Information
-
Patent Grant
-
6494151
-
Patent Number
6,494,151
-
Date Filed
Tuesday, April 25, 200024 years ago
-
Date Issued
Tuesday, December 17, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Ellis; Christopher P.
- Dillon, Jr.; Joe
Agents
-
CPC
-
US Classifications
Field of Search
US
- 406 86
- 406 96
- 406 97
- 406 98
- 406 99
- 406 100
- 406 101
- 406 102
- 406 103
- 406 104
- 406 129
- 110 162
-
International Classifications
-
Abstract
A discharge valve plate of the type used in the conduit between an exhauster fan and a riffle box in a coal fine delivery system for a coal-fired combustion chamber in a power plant. The axis of rotation of the discharge valve plate is oriented generally perpendicular to the axis of rotation of the exhauster fan, such that the valve plate bisects the flow of coal fines from the exhauster fan into upper and lower flows, each having heavy and light distributions across the width of the conduit. The discharge valve plate is provided with diffuser elements engaging the upper and lower flows to cause the heavy and light flow distributions to mix prior to reaching the riffle box.
Description
FIELD OF THE INVENTION
The present invention relates to discharge or barrier valves in the delivery chute of a coal-fired power facility between the exhauster fan and riffle box.
BACKGROUND OF THE INVENTION
Coal-fired power generating facilities commonly use a combustion chamber fed with dustlike coal fines by multiple burner nozzles spaced uniformly around the chamber. It is critical to balance the flow from the burner nozzles to the fireball in the combustion chamber. Imbalances in this flow can result in NOX formation, erosion of boiler tubes in the combustion chamber, and LOI (loss on ignition) contamination of the saleable ash by-product.
The burner nozzles are fed with coal fines by a series of branched delivery chutes which typically emanate from a single source such as an exhauster fan. The exhauster fan provides suction and air flow necessary to pull coal fines from a mill or pulverizer and send them through the branched delivery pipes to the burner nozzles in the combustion chamber.
The centrifugal nature of the exhauster fan typically results in a separation of the coal fines into light and heavy flow distributions as they leave the fan. Each branching of the delivery pipe typically includes a “riffle box” of alternately angled diverters or plates whose function is to evenly redirect the flow of coal fines into the two branches. The uneven heavy/light distribution of fines leaving the exhauster fan, however, defeats the purpose of the riffle boxes.
The problem of heavy/light flow distributions of coal fines between the exhauster fan and the first riffle box is further exacerbated by the typical barrier valve plate in the delivery pipe between the exhauster fan and riffle box. The plane of the valve plate bisects the chute in a manner physically dividing the heavy and light distributions.
SUMMARY OF THE INVENTION
The present invention solves the problem of heavy/light distributions of coal fines between the exhauster fan outlet and the first riffle box in the delivery chute by (1) reorienting the valve plate axis at right angles to the axis of the exhauster fan, thereby splitting the coal flow in the pipe into identical “upper” and “lower” halves, each of which has a heavy/light distribution across the diameter of the pipe; and (2) providing the reoriented valve plate with diffuser elements on top and bottom surfaces thereof to radially redirect the heavy and light distributions in the top and bottom flows to merge and mix into a uniformly distributed flow upon reaching the riffle box.
In a preferred form the diffuser elements comprise an array of differently-sized semicircular diffuser elements on top and bottom surfaces of the valve plate.
In another aspect of the invention, an initial “kicker” diffuser element is located on the heavy distribution side of the entrance to the valve, preferably forming a peripheral semicircle on the heavy distribution side.
In yet a further aspect of the invention, peripheral diffuser elements are secured directly to the inside circumference of the portion of the chute which defines the valve plate housing, located to engage the edge circumference of the valve plate in the valve closed position to define one or more mechanical stops around the edge of the valve plate and further giving a sealing effect around the edge of the valve plate in the closed position.
These and other features and advantages of the invention will become apparent upon further reading of the specification, in light of the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
illustrates a prior art valve plate between an exhauster fan and riffle box.
FIG. 2
illustrates the exhausted system of
FIG. 1
with an exhauster discharge valve plate according to the present invention, replacing the valve plate in FIG.
1
.
FIG. 3
illustrates the valve plate of
FIG. 2
in the valve closed position.
FIG. 4
is an end view of a valve plate according to the invention, looking through the conduit or housing leading to the valve plate from the perspective of the exhauster outlet, and illustrating the valve plate of
FIGS. 2 and 3
in a valve closed position blocking the housing or conduit.
FIG. 5
is a view of a valve plate similar to that in
FIG. 4
, but illustrating an alternate set of diffuser elements on the valve plate.
FIG. 6
is a detailed top view of the closed valve plate of FIG.
5
.
FIG. 7
is a view similar to that of
FIG. 6
, but illustrating a set of diffuser elements like those in
FIGS. 2-4
.
