Exothermic Pressure Leach Autoclave Circuits

Abstract
The efficiency of an exothermic autoclave leach process is increased by increasing the retention time of the solids fraction in the feed slurry over that of the liquid fraction. This is achieved by flashing the contents of the first oxidative autoclave compartment to a flash vessel, with the underflow therefrom passing to a thickener and the underflow from the thickener being fed to the autoclave feed tank or any tank upstream of the feed tank. Exothermic heat generated in the first compartment of the autoclave is abstracted in the flashing process. Additionally portions of the overflow from the thickener are returned to the feed tank and fed to the autoclave discharge tank.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a typical leach circuit for the leaching of copper concentrate



FIG. 2 shows a flow diagram of an example of the FTR process of the invention; and



FIG. 3 shows a flow diagram of another example of the FTR process of the invention.





DESCRIPTION OF ILLUSTRATED EMBODIMENTS

In the drawings the same or similar parts have the same reference numbers.



FIG. 1 shows a typical autoclave pressure leach circuit 110 for recovering copper from copper concentrate. The concentrate is fed to an autoclave 116, via a surge tank 111 a density adjust tank 112 and a feed tank 113, and reacted with oxygen at elevated temperature and pressure. The leached product is neutralized with lime in a discharge tank 118, then separated using a thickener 120. The slurry from the thickener is filtered cooled and value metals recovered. Unleached or partially leached fractions are reprocessed in the autoclave or treated and recovered one or more suitable processes. Feedback circuits are used on the unleached and partially leached products, reagents and water to optimize the value metal output and the use of heat, reagents, water, etc.



FIG. 2 shows a part of a copper concentrate leach plant 10 with a flash-thickener-recycle or FTR process of the invention. The plant includes a density adjust tank 12, an autoclave feed tank 14, a four compartment autoclave 16, an autoclave discharge tank 18, a flash tank 20, and a solid-liquid separation tank 22 in the form of a thickener. Feed lines or streams, as they are referred to in the art, 30 to 60 convey material to, between and from the tanks 12 to 22.


The arrangement of the plant 10 is described by following the flow of material through the plant as follows:


Input of a sulphide concentrate, matte or alloy is fed to density adjust tank 12, the density of the material in the tank being adjusted with water via feed line or stream 30 and a reagent (acidic such as a spent electrolyte or alkali such as ammonia, sodium hydroxide, etc.), via feed line 32. The mass feed to the autoclave feed tank 14 is determined by appropriate instrumentation in feed line 34.


Feed tank 14 can receive process water via line 36 if the impact of the release of flash vapour via line 38 needs to be compensated for. Alternatively, the use of process water is invoked on a “need-to-have” basis. The feed tank may also receive a reagent, such as sulphuric acid or an alkali depending on the process intent, via line 40.


In operation, blended slurry received by feed tank 14 is pumped via line 42 into the autoclave first compartment. As the reaction proceeds and energy is released the temperature attains the set or desired temperature for this compartment. At temperatures above the set point the slurry is discharged from the first compartment as stream 44 to the flash tank 20 where a flash vapour component is released via line 38 either to atmosphere or to a heating duty elsewhere.


The flash tank underflow is drained to thickener 22 where a phase separation is achieved with the aid of a flocculant fed via stream 46. The overflow from the thickener is directed externally via line 48 in full or in part to the autoclave discharge tank 18, while the thickened solids are returned to the autoclave feed tank 14 via line 50.


In the design or modification of an existing autoclave, the first compartment is sized to achieve in excess of 40% typically 85-95% of the overall reaction extent. This implies that the thickener 22 overflow in stream 48 is often very similar in composition to the autoclave discharge stream 52 after flash.


The mean flow rate in the first and, in this case, ensuing compartments changes as follows:


Flash-recycle: {feed tank 34+process water 36+reagent 40} less flash vapour 38 FTR: . . . feed tank 34+process water 36+reagent 40 plus flocculant 46}, less {flash vapour 38+thickener overflow 56}


Thus the solids fraction retention time can be increased very significantly. Other factors such as oxygen gas mass transfer at the autoclave impellers may become rate limiting or the feed pumps on the feed tank 14 servicing the autoclave may reach their limit and thereby constrain further productivity gains.


Existing autoclaves originally fitted with a quench cooling system can in certain cases be increased in capacity by in excess of 100% whilst at the same time, in some cases, de-rated in pressure and temperature by employing the FTR process of the invention. The net feed rate 54 through the autoclave can be adjusted to suit the required mass flow and extraction simply by adjusting the volumetric flow of thickened solids stream 50 and overflow stream 56.


