U.S. provisional patent application 61/430,239 filed Jan. 6, 2011.
None
This invention relates to security in access controlled areas in venues such as airports and government offices; and, more particularly, to a detection system in combination with a deterrent system which completely restricts travel in one (the wrong) direction while allowing free access in the opposite (secure side to public side) direction.
In many venues, particularly airports and the like, it is not only desirable, but mandatory that access into secure areas (e.g., an airport concourse) be rigidly controlled so that only people who have passed through some type of screening procedure are allowed into the secure area. Using the airport example, people who have passed the screening procedure are allowed to enter the secure area through one passage (entry lane); while, those leaving the secure area are directed out of the area through a separate passage (exit lane). To prevent unscreened individuals from entering the secure area through the exit passage, guards are typically stationed at, or in, the passage to stop their movement. In addition, security systems have been installed to monitor the exit lane. These systems employ a variety of detection schemes and apparatus to detect a person going through the passage the wrong way, as early as possible in their movement into the passage, to timely alert security personnel as to the detected movement, and to block the passage so the intruder cannot pass through it into the secure area.
Some of these systems have been found to be more effective than others, but none have proved flawless. Again using the airport example, if someone does succeed in entering the concourse the wrong way, the concourse must be shut down, everyone evacuated; and, once the intruder is found, everyone rescreened before they can re-enter the concourse. This is not only time consuming and expensive, but results in a great deal of aggravation and hard feelings on the part of those simply trying to catch an airplane.
In addition, placing one or more guards in the exit lane is costly. Guards are typically stationed in the passage for certain period of time and are periodically relieved for rest or other duties. The result is in having to hire, train, and pay a number of people just to guard the exit.
The Transportation Safety Administration (TSA) has conducted a number of studies related to this problem. To date, none of the studies have demonstrated a truly satisfactory solution to the problem of exit lane breach control (ELBC). The studies have shown, for example, that doors positioned in the exit and which open and close to provide or block access through the lane are too slow to close in time to prevent an intruder from slipping through the door before it closes, or from catching the door before it closes and holding it open long enough to pass through it. Gates have been found to have too many safety issues associated with them to be operable in a way that they can be rapidly closed without potentially harming people in the exit passage. Turnstiles do not provide sufficient throughput, as well as having too large a footprint to comply with fire/safety codes for the exit lane volume they are required to handle.
Current detection systems employ closed circuit television (CCTV), intelligent CCTV (ICCTV), video analytics (VA), intelligent video motion analysis (IVMA), and stereo-optic CCTV (SoCCTV) among others. All of these various systems require a camera or sensor to see a monitored area. Further, to be effective, the entire monitored area must have no blocked areas or blind spots. Another drawback is the amount of processing and data storage capability required for the system and which imposes a substantial cost on system implementation.
Further, while these detection systems do detect intruders or wrong-way travelers, effectively implementing them is difficult to do, as there are many different intrusion scenarios which can cause the system to fail. Another problem with them is that even though they are capable of detecting the violation, they need to be integrated with a deterrent or capture system that can operate rapidly enough to prevent the intruder from entering the access controlled space.
The present disclosure is directed to an exit lane monitor system (ELMS) which effectively secures an exit from a breach on the public side of the passage while allowing the free egress of people from the secure side.
The system employs a plurality of heel before toe pressure (HBTP) sensors, appropriately positioned along an exit lane. The sensors monitor the movement of people through the exit lane and immediately detect when someone is moving in the wrong direction through the lane. Sensor outputs are provided to a controller for a door control system which selectively allows people to move through the exit lane, or blocks their passage. The controller is responsive to an input from a sensor that someone is moving through the passage in the wrong direction to close the passage and block movement in either direction through it.
An HBTP sensor mat detects wrong way movement regardless of whether a person is walking forwardly through the passage but in the wrong direction, or is walking backwardly through the passage, or is crawling through the passage. The sensors are further capable of detecting simultaneous movement of more than one person moving through the passage in the correct direction while still detecting someone (an intruder) moving in the wrong direction through it.
