This invention relates to engine-exhaust connectors that employ bellows or bellows-functional apparatuses in combination with mesh-wire washers, gaskets, or other resilient and high-temperature absorbency spacers for decoupling that prevents transfer of exhaust vibration and noise to mufflers, smog-control and other exhaust-downstream devices.
Numerous bellows apparatuses are known for joining flexible conveyances. Many patents and other prior art could be cited.
For specificity of this invention, however, only one, U.S. Pat. No. 6,086,110, granted to Lee, et al. on Jul. 11, 2000 will be referenced in detail. There is no other prior art known to be sufficiently similar to merit anticipatory comparison. The Lee, et al. patent and this invention disclose most nearly the use of a bellows in combination with mesh-wire damping washers to decouple vibration of exhaust of an internal-combustion engine from exhaust-treatment devices and structures that include smog-control devices, mufflers and exhaust pipes. However, the combinations, structures, positional relationships, functional relationships, manufacturing requirements, attachment methods, costs, durability and effectiveness of bellows and mesh-wire washers of this invention and the Lee, et al. patent are all different.
Different structure and working relationship of parts of the Lee, et al. patent and this invention require different manufacturing and application features that set them apart additionally. The Lee, et al. patent requires welding, metal-work bending and tapering interspersed with machining and assembly. It is most suited to integrated production of an entire decoupling system in a single manufacturing facility. Production for the Lee, et al. patent is not readily segmental for outsourcing or competitive participation. It requires high-cost production with interspersed production methods and uses of machinery that inhibit competitive interests from encroachment into OEM or after-market business activities. Its high production cost can increase gross sales which increases profit which benefits its producer, but only as long as proprietary protection and business strength can be maintained adequately.
This invention, however, provides low-cost and easily segmented production that can be out-sourced readily. Also, it can be attached and detached quickly, easily and reliably to exhaust manifolds and to downstream exhaust-treatment, muffler and exhaust-pipe components.
Examples of most-closely related known but different devices are described in the following patent documents:
Objects of patentable novelty and utility taught by this invention are to provide an exhaust-vibration decoupling connector which:
This invention accomplishes these and other objectives with an exhaust-vibration decoupling connector having an inlet tube extended downstream from a decoupler inlet to a damper step. The damper step includes a radially inward extension of the inlet tube to a damper seat that includes further downstream extension of the inlet tube for seating a vibration damper. An outlet tube is extended upstream from a decoupler outlet to a damper restraint that includes a radially inward extension of the outlet tube to proximate an outside surface of the damper step. A vibration damper is positioned on the damper seat intermediate the damper step and the damper restraint at proximate midway between the decoupler inlet and the decoupler outlet. A decoupler bellows includes a bellows upstream connector proximate an outside periphery of the inlet tube and a bellows downstream connector proximate an outside periphery of the outlet tube. The decoupler bellows has a plurality of convolutions intermediate the bellows upstream connector and the bellows downstream connector. Enclosing an outside periphery of the decoupler bellows can be a resilient sleeve that is extended from proximate the bellows upstream connector to proximate the bellows downstream connector. External to the resilient sleeve if used and external to the decoupler bellows is a cover sleeve that is extended from proximate the bellows downstream connector to a predetermined distance from the bellows upstream connector for rigid protection of the decoupler bellows and the resilient sleeve if used. The decoupler inlet is articulated for attachment to an exhaust-outlet structure on an engine. The decoupler outlet is articulated for attachment to an exhaust-treatment structure. The inlet tube may have a bend at an upstream end where it interconnects with a bend on a downstream end of the outlet tube to limit bellows extension due to linearly expansive forces that could cause failure of the connector.
The above and other objects, features and advantages of the present invention should become even more readily apparent to those skilled in the art upon a reading of the following detailed description in conjunction with the drawings wherein there is shown and described illustrative embodiments of the invention.
This invention is described by appended claims in relation to description of a preferred embodiment with reference to the following drawings which are explained briefly as follows:
Listed numerically below with reference to the drawings are terms used to describe features of this invention. These terms and numbers assigned to them designate the same features throughout this description.
36. 90° inlet tube locking bend
37. Slanted inlet tube locking bend
Referring to
A vibration damper, which in this embodiment is a mesh-wire washer 6, is positioned removably in the damper fixture 3. A bellows 7, with preferably parallel walls 8, has an upstream bellows attachment 9 proximate the decoupler inlet 2. The bellows 7 has a downstream bellows attachment 10 proximate the decoupler outlet 5. The bellows 7 has a bellows inside perimeter 11 that is radially outward predeterminedly from a radially outside perimeter of the mesh-wire washer 6 or other vibration damper. The bellows inside perimeter 11 is defined by inside peripheries of undulations 12 of the bellows 7.
A flex cover 13 has an upstream flex attachment 14 proximate the decoupler inlet 2. The flex cover 13 has a downstream flex attachment 15 proximate the decoupler outlet 5. The bellows inside perimeter 11 is radially outward predeterminedly from a radially outside perimeter of the wire-mesh washer 6 or other vibration damper.
