves of the engine. The variations in valve actuation technologies leads to a variety of different potential failure modes in which one or more of the valves may fail to reactivate when desired.


The applicant has described a number of techniques for detecting valve actuation faults. By way of example, U.S. Pat. Nos. 9,562,470; 9,650,923, 9,890,732, and 11,143,575 (each of which is incorporated herein by reference in its entirety) describe a number of exhaust valve actuation fault detection techniques. For example, one suitable method for detecting exhaust valve actuation faults is based on monitoring angular acceleration of the crankshaft. During the exhaust stroke of a fired working cycle with the valves working properly, it is expected that a small negative torque will be applied to the crankshaft by the piston associated with the exhausting cylinder. In contrast, if the exhaust valve fails to actuate during an exhaust stroke after a cylinder has been fired, the hot combustion gases will be compressed during the exhaust stroke resulting in a much stronger negative torque on the crankshaft with there being a measurable difference from the expected crankshaft acceleration during the exhaust stroke. The detection of such a differential between the actual crankshaft acceleration and the expected crankshaft acceleration can be used to identify exhaust valve actuation faults.


A variety of other technologies can be used to help detect valve actuation faults. For example, if an intake valve opens after the failed exhaust valve opening, the high pressure compressed gases within the cylinder will exhaust into the intake manifold. This creates a high pressure pulse having a characteristic signature within the intake manifold that can also be readily detected thereby identifying both that the exhaust valve failed to open, and that the intake valve did open. Conversely, if no high pressure pulse is detected in the intake manifold after the detection of a post cylinder firing exhaust valve actuation failure, that provides strong evidence that the intake valve has also not actuated. There are a variety of other technologies that can be used to detect valve actuation faults and several such technologies are described in some of the incorporated patents.


Once an exhaust valve actuation fault is identified, it can be helpful to manage the operation of the engine and/or an associated powertrain or drive train in specific ways to help mitigate adverse impacts of such faults, especially if such faults reoccur. A few management schemes that are particularly well adapted to handling exhaust valve deactivation faults will be described. Some embodiments are described in the context of skip fire engine operations in which cylinders may be selectively fired or deactivated during selected working cycles. Other embodiments described herein are applicable to handling exhaust valve activation faults regardless of whether the engine is operating in a skip fire or other operating mode.



FIG. 2 is a schematic illustration of an engine system 11 in the form of an internal combustion engine 16 controlled by an engine control unit (ECU) 10 that may be used in an embodiment. The internal combustion engine has six in-line cylinders or working chambers, which in an alternative may be placed in a V6 configuration, labeled in the drawing 1, 2, 3, 4, 5 and 6, respectively. With six cylinders, six air input runners 22 are provided between the air intake manifold 18 and each of the six cylinders, respectively. The individual air input runners 22 are provided to supply air and potentially other gases for combustion from the intake manifold 18 to the individual cylinders through intake valves. In the particular embodiment shown, two exhaust manifolds 20A and 20B are provided to direct combusted gases from the cylinders through exhaust valves to an exhaust system 26. In particular, three exhaust runners 24A are provided between cylinders 6, 5 and 4 and the first of the two exhaust manifolds 20A and an additional three exhaust runners 24B are provided between the cylinders 3, 2 and 1 and the second of the two exhaust manifolds 20B. The exhaust manifolds 20A and 20B both exhaust to the exhaust system 26. Although a specific engine configuration is shown, it should be appreciated that the invention can be used in conjunction with a wide variety of different engine configurations.



FIG. 3 illustrates a schematic cross-sectional view of part of a spark ignition internal combustion engine 16 that includes a cylinder 361, a piston 363, an intake manifold 365, spark plug 390, and spark gap 391 and an exhaust manifold 369. The throttle valve 371 controls the inflow of air into the intake manifold 365. Air is inducted from the intake manifold 365 into cylinder 361 through an intake valve 385. Fuel is added to this air either by port injection or direct injection into the cylinder 361 from a fuel source 308, which is controlled by a fuel controller 310. Combustion of the air/fuel mixture is initiated by a spark present in the spark gap 391. Expanding gases from combustion increase the pressure in the cylinder and drive the piston 363 down. Reciprocal linear motion of the piston is converted into rotational motion by a connecting rod 389, which is connected to a crankshaft 383. Combustion gases are vented from cylinder 361 through an exhaust valve 387. The intake valve 385 in an embodiment is controlled by an intake valve controller 312. The exhaust valve 387 in an embodiment is controlled by an exhaust valve controller 314. In an embodiment, an electric motor 316 is connected to and is able to rotate the crankshaft 383. The electric motor 316 may be a starter motor or an electric motor used to provide a hybrid vehicle. In some embodiments, the ECU 10 may control the fuel controller 310, the intake valve controller 312, the exhaust valve controller 314, and the electric motor 316. In some embodiments, the fuel controller 310 may be part of the ECU 10. Although a spark ignition engine is shown, it should be appreciated that the invention is equally applicable to compression ignition engines, including diesel engines.