The ELMS may include a time “window”. This window provides a brief interval between when wrong way movement is detected and the passage is blocked. This provides for the situation where a person inadvertently moves in the wrong direction through the passage, but then stops, reverses their direction, and begins moving in the right direction through it.
The ELMS further includes a video camera or sensor to record movement through the passage and to capture and store video of incidents of wrong-way movement for possible subsequent use against an intruder.
The ELMS is readily installed in any exit lane, regardless of its configuration or geography, and once installed, senses movement throughout the exit lane, regardless of whether portions of the passage are not readily visible to cameras or video sensors.
Other objects and features will be in part apparent and in part pointed out hereinafter.
The objects of the invention are achieved as set forth in the illustrative embodiments shown in the drawings which form a part of the specification.
Corresponding reference characters indicate corresponding parts throughout the several views of the drawings.
The following detailed description illustrates the invention by way of example and not by way of limitation. This description clearly enables one skilled in the art to make and use the invention, and describes several embodiments, adaptations, variations, alternatives and uses of the invention, including what is presently believed to be the best mode of carrying out the invention. Additionally, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or carried out in various ways. Also, it will be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
Referring to the drawings, an exit lane monitoring system (ELMS) for detecting and blocking wrong-way movement through a passage P between an access-controlled area or secure CA and a public or non-secure area PA is indicated generally 10 in the drawings. ELMS 10 first includes at least one, and preferably a plurality of heel before toe pressure (HBTP) sensors (including sensor mats) 12. These are positioned on the floor F of passage P as shown in
Regarding the sensors or sensor mat 12, HBTP is a detection technology and process which together comprise the foundation of ELMS 10. As previously discussed, there are many environments (i.e., airports) where there is a need to ensure flow of people in a single direction within a corridor, area or passageway, and to prevent anyone from entering the area from another direction. HBTP ensures the unidirectional flow of physical traffic via exit passage P, where any movement “against” traffic is immediately detected and alarmed, as well as secured in certain circumstances.
HBTP is based on the principle that a person's walking/running stride and foot prints (whether the person is barefoot or in foot ware) have characteristics that are physically and logically measured and evaluated for conformity to expected patterns when an individual is traversing a HBTP sensor mat 12. Where the actual pattern of movements falls outside the expected norms, as detected by mat 12, ELMS 10 goes into an alarm and/or secure mode of operation so that the anomaly (person traveling the wrong way) can be immediately addressed by other monitoring or security systems, and/or security personnel.
In a normal walking or running stride, the heel of a person's foot comes into contact with the floor first, followed almost immediately (in a rolling or wave pattern) by the ball of the foot, and finally by the toes. The heel, the ball of the foot and the toes together form the entire footprint area, and a second pattern of a similar rolling nature is made slightly ahead of, and to the side of the initial footprint, by the person's other foot as they continue their stride.
This rolling action of an individual's stride is referred to as a foot pressure wave (FPW), and the directional orientation of the FPW is read by HBTP sensors or sensor mat 12 to determine the direction of the person's movement. Furthermore, the mat detects the size and impact pressure of the footprint's components—heel, ball and toes—relative to one another at additional data points that make up what is referred to as a hard impact area (HIA). Together these generally conform to expected patterns that verify the impression was a) made by a foot and b) the stride direction. Typically, the heel imprint is smaller in area than the total combined area covered by the ball of the foot and the toes. This is what HBTP mat 12 detects. Further, the impact pressure associated with the heel is almost always greater than the combined impact pressure of the ball and toes. Together these data points make up the HIA inputs and are used to determine the direction of the walker.
It has been found that these principles of FPW and HIA hold, even where:
HBTP mat 12 is used with algorithms to create profiles that interpret the weight, size, gender and age of people associated with different FWPs, HIAs, strides and speeds. This HBTP information is used to prioritize potential threats as indicated by alarms, can help guide alarm response decision-making, and may reduce the amount of time from when an alarm event begins to a system 10 response.