FIG. 8
is a side elevational view of the valve plate of
FIG. 7
, in section, viewing the valve plate from its rotational axis in a partially open condition to illustrate a set of peripheral stops located on the inside wall of the valve housing adjacent opposite sides of the valve plate.
FIG. 9
is a perspective view from the discharge end of the valve plate and housing of
FIG. 8
, with the valve in a fully open position.
DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS
Referring first to
FIG. 1
, a prior art discharge valve assembly
14
is installed between an exhauster fan
12
of known type and a riffle box
16
of a known type at the junction of the branched pipes
18
,
20
leading to a coal-fired combustion chamber of known type. The discharge valve assembly
14
is contained in a housing
14
a
comprising a delivery pipe-like conduit between exhauster outlet
12
b
and riffle box
16
. Housing
14
in fact preferably comprises standard piping or conduit of the type use din branches
18
,
20
. A valve plate
14
b
is rotatably mounted on an axis of rotation
14
c
extending cross-wise through housing
14
a
, and is capable of being rotated between the valve open position shown in
FIG. 1
to a valve closed position in the direction of the associated arrows. The valve plate
14
b
is typically a circular steel plate which substantially blocks all flow through housing
14
a
when closed.
Rotation of valve plate
14
b
about axis
14
c
can be effected by any known means, including manual levers or arms, electric or hydraulic motors, and other actuating mechanisms which are generally known to those skilled in the art.
Still referring to
FIG. 1
, the fan blades
12
c
of exhauster fan
12
throw pulverized coal “fines”
22
received from a pulverizer or similar mill structure (not shown) in a centrifugal flow out through outlet
12
b
to the riffle box
16
and pipes
18
,
20
. The radial nature of fan
12
c
rotating on axis
12
d
results in a centrifugal separation of heavier fines
22
a
from lighter fines
22
b
as they exit the exhauster fan. By the time the fines reach discharge valve assembly
14
, they have separated themselves into heavy and light distributions which valve plate
14
b
tends to maintain and exacerbate, acting as a physical divider down the middle of the housing to keep heavy flow
22
a
separated from lighter flow
22
b
until they reach riffle box
16
. Riffle box
16
is generally unable to remix the heavy and light distributions with the result that the volume of coal fed to pipes
18
and
20
is uneven. This results in burner imbalances in the combustion chamber which create the above-noted problems of NOX formation, LOI particles in the ash by-product, and boiler tube erosion and damage.
Valve plate
14
b
remains in the illustrated open position during normal exhauster operation, and is typically closed only occasionally for isolating the exhauster fan from the path to the combustion chamber, for example, during fan maintenance. Valve plate
14
b
is preferably formed from an abrasion-resistant steel as mentioned earlier, although other suitable materials and surfaces can be used in or applied to the valve plate, as will be understood by those skilled in the art.
Referring next to
FIG. 2
, a first embodiment of the present invention is illustrated generally as valve assembly
140
, contained in housing
14
a
and comprising a circular valve plate
144
having an axis of rotation
146
generally perpendicular to the axis
12
d
of exhauster fan
12
, rather than generally parallel as in the prior art arrangement of FIG.
1
. The orientation of valve plate
144
in
FIG. 2
can be achieved by rotating housing
14
a
and/or valve plate
14
b
of
FIG. 1
; or valve assembly
140
can be created by replacing valve plate
14
b
with reoriented valve plate
144
in the old housing
14
a
; or an entirely new assembly
140
can replace assembly
14
from
FIG. 1
The orientation of valve plate
144
in
FIG. 2
splits the heavy and light flow distributions
22
a
,
22
b
into “upper” and “lower” (relative to the open valve plate) flows each having heavy and light components distributed across the width of the valve plate as illustrated. Accordingly, valve plate
144
no longer separates the heavy and light flow distribution created by the centrifugal flow from fan
12
.
This reorientation of valve plate
144
is accompanied by the addition of static diffuser elements
148
on the upper and lower surfaces of valve plate
144
. Referring to both
FIGS. 2 and 3
, diffuser elements
148
are illustrated as semi-circular toothed elements mounted on the upper and lower surfaces of valve plate
144
in coplanar fashion so as to define (when viewed from the perspective of coal flow through the housing) successive upstream/downstream rings of differing diameter with inwardly-directed rows of teeth positioned to engage components of both the heavy and light flow distributions
22
a
and
22
b.
In the illustrated embodiment of
FIGS. 2 and 3
, diffuser elements
148
exhibit an inwardly angled, conical arrangement of triangular teeth
148
a
which serve to redirect the heavy and light flow distributions radially inwardly so that they converge and mix or implode over a relatively short distance of travel, prior to their reaching the entrance to riffle box
16
. The angle of teeth
148
a
and the diameters of the diffuser elements
148
and their upstream/downstream spacing on valve plate
144
are factors which must be weighed by those skilled in the art for a given set of flow parameters and distribution problems, and for other known factors such as the distance between valve plate
144
and riffle box
16
. In the illustrated embodiment the mixing or imploding action achieved by diffuser elements
148
is preferably achieved over a distance corresponding to about the radius of valve plate
144
.