Turning to FIG. 1, during operation of the engine system 11, the ECU 10 or other suitable controller monitors a number of sensors that provide information useful in identifying valve actuation faults as represented by block 102. For example, a crankshaft rotation sensor 60 that measures the rotational speed of the crankshaft and can be used to determine crankshaft acceleration or any other higher-order time derivatives thereof (such as crankshaft jerk.) An intake manifold pressure sensor 62 measures the pressure in the intake manifold 18. Exhaust manifold pressure sensors 54 measure the pressure in the exhaust manifolds 20A, 20B. Exhaust gas oxygen sensors (e.g., lambda sensors (k-sensors)) 56 measure the oxygen in the exhaust. Measurement output from one or more of the intake manifold pressure sensor 62, the exhaust manifold pressure sensors 54, exhaust gas oxygen sensors 56, an exhaust valve proximity sensor, and/or other sensors as may be available for any particular engine may be used to identify exhaust valve actuation faults. For each expected exhaust valve actuation or deactivation event, exhaust valve fault detection logic determines whether the corresponding exhaust valve has performed as expected as represented by analysis block 104 and decision block 106. If no fault is detected, the logic of blocks 102-106 repeats as represented by the “No” branch from decision block 106.


When a fault is detected (the “Yes” branch from decision block 106) specific actions may be taken to mitigate the impact of the fault. Initially fuel delivery to the faulting cylinder(s) is prevented in the next and subsequent working cycles (block 108) at least until the problem has been resolved. Preventing fueling of the following working cycle(s) mitigates the risk of the faulting cylinder causing any problems. For example, if the exhaust valve fault continues in one or more following working cycles in the faulting cylinder while the intake valve opens and fueling is performed in the regular course, the exhaust gases would be vented back into the intake manifold disrupting the engine's operation and risking overheating of the intake manifold.


Regardless of the intake valve management scheme chosen, an attempt is made to reactivate the exhaust valve for the faulting cylinder(s) in the next and, if/as necessary, subsequent following working cycles as represented by block 114. In general, an attempt is made to reactivate the faulting exhaust valve(s) in the next working cycle(s) without fueling or firing the associated cylinder(s). A successful reactivation of the exhaust valve can be detected in a variety of manners. For example, in some implementations the torque signature associated with the exhaust stroke (as reflected by the crankshaft acceleration) is used to identify that the exhaust valve has indeed actuated. When a faulting cylinder contains a high pressure exhaust spring, the difference in the torque signatures between a venting exhaust stroke and a non-venting exhaust stroke will be significant and are easily detectable. Even when the intake valve has been opened such that the faulting cylinder effectively holds an air spring, there is a non-trivial difference in the torque signatures of a vented vs. a non-vented exhaust stroke that can be detected via analysis of the crankshaft acceleration.


More generally, the torque signature associated with any intake or exhaust stroke (and often the torque signatures associated with compression and expansion as well) will vary based on whether an associated intake or exhaust valve was actuated or not. As such, crankshaft acceleration measurements can be used to determine whether a valve has opened (or not opened) as directed/expected during the testing period.


Additionally or alternatively, data from a k-sensor (or other oxygen sensor) 56 can be used to determine or help determine whether an exhaust valve has opened. For example, when an intake valve(s) is opened during test working cycles in the testing period, intake manifold air will be introduced into the cylinder during the intake stroke. If/when the corresponding exhaust valve(s) opens, the air charge in the cylinder will be expelled into the exhaust system. The passing air charge passing the k-sensor 56 can be expected to have much more oxygen in it than other exhaust gases and will be readily identifiable in the k-sensor 56 data providing another mechanism for determining or verifying whether the exhaust valve has been opened as instructed.


In another specific example, when the intake valve(s) is opened during the testing period, an intake manifold absolute pressure (MAP) sensor 62 can also be used to determine whether the exhaust valve has opened during test working cycles. Specifically, if the air charge in the cylinder is not vented to the exhaust system during the exhaust stroke, it will vent back into the intake manifold 18 when the intake valve is opened. This results in a pressure rise within the intake manifold 18 which will be detected by the MAP sensor 62.


These various tests and others can be used individually or in any combination and/or in combination with any other suitable valve actuation detection technology to determine whether the exhaust valve(s) have been opened as instructed during the testing period. The crankshaft rotation sensor 60, MAP sensor 62, and k-sensor 56 are mentioned specifically because many current commercially available engines already include such sensors and thus the exhaust valve actuations faults and testing faults can be detected without requiring additional hardware modifications to the engine and their associated costs. However, it should be appreciated that when other suitable sensors are available, such as exhaust manifold pressure sensors 54 and exhaust valve proximity sensors, they can readily be used in combination with and/or in place of any of the mentioned sensors.


If the exhaust valves are determined to be working properly in the test period (the “Yes” branch of block 118), normal engine operation (e.g., normal skip fire operation) may be resumed (block 122). Alternatively, if the exhaust valve(s) are determined not to be functioning properly for any reason, appropriate remedial actions may be taken as represented by block 124. The appropriate remedial actions may vary based on the nature of the fault. Typical remedial actions may include reporting an engine or valve actuation fault to an engine diagnostics log, setting an engine malfunction indicator light (MIL), disabling the faulting cylinder(s), and operating using only the remaining “good” cylinders, etc.