HBTP mat 12 is typically comprised of hundreds of individual sensors that in ELMS 10 will cover the entire width and length of passage P. The entire HBTP area can also be divided into sensor groups or zones to provide another step data parameter for HBTP to monitor. This is accomplished using a stand-alone algorithm that locates any given step in the overall “geography” of ELMS 10. This zone approach to step monitoring means HBTP can simply use a step's location along with FWP to make a threat determination for alarm purposes. For example, and as shown in
Use of HBTP in ELMS 10 eliminates problems associated with other detection and deterrent technologies. For example:
The multi-level detection capabilities of ELMS 10 are unique and extremely valuable in securing exit passageways regardless of size of the area to be monitored and the number of people exiting. The HBTP system's capabilities to continuously and simultaneously detect, measure, cross-reference and evaluate many different elements of simple step information—including, but not limited to, impact area and pressure, directional movement, stride parameters, zone impacts, profile analysis—mean exit lanes such as passage P can finally be secured with confidence.
A control means 16 of ELMS 10 is responsive to a sensor 12 indication of wrong way movement through the passage to activate passage control means 14 for the control means to block the passage and prevent movement of the person into the access-controlled area.
Although passage P is shown in the drawings to be generally rectangular in shape, in many installations, the passage is anything but. It is often the situation, particularly where existing corridors or passages are converted from some other use to a passage P, that the passage is a curved passage, or widens at some parts and narrows at others. Accordingly, the passage shape shown in the drawings is representative only. It will therefore be understood by those skilled in the art that the sensors or sensor mats 12 will often be configured in a non-geometric pattern as dictated by the geometry of the passage. However, it will further be understood by those skilled in the art that the layout pattern of the sensors has no effect on the overall performance of system 10.
Regardless of the installation, each sensor 12 separately detects the foot pressure exerted by people moving through the passage in either direction. Further, each sensor detects the foot pressure of a person walking, running, or crawling through the passage P in either a forward, backward, sideways, or diagonal direction. As shown in
When monitor 20 receives an input indicating wrong-way movement, it provides an output to an initial alarm module 22. Module 22 is responsive to this indication to alert recording and alarm equipment, which is controlled through a module 26, and an intrusion control 28.
It will be understood by those skilled in the art that simply because one moves the wrong way through passage P does not mean the person is attempting to intrude into controlled access area CA. If, for example, someone drops something (paper, book, purse, piece of luggage, etc.) they may have to turn back through the passage to retrieve it. Once they do, they then proceed on into public area CA. Or, someone may stop to wait for a fellow traveler and pace back and forth in the passage until that person joins them, at which time both proceed on into the public area. Or, the person may just inadvertently turn around in the passage and move back toward the access controlled area.
Accordingly, rather than immediately triggering an alarm and blocking passage P each time a sensor signal indicating wrong-way movement is generated, control means 16 includes an optional built in delay 24. Delay 24 has two components: first a time delay which is adjustable based upon the particular installation. This takes into account, for example, the length of passage P. The second delay is a spatial delay. That is, it is one thing if a person at the far end of the passage (i.e., almost in the public area) turns back down the passage; but another, if the person is barely into the passage. In the first instance, it will take longer for the person to move back to the controlled access area than for the second person to do so. Therefore, any built in delay may be shorter for the second situation than the first.
When a wrong-way violation is detected, control means 16 performs a number of functions. One is to send a door closure signal to passage control means 14 to close and lock door D. As shown in
In addition to activating passage control means 14, control means 16 simultaneously activates a camera 32 and a video system (which is part of module 26) for recording and storing video imagery of the incident of wrong way movement. As shown in the drawings, camera 32 is mounted above the door frame header and oriented to capture movement through passage P. Once activated, the camera continues capturing video imagery until turned off by control means 16.