The open position of valve plate
144
in
FIG. 2
clearly shows the mixing action of diffuser elements
148
on the heavy and light flow distributions
22
a
,
22
b
. In
FIG. 3
the valve plate
144
has been rotated to the closed position blocking communication between the riffle box side of the system and the exhauster fan side of the system, for the purpose of performing repairs or maintenance on the exhauster fan in keeping with industry safety practices.
FIG. 3
illustrates an optional “kicker” element
149
comprising a toothed diffuser element of a generally semi-cylindrical configuration secured to the inside wall of housing
14
a
at or near the junction of housing
14
a
with exhauster outlet
12
b
. Kicker element
149
generally exhibits the inwardly-angled, conical arrangement of teeth found in diffuser elements
148
, and serves to “kick” or redirect at least a portion of the heavy flow distribution
22
a
radially inwardly to ensure its contact with diffuser elements
148
on valve plate
144
.
The diffuser discharge valve assembly
140
of
FIGS. 2 and 3
is illustrated in greater detail in
FIGS. 4 and 7
. Valve plate
144
is mounted for rotation in housing
14
a
in known fashion, for example on bushings or bearings
146
rotatably supporting a shaft
147
secured to the plate to define an axis of rotation. Diffuser elements
148
as illustrated are formed from single pieces of suitably wear-resistant steel welded directly to valve plate
144
at their ends
148
b
. It will be understood from
FIG. 3
that if
FIG. 4
represents the “bottom” surface of valve plate
144
, an equal array of diffuser elements
148
is formed on the opposite or “top” surface of the valve plate so that each element
148
forms one-half of a complete diffuser ring when viewed from the edge of the valve plate.
FIG. 4
helps illustrate the value of the staggered, differently sized elements
148
in preventing unwanted pressure build-up in the housing. While the upstream/downstream spacing of the diffuser elements
148
and their relative radii will be a matter of sizing to the job for those skilled in the art, in general the number of diffuser elements
148
on the valve plate and their relative radii is selected so as to minimize hindrance to the flow of coal fines through the housing and over the valve plate, and thereby minimize pressure drop affecting the overall performance of the coal feed to the combustion chamber.
Referring next to
FIGS. 5 and 6
, an alternate diffuser element structure is illustrated in diffuser elements
248
, which comprise semi-circular rings of flat teeth or flow-disrupting projections
248
a
presenting perpendicular flow-disrupting surfaces to the flow of coal fines through the housing. These flat diffuser elements
248
more quickly disrupt and mix the coal fines than do the inwardly-angled elements
148
in
FIGS. 2-4
, but have a greater tendency to cause pressure drop across the valve plate. This tendency is compensated by different spacing of elements
248
, or by the placement of fewer elements and/or elements of greater variance in radius on valve plate
144
. Pressure drop can also be minimized by staggering or off-setting adjacent teeth
248
a
from the smaller “inner” and larger “outer” diffuser elements as shown in FIG.
6
.
FIG. 6
also illustrates the use of diffuser elements with teeth pointing both radially inwardly toward the plate surface and extending radially outwardly away from the plate surface. These latter outward teeth or projections
248
a
provide more flow-disrupting surface area to engage and mix portions of the heavy/light flow distributions located radially outwardly of the circumference of the rings.
Flat diffuser elements
248
, like their conical counterparts
148
, are each preferably formed from a single piece of wear-resistant steel or other known material capable of withstanding the abrasive coal flow, and are welded or otherwise secured to the surface of valve plate
144
at their ends
248
b.
While the illustrated embodiments of
FIGS. 2-4
and
FIGS. 5-6
illustrate diffuser elements located only on the downstream half of valve plate
144
, it is also possible to place diffuser elements only on the upstream half, or to place them on both the downstream and upstream halves, depending on the nature of the flow problems encountered in a particular installation. Also, it can be seen by comparing
FIGS. 4 and 5
that a larger-radius diffuser element may be placed either upstream or downstream of a smaller-radius diffuser element.
Referring next to
FIGS. 8 and 9
, the diffuser discharge valve assembly
140
according to
FIGS. 2-4
is illustrated with the addition of peripheral stops
150
secured to the inner wall of housing
14
a
and engaging respective peripheral portions of the top and bottom surfaces of valve plate
144
. In the illustrated embodiment of
FIGS. 8 and 9
, stops
150
are in the form of semicircular flat diffuser elements secured by welding or similar methods to housing
14
a
and engaging a semi-circular portion of the periphery of each side of the valve plate
144
. While it is not necessary that stops
150
perform diffusing functions, their location on the periphery of the passage through
14
a
makes it advantageous to form diffuser teeth or projections in them to disrupt and mix radially outermost portions of the heavy and light flow distributions passing through the housing.