Individual Exhaust Valve Control


In an embodiment, each cylinder can be individually controlled. In an example, if it is determined that the exhaust valve for cylinder 4 is malfunctioning, at decision block 106, then fuel to cylinder 4 is cut (block 108). In one embodiment, the intake valve for cylinder 4 is also deactivated (block 110). In another embodiment, the intake valve for cylinder 4 is kept active (block 112). In this example, the other five active cylinders provide sufficient power to keep the engine spinning (block 116). The sensors 60, 62, 54, and 56 may be used to help to determine if the exhaust valves are working properly. In particular, the system determines whether or not the exhaust valve for cylinder 4 is properly working. If it is determined that the exhaust valve for cylinder 4 is working properly at block 118, then normal operation is resumed at block 122. If after several engine cycles it is determined that the exhaust valve for cylinder 4 is not working properly at block 118, then a malfunction is indicated, and other appropriate actions may be taken at block 124. In an embodiment, a check engine light may be illuminated, and the error may be reported to the ECU 10, fuel remains cut off from cylinder 4, and the engine is powered without cylinder 4.


In some embodiments, a cylinder individual valve control system may have skip fire control. The skip fire control may be provided by the ECU 10 or may be provided by other systems. In this example, cylinder 4 is removed from the skip fire sequence. In such an embodiment, the skip fire controller is arranged to alter the firing sequence so that the desired engine torque can be delivered without significantly impacting the engine's performance or even being noticeable to a driver.


Bank Exhaust Valve Control


In another embodiment, the cylinders are controlled as part of a bank (or group) of cylinders. In an example, cylinders 4, 5, and 6 form a first bank of cylinders, with exhaust valves connected to a first exhaust manifold 20A, and cylinders 1, 2, and 3 form a second bank of cylinders, with exhaust valves connected to a second exhaust manifold 20B. If it is determined that the exhaust valve for cylinder 4 is malfunctioning, at decision block 106, then fuel to the bank of cylinders 4, 5, and 6 is cut (block 108). In one embodiment, the intake valves for cylinders 4, 5, and 6 are also deactivated (block 110). In another embodiment, the intake valves for cylinders 4, 5, and 6 are kept active (block 112). In this example, the other bank of cylinders 1, 2, and 3 provide sufficient power to keep the engine spinning (block 116). If it is determined that the exhaust valve for cylinder 4 is working properly at block 118, then normal operation of all cylinders is resumed at block 122. If after several engine cycles it is determined that the exhaust valve for cylinder 4 is not working properly at block 118, then a malfunction is indicated, and other appropriate actions may be taken at block 124. In an embodiment, a check engine light may be illuminated, and the error may be reported to the ECU 10 and the engine remains powered by only the second bank of cylinders 1, 2, and 3, while fuel is cut off from cylinders 4, 5, and 6.


Exhaust Valve Control of all Exhaust Valves


In another embodiment, the engine system has a single exhaust valve controller to control all of the exhaust valves. In such an embodiment, the group of exhaust valves is all exhaust valves of the engine, and the group of associated cylinders is all cylinders in the engine. Such engine systems may have only three or four cylinders. Such engine systems may have more than four cylinders. If it is determined that an exhaust valve is malfunctioning, at decision block 106, then fuel to all of cylinders is cut (block 108). In one embodiment, the intake valves for all of the cylinders are also deactivated (block 110). In another embodiment, the intake valves for the cylinders are kept active (block 112). In this example, the momentum allows the engine to continue to spin for one or more engine cycles (block 116). If it is determined that exhaust valves are working properly at block 118, then normal operation of all cylinders is resumed at block 122. If it is determined that the exhaust valves are not working properly at block 118, then a malfunction is indicated, and other appropriate actions may be taken at block 124. In an embodiment, a check engine light may be illuminated, and the error may be reported to the ECU 10 and the engine system is stopped.


Hybrid Embodiments

Hybrid powertrains facilitate a number of other potential actions that may be used in various embodiments. For example, if one or more cylinders are deactivated due to exhaust valve actuation faulting, a motor/generator unit (MGU) can supply some of the power necessary to operate as appropriate. Depending on the nature of the fault and the number of cylinders that are suffering exhaust valve actuation faults, this could be supplying power to facilitate safely pulling to the side of the road or returning home or to an appropriate workshop. In addition, the electric motor may be used to rotate the engine in order to test the exhaust valve, while fuel to the associated cylinder or group of cylinders is cut off.


Some hybrid powertrain systems may have minimum battery state of charge limits or maximum power draw limits, so that electricity storage devices such as batteries or capacitors have enough power to start the engine. In some embodiments, when all or some of the cylinders are deactivated and the motor is needed to move the vehicle, the system may allow the violation of the minimum battery state of charge limits and/or maximum power draw limits in order to provide enough power to the electric motor to move the vehicle to a safe location, such as the side of a road, home, or an appropriate workshop, as part of the appropriate action at block 124.


In another embodiment, where one or more, but not all of the cylinders are deactivated, the motor may be used to provide additional torque. The combination of the engine and the motor may be used to maintain a desired speed or may provide a reduced speed that is sufficient to move the vehicle to safety. In some embodiments, where the fuel is not cut to all cylinders, the system may allow the violation of minimum battery state of charge limits and/or maximum power draw limits.