An audio alarm is also activated by control means 16. A speaker 34 is installed on the right-hand end of the door frame header, on the public area side only. The audio alarm alerts people in passage P, or preparing to pass through door D that the door is being closed, or is closed. It can further play a warning to the person(s) approaching the access controlled area that they are moving in the wrong direction through passage P and should turn around and go back through the passage. As with camera 32, the alarm continues to be played until deactivated by control means 16. Additionally, an intercom speaker 34A is located on the left-hand side of the frame header, again on the public area side. This speaker is used to open a bi-directional channel of communications between a remotely located operator and the individual whose wrong way movement through the passage has set-off the alarm.
As noted, control means 16 includes a reset capability for releasing passage control means 14 to unblock passage P once a wrong-way movement incident has been reconciled. This reset feature is either manually operated, or is responsive to a reset command from a remote command center, to release the passage control means.
The components comprising means 14 and 16 are incorporated in an operator alarm kiosk system (OAKS) 17. This system provides a security staff the ability to monitor a door D for intrusions and functionality from a remote location. One kiosk can monitor a plurality of door modules located in the same exit area or different door modules located in different exit locations. A security person has the ability, through the OAKS 17, to view the general event camera for any door to monitor traffic throughput or the status of events associated with the exit lane the camera is viewing.
As described above, in the event of an intrusion or alarm, OAKS 17 alerts security staff personnel with an audio/visual annunciation, and records the intrusion attempt. Again, this includes both pre-alarm and post-alarm video. The video plays in a continuous lop until an operator acknowledges the event and takes control of the video in order to manipulate the frames to find the one with the best facial view of the intruder. This frame is then printed.
An intercom is also activated by the alarm. A communications channel to the door at the end of the passage through which the intruder is proceeding is automatically opened so the operator can now directly communicate with the intruder. This allows the operator to command the intruder to step away from the door, and give any other necessary instructions. Once the breach condition is over, the operator resets the door module (unlocks the door) and puts the exit lane back into service. This action includes deactivation of all the audio and visual alarms and returning them to their pre-intrusion status.
Next, as shown in
Finally, and as shown in
In view of the above, it will be seen that the several objects and advantages of the present disclosure have been achieved and other advantageous results have been obtained.
Number | Name | Date | Kind |
---|---|---|---|
5333410 | Tetherton | Aug 1994 | A |
5845692 | Kellem et al. | Dec 1998 | A |
5982125 | Ranaudo et al. | Nov 1999 | A |
6154133 | Ross et al. | Nov 2000 | A |
6297739 | Small | Oct 2001 | B1 |
6418235 | Morimoto et al. | Jul 2002 | B1 |
6507278 | Brunetti et al. | Jan 2003 | B1 |
6707386 | Pruisner | Mar 2004 | B1 |
6720874 | Fufido et al. | Apr 2004 | B2 |
6744369 | Sata | Jun 2004 | B2 |
6896388 | George et al. | May 2005 | B2 |
7600129 | Libin et al. | Oct 2009 | B2 |
7716486 | Libin et al. | May 2010 | B2 |
7822989 | Libin et al. | Oct 2010 | B2 |
7845115 | Ponert et al. | Dec 2010 | B2 |
7893811 | Augustyniak et al. | Feb 2011 | B2 |
8015597 | Libin et al. | Sep 2011 | B2 |
20030167693 | Mainini | Sep 2003 | A1 |
20050044402 | Libin et al. | Feb 2005 | A1 |
20090324010 | Hou | Dec 2009 | A1 |
20100302048 | Mahajan | Dec 2010 | A1 |
20110007139 | Brunetti | Jan 2011 | A1 |
20110234794 | Tian et al. | Sep 2011 | A1 |
20110313893 | Weik, III | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
2008191970 | Aug 2008 | JP |
Number | Date | Country | |
---|---|---|---|
20130021136 A1 | Jan 2013 | US |
Number | Date | Country | |
---|---|---|---|
61430239 | Jan 2011 | US |