In addition to providing a positive stop to valve plate
144
in the closed position, and to diffusing the radially outermost portions of the heavy and light flow distributions, stops
150
can also provide a sealing function when machined carefully so as to further enhance the sealing effect of valve plate
144
in the valve closed position.
The foregoing description of several exemplary embodiments of the invention is not intended to limit the invention to those particular embodiments, as many modifications will be apparent to those skilled in the art now that I have disclosed my invention. For example, as noted above, the number, size, and spacing of diffuser elements on a particular valve plate installation will vary depending on the particular application. The valve plate need not be circular. And while two preferred forms of diffuser elements are illustrated, shapes and patterns of diffuser elements other than the preferred semi-circular and symmetrically-toothed forms illustrated are considered within the scope of the invention.
Claims
- 1. In the conduit between an exhauster fan and a riffle box in a coal fine delivery system, the exhauster fan having a first axis of rotation tending to throw coal fines from the exhauster fan in uneven heavy and light flow distributions through the conduit, a discharge valve plate in the conduit rotatable between an open position and a closed position blocking the conduit, the improvement comprising the orientation of the valve plate on a second axis of rotation generally perpendicular to the first axis of rotation such that the flow of coal through the conduit is divided into an upper flow having heavy and light flow distributions above the valve plate and a lower flow having heavy and light distributions below the valve plate.
- 2. The discharge valve plate of claim 1, wherein the conduit includes a stop element secured to an inner wall of the conduit so as to engage a peripheral portion of the discharge valve plate in the closed position.
- 3. The discharge valve plate of claim 2, wherein the conduit includes a first stop element positioned to engage a bottom surface of the valve plate in the valve closed position, and a second stop positioned to engage a top surface of the valve plate in the valve closed position.
- 4. The discharge valve plate of claim 2, wherein the stop element includes a plurality of flow-disrupting projections extending radially into the conduit into the flow of coal fines over the valve plate.
- 5. The discharge valve plate of claim 1, wherein the valve plate includes a diffuser element extending from a surface thereof and positioned laterally across the flow of coal fines over the surface of the valve plate in the open position.
- 6. The discharge valve plate of claim 5, wherein the valve plate includes an upper diffuser element extending from the top surface of the valve plate and a lower diffuser element extending from the bottom surface of the valve plate.
- 7. The discharge valve plate of claim 6, wherein the upper and lower diffuser elements are symmetrically arranged.
- 8. The discharge valve plate of claim 7, wherein the upper and lower diffuser elements comprise semi-circular elements arranged in coplanar fashion.
- 9. The discharge valve plate of claim 5, wherein the valve plate includes a plurality of diffuser elements extending from a surface thereof.
- 10. The discharge valve plate of claim 9, wherein the diffuser elements are spaced from one another in a downstream direction.
- 11. The discharge valve plate of claim 10, wherein the spaced diffuser elements are offset from one another so as to engage different portions of the flow across the valve plate.
- 12. The discharge valve plate of claim 11, wherein the diffuser elements comprise semicircular elements extending generally perpendicularly from the valve plate, with two or more of the semi-circular elements having different radii.
- 13. The discharge valve plate of claim 5, wherein the diffuser element has portions positioned in both the heavy and light flow distributions across the valve plate.
- 14. The discharge valve plate of claim 13, wherein the diffuser element comprises a semicircular element extending generally perpendicularly from the valve plate.
- 15. The discharge valve plate of claim 14, wherein the diffuser element comprises a generally flat-faced element.
- 16. The discharge valve plate of claim 14,wherein the diffuser element comprises a semicircular element having a conical deflector surface extending radially inwardly and in a downstream direction.
- 17. The discharge valve plate of claim 14, wherein the diffuser element comprises a plurality of flow-disrupting projections extending radially from the ring into the flow of coal fines past the ring.
- 18. In the conduit between an exhauster fan and a riffle box in a coal fine delivery system, the exhauster fan having a first axis of rotation, a discharge valve plate rotatable between an open position and a closed position blocking the conduit, the improvement comprising the orientation of the valve plate on a second axis of rotation generally perpendicular to the first axis of rotation such that the valve plate generally bisects the conduit to define upper and lower flows of coal fines, the upper and lower flows of coal fines each having heavy and light flow distributions across the width of the conduit, the improvement further comprising a plurality of ring-like diffuser elements extending from the valve plate into the upper and lower flows, the diffuser elements having portions in both the heavy and light flow distributions to cause the heavy and light flow distributions to mix prior to reaching the riffle box.
US Referenced Citations (5)