Alternative Embodiments

In various embodiments, the period for the deactivation of the intake valves can vary based on the needs of any particular implementation. In some embodiments, the intake valves will remain deactivated throughout a testing period, which may continue until the activation fault has been resolved. In other embodiments, the intake valves may be deactivated for a designated testing period—e.g., a designated number of working cycles or a designated period of time. In some implementations, it is desirable to deactivate the intake valve(s) associated with the faulting cylinder(s) immediately (i.e., for the next working cycle(s) in such cylinder(s) so that the combustion gases do not vent back into the intake manifold). This approach is particularly valuable in implementations where the intake valves are not guaranteed to be robust enough to withstand the intake valves opening into the very high pressure exhaust gases that are present in a cylinder that has been fired, but not exhausted. A potential drawback of this approach is that when both the intake and exhaust valves are held closed, a high-pressure exhaust spring may be created in the faulting cylinder which can reduce engine performance.


In other embodiments, it may be desirable to keep the intake valves associated with the faulting cylinder(s) active so that they open each working cycle thereby venting and re-venting the associated cylinders throughout the testing period as represented by block 112. This allows the exhaust gases to vent into the intake manifold during the first “intake” stroke and effectively eliminates the high pressure spring. The cylinder then effectively re-intakes each subsequent working cycle. In still other embodiments, other desired combinations of re-intake and holding the intake valve(s) closed during sequential test period working cycles can be used.


The engine designer may have wide latitude in defining what level of verification is required to return to normal operations. In many cases, normal operations may be resumed as soon as the faulting exhaust valve has been determined to have opened properly. In others circumstances it may be desirable to require that the faulting exhaust valve(s) operate properly over two or more engine cycles before normal operation is resumed. In some embodiments, if an exhaust valve actuation fault occurs intermittently at a high frequency, an ECU may be programmed to keep the associated cylinder deactivated. In such an embodiment, logic may be provided so that if an exhaust valve actuation fault is detected a threshold number of times within a specified time period, then the associated valve is deactivated, and fueling of the cylinder is cut off until there is a repair or reset. In an alternative embodiment, logic may be provided so that if an exhaust valve actuation fault is detected a threshold number of times within a specified period, and the actuation fault is resolved a threshold number of times within a specified period, then the exhaust valve is kept active and is never deactivated until there is a repair or reset.


In various embodiments, the exhaust system 26 may include any number of various aftertreatment systems, including but not limited to a Diesel particulate filter, a Selective Catalytic Reduction (SCR) system, a Diesel Exhaust Fluid (DEF) system and/or a NOx trap which are generally used for Diesel or lean burn internal combustion engines and/or a three-way catalytic converter, which is typically used for a gasoline-fueled, spark ignition, internal combustion engine.


It should be understood that the particular configuration of the internal combustion engine 16, the intake manifold 18 and the two manifolds exhaust manifolds 20A and 20B is merely exemplary. In actual embodiments, the number of cylinders or banks and the number and/or arrangement of the cylinders may widely vary. For example, the number of cylinders may range from one to any number, such as 3, 4, 6, 8, 12 or 16 or more. Also, the cylinders may be arranged in-line as shown, in a V configuration, in multiple cylinder banks, etc. The internal combustion engine may be a Diesel engine, a lean burn engine, a gasoline-fueled engine, a spark ignition engine, or a multi-fuel engine. The engine may also use any combination of ignition source, fuel-stratification, air/fuel stoichiometry, or combustion cycle. Also, on the exhaust side, varying numbers of exhaust manifolds may be used, ranging from just one shared by all cylinders or multiple exhaust manifolds.


In some embodiments, the internal combustion engine 16 can optionally be equipped with either or both a turbocharger 30 and/or an Exhaust Gas Recirculation (EGR) system 40. The turbocharger 30 is used to boost the pressure in the intake manifold 18 above atmospheric pressure. With boosted air, the internal combustion engine 16 can generate more power compared to a naturally aspirated engine because more air, and proportionally more fuel, can be input into the individual cylinders.


The optional turbocharger 30 includes a turbine 32, a compressor 34, a waste gate valve 36 and an air charge cooler 38. The turbine 32 receives combusted exhaust gases from one or more of the exhaust manifold(s) 20A and/or 20B. In situations where more than two exhaust manifolds are used, their outputs are typically combined to drive the turbine 32. The exhaust gases passing through the turbine drives the compressor 34, which in turn, boosts the pressure of air provided to the air charge cooler 38. The air charge cooler 38 is responsible for cooling the compressed air to a desired temperature or temperature range before re-circulating back into the air intake manifold 18.


In some optional embodiments, a waste gate valve 36 may be used. By opening the waste gate valve 36, some or all of the combusted exhaust gases from the exhaust manifold(s) 20 can bypass the turbine 32. As a result, the back-pressure supplied to the fins of the turbine 32 can be controlled, which in turn, controls the degree to which the compressor 34 compresses the input air eventually supplied to the intake manifold 18.