An example will now be given relating to the processing of nickel-copper sulphide mattes.


An autoclave system originally fitted with a quench cooling circuit was converted to incorporate the FTR process.


The flow sheet employed was similar to that in FIG. 2. The feed at stream 34 consisted of a matte semi-product from a previous step in the process, not shown. The operating temperature of the first compartment was 140° C. and the first pass extraction of new feed to the first compartment was typically 85%. Some of this “partially leached” feed from the first compartment was partly fed forward to the second compartment as stream 54, but a majority was directed with the first compartment temperature control stream 44 to the flash tank 20 where the underflow was fed to the thickener 22.


The thickener overflow 48 gravitated in part along line 56 to the autoclave discharge tank while the balance was returned via line 58 to the feed tank. The solids plus some liquor making up stream 50 was also fed to feed tank 14.


In the autoclave, the slurry comprising stream 54 was further leached in the second and ensuing compartments and finally discharged as stream 52 into discharge tank 18 and flashed. The flash vapours from the discharge tank 18 were vented to atmosphere via line 60. The flash underflow from stream 52 and the thickener overflow 56 were blended in the discharge tank.


The chemistry in the autoclave can, in its simplified form, be represented by the following equations:





NiS+40==>NiSO4





Cu2S+H2S04+50==>2CuSO4+H20


Both these reactions generated significant energy and between 5 and 5.5 tonnes of steam per hour was released in the flash outlet 38.


The composition of various streams is given in tables 1A, 2A and 3A below.


The net flow through the autoclave is calculated by difference as stream 54 without compensating for density within the autoclave.


The net flow 54 is approximately 25% of the feed flow 34. However prior to this incorporation of this invention the feed flow was approximately



13.5 m3l/h. The slurry feed with this invention had increased by over 90% to 25.8 m3/h.



FIG. 3 shows a part of another copper concentrate leach plant 70 with a flash-thickener-recycle or FTR process of the invention. The plant includes a density adjust tank 12, an autoclave feed tank 14, a four compartment autoclave 16, an autoclave discharge tank 18, and a solid-liquid separation tank 22 in the form of a thickener. Feed lines or streams, as they are referred to in the art, 30 to 60 convey material to, between and from the tanks 12 to 22 much as described for the plant of FIG. 2, except that:


a. the flash from the autoclave first compartment is fed via a line 72 back into the feed tank 14;


b. the underflow in the feed tank is fed to the thickener 22. where, again, flocculant is added;


c. the solids fraction from the thickener is fed directly back to the feed tank, with the liquids fraction still being feed to the discharge tank 18; and


d. an acidic lixiviant is fed directly to the second compartment of the autoclave to compensate for the changed chemistry in the feed tank.


The invention is not limited to the precise details described above and shown in the drawings. Modifications may be made and other embodiments developed without departing from the spirit of the invention.












TABLE 1A









Stream
Solids Composition (%)














Ni
Cu
Fe
S
















Circuit Feed Solids
(30)
28.8
54.4
2.4
22.4


Auto Feed Solids
(42)
16.9
63.4
2.7
25.8


Thickener Underflow
(50)
10.4
50.9
0.8
23.4


Fourth Compartment
(52)
6.05
43.0
1.1
21.8



















TABLE 2A









Stream
Liquor Composition (g/L)














Ni
Cu
Fe
H2SO4
















Spent Electrolyte
(32)
48
25
1.5
77


Slurry Feed
(34)
40
24
1.2
49


Autoclave Feed
(42)
57
64
1.6
49


Flash Feed
(44)
63
85
1.7
18


Thickener Overflow
(48)
63
85
1.7
18


Fourth Compartment
(52)
58
112
1.3
15





















TABLE 3A






Stream
Flow

Stream
Flow



No
(m3/h)

No
(m3/h)




















Slurry Feed
(34)
25.8
Flash Equivalent
(38)
5.4





Flow


Process Water
(36)
5.0
Thickener
(56)
20.2





Overflow


Sulphuric Acid
(40)
0.48
Autoclave Flow
(54)
6.2


Total aqueous

30.8
Total aqueous

31.4


flow


flow





Note:


Flows not compensated for temperature/density within the autoclave





Claims
  • 1. (canceled)
  • 2. (canceled)
  • 3. (canceled)
  • 4. (canceled)
  • 5. (canceled)
  • 6. (canceled)
  • 7. (canceled)
  • 8. (canceled)
  • 9. (canceled)
  • 10. (canceled)
  • 11. (canceled)
  • 12. (canceled)
  • 13. (canceled)
  • 14. (canceled)
  • 15. (canceled)
  • 16. (canceled)
  • 17. (canceled)
  • 18. (canceled)
  • 19. (canceled)
  • 20. (canceled)
  • 21. (canceled)
  • 22. (canceled)
  • 23. (canceled)
  • 24. (canceled)
  • 25. (canceled)
  • 26. (canceled)
  • 27. (canceled)
  • 28. (canceled)
  • 29. (canceled)
  • 30. (canceled)
  • 31. (canceled)
  • 32. (canceled)
  • 33. (canceled)
  • 34. A method of leach autoclave processing including the steps, in a desired order, of: flashing the autoclave and generating a flash underflow;performing a solid-liquid separation on the flash underflow to produce a solids fraction and an aqueous fraction;returning at least a portion of the solids fraction to the autoclave; andreturning a portion of the aqueous fraction to the autoclave.
  • 35. The method of claim 34, including returning some of the aqueous fraction to the autoclave in a discrete overflow stream.
  • 36. The method of claim 34, including returning all of the solids fraction to the autoclave.
  • 37. The method of claim 34, including returning some of the solids fraction directly to the autoclave.
  • 38. The method of claim 34, including returning some of the solids fraction to the autoclave indirectly through a desired process upstream of the autoclave, the desired process being selected from an autoclave feed tank, an autoclave feed surge tank, and an autoclave feed density adjust tank upstream of the autoclave feed tank.
  • 39. The method of claims 34, including controlling oxygen mass transfer in the autoclave by regulating viscosity using the returned solids fraction.
  • 40. The method of claim 34, including obtaining the flash underflow from a first compartment of a multiple compartment autoclave and controlling the reaction extent in the first compartment to be in excess of 40%,
  • 41. The method of claim 40, including controlling the reaction extent in the first compartment to be in the range of 85 to 95%.
  • 42. The method of claim 34, including adjusting the level of the feed tank to ensure that any out of specification leach product does not pass out of the autoclave.
  • 43. The method of claim 34, wherein the solid-liquid separation is achieved using at least one of a thickener, a classifier and a filter.
  • 44. The method of claim 34, wherein the autoclave has multiple compartments and the method includes flashing selected subsequent compartments of the autoclave after the first compartment, the flash slurry obtained thereby being fed to a solid-liquid separation step to produce a solids fraction and an aqueous fraction.
  • 45. The method of claim 44, including feeding the flashed material from the selected subsequent compartment to a solid-liquid separation step to produce a solids fraction and an aqueous fraction, at least a portion of the aqueous fraction being fed forwards in the process and the solids fraction being fed to the autoclave for further processing at desired conditions relative to the conditions prevailing in the initial part of the autoclave.
  • 46. The method of claim 45, including using the autoclave to conduct at least two similar leaching processes within the same pressure envelope with only the compartment dividing walls keeping the processes separate.
  • 47. The method of claim 45, including returning the aqueous fraction to the autoclave for the removal of impurities, the aqueous fraction being fed to a desired compartment of the autoclave.
  • 48. The method of claim 45, including flashing the slurry of an intermediate compartment to remove energy and returning the flashed slurry to the same or subsequent compartment of the autoclave
  • 49. The method of claim 34, including directing the flash from the autoclave to a flash tank; directing the flash underflow from the flash tank into a thickener to produce a solids fraction and an aqueous fraction; and feeding the solids fraction to the autoclave for reprocessing.
  • 50. The method of claim 34, including directing the flash from the autoclave into the feed tank, feeding the feed tank underflow to a thickener to produce a solids fraction and an aqueous fraction; and feeding the solids fraction to the autoclave for reprocessing.
  • 51. The method of claim 50, including feeding the solids fraction to one of the feed tank and a suitable tank upstream of the feed tank from where the solids fraction can be fed with other materials to the autoclave.
  • 52. A leach autoclave processing plant comprising: an autoclave feed tank, an autoclave; means to flash the autoclave into a suitable tank in which a feed underflow can be generated; separation means to perform a solid-liquid separation on the feed underflow to produce a solids fraction and an aqueous fraction; and means to return at least the solids fraction to the autoclave.
  • 53. The plant of claim 52, wherein the solids fraction obtained from the separation means is fed to the autoclave via the autoclave feed tank.
  • 54. The plant of claim 52, wherein the suitable tank into which the autoclave flash is directed is a flash tank.
  • 55. The plant of claim 52, wherein the suitable tank into which the autoclave flash is directed is the feed tank.
Priority Claims (2)
Number Date Country Kind
2004/0082 Jan 2004 ZA national
2004/8476 Oct 2004 ZA national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/ZA05/00002 1/7/2005 WO 00 8/21/2007