A shield sleeve 16 has a shield attachment 17 proximate the decoupler outlet 5. The shield sleeve 16 has a shield inside perimeter that is positioned radially outward predeterminedly from a radially outside perimeter of the flex cover 13.
The upstream bellows attachment 9 includes an upstream bellows sleeve extending downstream axially a predetermined attachment distance from proximate the decoupler inlet 2 to a first undulation wall 18 that is extended radially intermediate the upstream bellows sleeve and a first side of a first of the undulations 12 of the bellows 7.
The downstream bellows attachment 10 includes a downstream bellows sleeve extending upstream axially a predetermined attachment distance from proximate the decoupler outlet 5 to a second undulation wall 19 that is extended radially intermediate the downstream bellows sleeve and a second side of a last of the undulations 12 of the bellows 7.
The upstream bellows sleeve, shown at the upstream bellows attachment 9, includes an inside periphery that is positioned on an outside periphery of a fastener portion of the inlet tube 1. The downstream bellows sleeve, shown at the downstream bellows attachment 10, includes an inside periphery that is positioned removably on an outside periphery of a fastener portion of the outlet tube 4.
The upstream flex attachment 14 includes an upstream flex-cover sleeve extending downstream axially a predetermined attachment distance from proximate the decoupler inlet 2 to a first flex-cover wall 20 that is extended radially intermediate the upstream flex-cover sleeve and a first attachment side of the flex cover 13. The downstream flex attachment 15 includes a downstream flex-cover sleeve extending upstream axially a predetermined attachment distance from proximate the decoupler outlet 5 to a second flex-cover wall 21 that is extended radially intermediate the downstream flex-cover sleeve and a second attachment side of the flex cover 13.
The upstream flex-cover sleeve includes an inside periphery that is positioned removably on an outside periphery of the upstream bellows sleeve. The downstream flex-cover sleeve includes an inside periphery that is positioned removably on an outside periphery of the downstream bellows sleeve.
The inlet tube 1 is circumferential with an inside perimeter and an outside perimeter. The outlet tube 4 is circumferential with an inside periphery and an outside periphery. The inside periphery and the outside periphery of the inlet tube 1 are predeterminedly smaller than the inside periphery and the outside periphery of the outlet tube 4. The damper fixture 3 can include an inlet-tube step 22 extended radially inward to a damper seat 23 having an axial downstream extension of the inlet tube 1. The damper fixture 3 can include an outlet-tube step 24 extended radially inward to predeterminedly proximate an outside periphery of the damper seat 23. The inlet-tube step 22 includes a first side of the damper fixture 3 and the outlet-tube step 24 includes a second side of the damper fixture 3.
The outlet-tube step 24 can be articulated to allow axial and pivotal travel of the outlet tube 4 in relation to the inlet tube 1 predeterminedly. To illustrate this pivotal feature, the outlet-tube step 24 in
For the embodiments of this invention shown in
For the embodiment shown in
For the embodiments shown in
For the embodiment shown in
For the embodiments shown in
As shown in
The upstream bellows attachment 9 is disposed a snug-fit distance from the downstream bellows attachment 10 for fitting snugly intermediate the exhaust-outlet structure 33 and the exhaust-treatment structure 34 predeterminedly.
The exhaust-outlet structure 33 normally includes an exhaust flange of sorts. The exhaust-treatment structure 34 normally includes a conveyance tube or pipe from a smog-control device, a muffler or an exhaust pipe. The exhaust-outlet structure 33 also can include downstream connections for a smog-control device or muffler. These structures are shown figuratively without specificity of attachment structures for particular engines or exhaust-treatment devices.
For the embodiments shown in
For the embodiments shown in
Referring to
A new and useful exhaust-vibration decoupling connector having been described, all such foreseeable modifications, adaptations, substitutions of equivalents, mathematical possibilities of combinations of parts, pluralities of parts, applications and forms thereof as described by the following claims and not precluded by prior art are included in this invention.
This is a continuation-in-part of application Ser. No. 10/307,124, filed Nov. 26, 2002.
Number | Name | Date | Kind |
---|---|---|---|
3721460 | Holman et al. | Mar 1973 | A |
3899197 | Coenders et al. | Aug 1975 | A |
4445332 | Thies et al. | May 1984 | A |
5145215 | Udell | Sep 1992 | A |
5957504 | Cwik | Sep 1999 | A |
5971439 | Cwik | Oct 1999 | A |
5992896 | Davey et al. | Nov 1999 | A |
6109661 | Cwik et al. | Aug 2000 | A |
6464257 | Cwik et al. | Oct 2002 | B1 |
6568715 | Cwik | May 2003 | B2 |
Number | Date | Country |
---|---|---|
108829 | May 1984 | EP |
Number | Date | Country | |
---|---|---|---|
20040113422 A1 | Jun 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10307124 | Nov 2002 | US |
Child | 10718444 | US |