In various non-exclusive embodiments, the turbine 32 may use a variable geometry subsystem, such as a variable vane or variable nozzle turbocharger system. In which case, an internal mechanism (not shown) within the turbine 32 alters a gas flow path through the fins of the turbine to optimize turbine operation as the exhaust gas flow rate through the turbine changes. If the turbine 32 is part of a variable geometry or variable nozzle turbocharger system, the waste gate 36 may not be required.


The EGR system 40 includes an EGR valve 42 and an EGR cooler 44. The EGR valve 42 is fluidly coupled to one or more of the exhaust manifolds 20A and/or 20B and is arranged to provide a controlled amount of the combusted exhaust gases to the EGR cooler 44. In turn, the EGR cooler 44 cools the exhaust gases before re-circulating the exhaust gases back into the intake manifold 18. By adjusting the position of the EGR valve 42 the amount of exhaust gas re-circulated into the intake manifold 18 is controlled. The more the EGR valve 42 is opened, the more exhaust gas flows into the intake manifold 18. Conversely, the more the EGR valve 42 is closed, the less exhaust gas is re-circulated back into the intake manifold 18.


The recirculation of a portion of the exhaust gases back into the internal combustion engine 16 acts to dilute the amount of fresh air supplied by the air input runners 22 to the cylinders. By mixing the fresh air with gases that are inert to combustion, the exhaust gases act as absorbents of combustion generated heat and reduce peak temperatures within the cylinders. As a result, NOx emissions are typically reduced.


Although only a few embodiments of the invention have been described in detail, it should be appreciated that the invention may be implemented in many other forms without departing from the spirit or scope of the invention. Therefore, the present embodiments should be considered illustrative and not restrictive, and the invention is not to be limited to the details given herein but may be modified within the scope and equivalents of the appended claims.

Claims
  • 1. A controller for controlling an engine having a plurality of cylinders, each cylinder having an associated intake valve and an associated exhaust valve, wherein the controller is configured to: detect an exhaust valve actuation fault for a first exhaust valve of the exhaust valves during a first working cycle, the first exhaust valve being associated with a first cylinder;in response to the detection of the exhaust valve actuation fault, direct fueling to be cut off to at least the first cylinder;direct an attempt to actuate the first exhaust valve in a set of one or more engine cycles that follows the first working cycle, wherein the first cylinder is not fueled during the set of one or more engine cycles;direct an electric motor to maintain at least one of a desired drive torque and a desired crankshaft rotation speed during the set of one or more engine cycles; anddetermine whether to resume operation of the first cylinder based at least in part on whether at least some of the attempts to actuate the first exhaust valve in the set of one or more engine cycles are successful.
  • 2. A controller as recited in claim 1, wherein the electric motor is controlled to maintain at least a minimum engine speed during the attempt to actuate the first exhaust valve in the set of one or more engine cycles.
  • 3. A controller, as recited in claim 1, wherein: the engine is configured such that a set of the exhaust valves, including the first exhaust valve, are activated or deactivated as a group;fuel is cut off to each of the cylinders in the group in response to the detection of the exhaust valve actuation fault; andthe controller is further configured to direct an attempt to actuate the exhaust valves associated with each of the cylinders in the group, including the first cylinder during one or more engine cycles that follow the first working cycle wherein none of the cylinders in the group are fueled during the one or more engine cycles; andwherein the determination of whether to resume operation of the first cylinder is treated as a determination of whether to resume operation of all of the cylinders in the group.
  • 4. A controller, as recited in claim 3, wherein the set of the exhaust valves comprises all of the exhaust valves of the engine.
  • 5. A controller, as recited in claim 1, wherein the determination of whether the first exhaust valve actuated properly during the one or more working cycles is based at least in part on one or more of detected angular acceleration of a crankshaft, exhaust gas oxygen, detected exhaust manifold pressure, detected movement of exhaust valve by a proximity sensor, and detected intake manifold pressure (MAP).
  • 6. A controller, as recited in claim 1, wherein the operating the engine uses a dynamic skip fire operation, wherein the dynamic skip fire operation removes the first cylinder from all skip fire sequences as a result of detecting the exhaust valve actuation fault and adds the first cylinder to skip fire sequences on the resuming operation of the first cylinder.
  • 7. A controller, as recited in claim 1, further configured to allow a violation of state of charge and/or current draw limits, while using the electric motor to power the engine when fuel is cut to at least the first cylinder.
  • 8. A system comprising: an engine;an electric motor; anda controller as recited in claim 1.
  • 9. A method of operating an engine having a plurality of working chambers, each working chamber having an associated intake valve and an associated exhaust valve, the method comprising: detecting an exhaust valve actuation fault for a first exhaust valve of the exhaust valves during a first working cycle, the first exhaust valve being associated with a first one of the working chambers;in response to the detection of the exhaust valve actuation fault, cutting off fueling to at least the first working chamber;attempting to actuate the first exhaust valve in a set of one or more second working cycles that follows the first working cycle in the first working chamber, wherein the one or more second working cycles are not fueled;for each of the one or more second working cycles, determining whether the first exhaust valve actuated properly during the set of one or more second working cycles;resuming operation of the first working chamber when it is determined that the first exhaust valve actuated properly during the set of one or more second working cycles; andnot resuming operation of the first working chamber when it is determined that the first exhaust valve did not actuate properly during the set of one or more second working cycles.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a Continuation of U.S. application Ser. No. 17/569,722, filed on Jan. 6, 2022 which claims the benefit of priority of U.S. Application No. 63/136,090, filed Jan. 11, 2021, both of which are incorporated herein by reference for all purposes.

US Referenced Citations (149)
Number Name Date Kind
4434767 Kohama et al. Mar 1984 A
4489695 Kohama et al. Dec 1984 A
4509488 Forster et al. Apr 1985 A
5041976 Marko et al. Aug 1991 A
5200898 Yuhara et al. Apr 1993 A
5278760 Ribbens et al. Jan 1994 A
5355713 Scourtes et al. Oct 1994 A
5377631 Schechter Jan 1995 A
5377720 Stobbs et al. Jan 1995 A
5433107 Angermaier et al. Jul 1995 A
5490486 Diggs Feb 1996 A
5537963 Hasebe et al. Jul 1996 A
5581022 Sprague et al. Dec 1996 A
5584281 Katoh Dec 1996 A
5721375 Bidner Feb 1998 A
5734100 Kishimoto et al. Mar 1998 A
5753804 La Palm et al. May 1998 A
5774823 James et al. Jun 1998 A
5790757 Meijer Aug 1998 A
5796261 Golab Aug 1998 A
5803040 Biesinger et al. Sep 1998 A
5826563 Patel et al. Oct 1998 A
6006155 Wu et al. Dec 1999 A
6006157 Dai et al. Dec 1999 A
6023651 Nakayama et al. Feb 2000 A
6158411 Morikawa Dec 2000 A
6382175 Van der Staay et al. May 2002 B1
6431154 Inoue Aug 2002 B1
6439176 Payne et al. Aug 2002 B1
6457353 Kanke et al. Oct 2002 B1
6494087 Hatano et al. Dec 2002 B2
6564623 Zanetti May 2003 B2
6584951 Patel et al. Jul 2003 B1
6591666 Kacewicz et al. Jul 2003 B1
6615776 Von Andrian-Werburg Sep 2003 B1
6619258 McKay et al. Sep 2003 B2
6655353 Rayl Dec 2003 B1
6691021 Takagi et al. Feb 2004 B2
6752004 Inada et al. Jun 2004 B2
6752121 Rayl et al. Jun 2004 B2
6782865 Rayl et al. Aug 2004 B2
6801848 Mathews Oct 2004 B1
7025035 Duty et al. Apr 2006 B1
7063062 Lewis et al. Jun 2006 B2
7066136 Ogiso Jun 2006 B2
7086386 Doering Aug 2006 B2
7171929 Dosdall et al. Feb 2007 B2
7234442 Hanson et al. Jun 2007 B2
7257482 Yasui Aug 2007 B2
7314034 Waters et al. Jan 2008 B1
7357019 Mc Donald Apr 2008 B2
7395813 Pagot Jul 2008 B2
7484484 Frincke et al. Feb 2009 B2
7490001 Izelfanane Feb 2009 B2
7503296 Rozario et al. Mar 2009 B2
7503312 Surnilla et al. Mar 2009 B2
7546827 Wade et al. Jun 2009 B1
7577511 Tripathi et al. Aug 2009 B1
7595971 Ganev et al. Sep 2009 B2
7757657 Albertson et al. Jul 2010 B2
7762237 Gibson et al. Jul 2010 B2
7819096 McConville et al. Oct 2010 B2
7854215 Rozario et al. Dec 2010 B2
7900509 Feldkamp et al. Mar 2011 B2
7908913 Cinpinski et al. Mar 2011 B2
7918210 Gibson et al. Apr 2011 B2
7921709 Doering et al. Apr 2011 B2
7930087 Gibson et al. Apr 2011 B2
7942039 Huber et al. May 2011 B2
7946262 Borraccia et al. May 2011 B2
8006670 Rollinger et al. Aug 2011 B2
8091412 Forte et al. Jan 2012 B2
8099224 Tripathi et al. Jan 2012 B2
8103433 Hartmann et al. Jan 2012 B2
8181508 Cinpinski et al. Mar 2012 B2
8286471 Doering et al. Oct 2012 B2
8301362 Buslepp et al. Oct 2012 B2
8511281 Tripathi et al. Aug 2013 B2
8550055 Ferch et al. Oct 2013 B2
8601862 Bowman et al. Dec 2013 B1
8631688 Rayl et al. Jan 2014 B1
8666641 Rollinger et al. Mar 2014 B2
8667835 Doering et al. Mar 2014 B2
8826891 Nishikiori et al. Sep 2014 B2
8931255 Wilson et al. Jan 2015 B2
9086020 Tripathi et al. Jul 2015 B2
9175613 Parsels et al. Nov 2015 B2
9212610 Chen et al. Dec 2015 B2
9399963 Loucks et al. Jul 2016 B2
9399964 Younkins et al. Jul 2016 B2
9523319 Wilson et al. Dec 2016 B2
9562470 Younkins et al. Feb 2017 B2
9581098 Chen et al. Feb 2017 B2
9587567 Zhang et al. Mar 2017 B2
9650923 Parsels et al. May 2017 B2
9784644 Chen et al. Oct 2017 B2
9890732 Younkins et al. Feb 2018 B2
10072592 Younkins et al. Sep 2018 B2
10088388 Chen et al. Oct 2018 B2
10816438 Chen et al. Oct 2020 B2
11125175 Chen et al. Sep 2021 B2
11143575 Chen Oct 2021 B2
11326534 Chen et al. May 2022 B2
20010047792 Akazaki et al. Dec 2001 A1
20020121252 Payne et al. Sep 2002 A1
20030213445 Bloms et al. Nov 2003 A1
20050033501 Liu et al. Feb 2005 A1
20050150561 Flynn et al. Jul 2005 A1
20050199220 Ogiso Sep 2005 A1
20060129307 Yasui Jun 2006 A1
20070101959 Soejima May 2007 A1
20070113803 Froloff et al. May 2007 A1
20080060427 Hoshi et al. Mar 2008 A1
20080092836 Mutti et al. Apr 2008 A1
20080236267 Hartmann et al. Oct 2008 A1
20080243364 Sun et al. Oct 2008 A1
20090099755 Harbert Apr 2009 A1
20090158830 Malaczynski et al. Jun 2009 A1
20090254242 Kweon et al. Oct 2009 A1
20100031738 Feldkamp et al. Feb 2010 A1
20100050993 Zhao et al. Mar 2010 A1
20100106458 Leu et al. Apr 2010 A1
20100154738 Tsukamoto et al. Jun 2010 A1
20100175463 Doering et al. Jul 2010 A1
20100286891 Huang et al. Nov 2010 A1
20100288035 Arakawa Nov 2010 A1
20110072893 Malacznski Mar 2011 A1
20120109495 Tripathi et al. May 2012 A1
20120143471 Tripathi et al. Jun 2012 A1
20120173122 Nishikiori et al. Jul 2012 A1
20120285161 Kerns et al. Nov 2012 A1
20120310505 Morgan et al. Dec 2012 A1
20130000752 Saito et al. Jan 2013 A1
20130325290 Pierik Dec 2013 A1
20140041624 Rayl et al. Feb 2014 A1
20140332705 Stubbs Jun 2014 A1
20140261317 Loucks et al. Sep 2014 A1
20150075458 Parsels et al. Mar 2015 A1
20150218978 Kubani et al. Aug 2015 A1
20160281617 Batal et al. Sep 2016 A1
20170002761 Dudar Jan 2017 A1
20170101956 Younkins et al. Apr 2017 A1
20170218866 Shost et al. Aug 2017 A1
20170370804 Chen et al. Dec 2017 A1
20190234323 Weber et al. Aug 2019 A1
20200263617 Hashimoto et al. Aug 2020 A1
20210003088 Chen et al. Jan 2021 A1
20220205398 Chen et al. Jun 2022 A1
20220220919 Wang et al. Jul 2022 A1
Foreign Referenced Citations (12)
Number Date Country
1204003 Jan 1999 CN
10 2006 050597 Jul 2007 DE
10 2007 040117 Feb 2009 DE
10 2008 011614 Jun 2011 DE
1069298 Jan 2001 EP
2000-248982 Sep 2000 JP
2010-174857 Aug 2010 JP
2011-99338 May 2011 JP
2011-179432 Sep 2011 JP
10-2017-0125590 Nov 2017 KR
WO 2010006311 Jan 2010 WO
WO 2011085383 Jul 2011 WO
Non-Patent Literature Citations (35)
Entry
International Search Report and Written Opinion dated Apr. 27, 2022 from International Application No. PCT/US2022/011337.
Cybenko, “Approximation by Superpositions of a Sigmoidal Function”, Mathematics of Control, Signals, and Systems, (1989) 2: 303-314.
Hinton et al., “Deep Neural Networks for Acoustic Modeling in Speech Recognition”, Signal Processing Magazine, IEEE, 29(6): 8297, 2012a, Apr. 27, 2012.
Krizhevsky et al., “ImageNet Classification with Deep Convolutional Neural Networks”, https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf, Jan. 2012.
Weston et al., “Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks”, ICLR, Dec. 31, 2015.
Glorot et al., “Understanding the Difficulty of Training Deep Feedforward Neural Networks”, In Proceedings of AISTATS 2010, vol. 9, pp. 249256, May 2010.
Wilcutts et al., “Design and Benefits of Dynamic Skip Fire Strategies for Cylinder Deactivated Engines”, SAE Int. J. Engines, 6(1): 2013, doi: 10.4271/2013-01-0359, Apr. 8, 2013.
Serrano et al., “Methods of Evaluating and Mitigating NVH When Operating an Engine in Dynamic Skip Fire”, SAE Int. J. Engines 7(3): 2014, doi: 10.4271/2014-01-1675, Apr. 1, 2014.
Liu et al., “Standards Compliant HIL Bench Development for Dynamic Skip Fire Feature Validation”, SAE Technical Paper 2015-01-0171, 2015, Apr. 14, 2015.
Chen et al., “Misfire Detection in a Dynamic Skip Fire Engine”, SAE Int. J. Engines 8(2): 389-398, 2015, Apr. 14, 2015.
Chien et al., “Modeling and Simulation of Airflow Dynamics in a Dynamic Skip Fire Engine”, SAE Technical Paper 2015-01-1717, Apr. 14, 2015.
Eisazadeh-Far et al., “Fuel Economy Gains Through Dynamic-Skip-Fire in Spark Ignition Engines”, SAE Technical Paper 2016-01-0672, Jul. 20, 2015.
Wilcutts et al., “eDSF: Dynamic Skip Fire Extension to Hybrid Powertrains”, Aachen Colloquium China Automobile and Engine Technology 2017.
Ortiz-Soto et al., “DSF: Dynamic Skip Fire with Homogeneous Lean Burn for Improved Fuel Consumption, Emissions and Drivability”, SAE Technical Paper 2018-01-1891, Apr. 3, 2018.
Chen et al., “Machine Learning for Misfire Detection in a Dynamic Skip Fire Engine”, SAE Technical Paper 2018-01-1158, Apr. 3, 2018.
Chen et al., “Dynamic Skip Fire Applied to a Diesel Engine for Improved Fuel Consumption and Emissions”, Presented at the 4. Int. Conf. Diesel Powertrains 3.0, Jul. 3-4, 2018.
Younkins et al., “Advances in Dynamic Skip Fire: eDSF and mDSF”, 27th Aachen Colloquium Automobile and Engine Technology, 2018.
Younkins et al., “Dynamic Skip Fire: New Technologies for Innovative Propulsion Systems”, General Motors Global Propulsion Systems, 39th International Vienna Motor Symposium, Apr. 2018.
Younkins et al., “Dynamic Skip Fire: The Ultimate Cylinder Deactivation Strategy”, 29th Edition of the SIA Powertrain Congress, Versailles, Jun. 7-8, 2017.
Asik et al., “Transient A/F Estimation and Control Using a Neural Network”, SAE Technical Paper 970619, 1997 (SP-1236), 1997.
Kalogirou et al., “Development of an Artificial Neural Network Based Fault Diagnostic System of an Electric Car”, Design and Technologies for Automotive Safety-Critical Systems, SAE Technical Paper 2000-011055, 2000 (SP-1507), Mar. 6-9, 2000.
Wu et al., “Misfire Detection Using a Dynamic Neural Network with Output Feedback”, Electronic Engine Controls 1998: Diagnostics and Controls, SAE Technical Paper 980515, 1998 (SP-1357), Feb. 23-26, 1998.
Nareid et al., “Detection of Engine Misfire Events Using an Artificial Neural Network”, Electronic Engine Controls, SAE Technical Paper 2004-01-1363, 2004 (SP-1822), Mar. 8-11, 2004.
Kirkham et al., “Misfire Detection Including Confidence Indicators Using a Hardware Neural Network”, Electronic Engine Controls, SAE Technical Paper, 2006-11-1349, 2006 (SP-2003), Apr. 3-6, 2006.
Merkisz et al., “Overview of Engine Misfire Detection Methods Used in On Board Diagnostics”, Journal of Kones Combustion Engines, vol. 8, No. 1-2, 2001.
Chatterjee et al., “Comparison of Misfire Detection Technologies on Spark- ignition Engines for Meeting On-Board Diagnostic Regulation”, 2013 SAE International, doi: 10 4271/2013-01-2884, Nov. 27, 2013.
Bue et al., “Misfire Detection System Based on the Measure of Crankshaft Angular Velocity”, Advanced Microsystems for Automotive Applications, 2007, pp. 149-161.
Baghi Abadi et al., “Single and Multiple Misfire Detection in Internal Combustion Engines Using Vold-Kalman Filter Order-Tracking”, SAE Technical Paper 2011-01-1536, 2011, doi: 10,4271/2011-01-1536, May 17, 2011.
Shiao et al., “Cylinder Pressure and Combustion Heat Release Estimation for SI Engine Diagnostics Using Nonlinear Sliding Observers”, IEEE Transactions on Control Systems Technology, vol. 3. No. 1, Mar. 1995.
Ball et al., “Torque Estimation and Misfire Detection Using Block Angular Acceleration”, SAE Technical Paper 2000-01-0560, Mar. 6-9, 2000.
Abu-Mostafa et al., “Learning From Data”, AMLbook.com, ISBN 10:1 60049 006 9, ISBN 13:978 1 60049 006 4, Chapter 7, 2012.
Pedregosa et al., “Scikit-Learn: Machine Learning in Python”, Journal of Machine Learning Research, 12 (2011) 2825-2830, Oct. 2011.
Tan, “Fourier Neural Networks and Generalized Single Hidden Layer Networks in Aircraft Engine Fault Diagnostics”, Journal of Engineering for Gas Turbines and Power, Oct. 2006, vol. 128, pp. 773-782.
U.S. Appl. No. 17/860,838, filed Jul. 8, 2022.
International Search Report and Written Opinion dated Nov. 16, 2022 for International Application No. PCT/US2022/036574.
Related Publications (1)
Number Date Country
20230220810 A1 Jul 2023 US
Provisional Applications (1)
Number Date Country
63136090 Jan 2021 US
Continuations (1)
Number Date Country
Parent 17569722 Jan 2022 US
Child 18180362 US