1. Field of the Invention
The invention relates to an improved method of forming exothermic materials for various applications, and for use of exothermic material to permanently seal a cylinder head to a block in an internal combustion engine.
2. Related Art
Reactive multilayer foils and coatings are used in a wide variety of applications requiring the generation of intense, controlled amounts of heat in a planar region. Such structures conventionally comprise a succession of substrate-supported layers that, upon appropriate excitation, undergo an exothermic chemical reaction that spreads across the area covered by the layers and thus generate precisely controlled amounts of heat. Such exothermic chemical materials are particularly useful as sources of heat for specialized welding, soldering, and brazing operations. However, they can also be used in other applications requiring controlled local generation of heat, such as primers for incendiary devices.
Reactive multilayer materials permit exothermic reactions with controlled and consistent heat generation. The basic driving force behind such reactions is a reduction in atomic bond energy. When the reactive materials are ignited, the distinct layers mix atomically, generating heat locally. This heat ignites adjacent regions of the structure, thereby permitting the reaction to travel the entire length of the structure, generating heat until all the material is reacted.
In addition to reactive coatings, efforts have been made to develop free-standing reactive layers by cold rolling. Nickel-Aluminum multilayer reactive foils have been formed by cold-rolling bi-layer sheets of Ni and Al, followed by repeated manual folding and repeated cold rolling. After the first bi-layer strip is rolled to half its original thickness, it is folded once again to regain its original thickness and to double the number of layers. This process is repeated many times.
The fabrication of rolled foils is time consuming and difficult. The rolling passes introduce lubricating oil and other contaminants, such that the surfaces of the rolled materials must be cleaned after every pass. In addition, the manual folding of sheet stock does not easily lend itself to large-scaled production. When many metal layers are rolled at once, these layers can spring back, causing separation of the layers and degradation of the resulting foil. Such separations also permit undesirable oxidation of interlayer surfaces and impedes unification of the layers by cold welding.
Accordingly, there is a need for improved methods of fabricating reactive multilayer structures, particularly for large-scale production applications.
The invention comprises a method for producing a multi-stranded exothermic assembly of the type for propagating an exothermic reaction between the strands in response to an initial thermal impulse. The method comprises the steps of providing elongated first and second wires of respective constituent metallic materials each having a generally round cross-section, cold drawing the first and second wires through respective reduction dies in a non-oxidizing atmosphere, bringing the first and second wires into contact with one another in a non-oxidizing atmosphere, and simultaneously plastically deforming the first and second wires together into a unitary cord so that the surfaces of the first and second wires are pressed into contact to facilitate a sustained propagating exothermic reaction in response to an initiating thermal impulse.
According to another aspect of this invention, a one-time use gasket is provided of the type for sealing a cylinder head to a cylinder block in an internal combustion engine. The one-time use gasket comprises a sheet-like body, at least one cylinder bore opening formed in the body, and at least one fluid flow passage formed in the body. The fluid passage is isolated from the cylinder bore opening. The body is fabricated from a reactive multi-stranded exothermic assembly of the type for propagating an exothermic reaction in response to an initiating thermal impulse. The heat produced during the exothermic reaction is sufficient to metallurgically fuse the cylinder head to the cylinder block while maintaining fluidic isolation between the cylinder bore opening and the fluid flow passage.
According to yet another aspect of this invention, a method for establishing a fluid-tight seal between opposing surfaces having formed therebetween at least two discrete flow passages, is provided. The method comprises the steps of forming a gasket from a reactive multi-stranded exothermic assembly of the type for propagating an exothermic reaction in response to an initiating thermal impulse, forming at least two spaced and isolated flow passages in the gasket for conducting fluid material between the two opposing surfaces, aligning the openings in the gasket with the flow passages in the opposing surfaces, compressing the gasket between the opposing surfaces, initiating a propagating exothermic reaction in the gasket body, melting the opposing surfaces in response to the heat generated during the exothermic reaction, and metallurgically fusing the opposing surfaces together while permitting fluid exchange between the isolated flow passages.
The subject invention, as expressed through these various methods and apparatus, provides an exothermic cord, foil, ribbon or cloth produced in a manner that is particularly conducive for large-scale production applications. Utilizing commercially available wire products, the subject intention allows an exothermic assembly to be produced at lower cost as compared with prior art exothermic foils and the like. The subject methods enable substantially faster throughput of finished product. By controlling the size ratio between the cross-sections of the constituents, a degree of control can be exercised over the exothermic reaction characteristics and, therefore, tuned to particular applications. Accordingly, the subject invention provides a lower cost, higher production rate technique for creating reactive multi-layer assemblies for use in any of the known applications, including welding, soldering, brazing, and as primers for incendiary devices.
These and other features and advantages and applications of the present invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
Referring to the Figures, wherein like numerals indicate like or corresponding parts throughout the several views, a prior art engine assembly is shown in
In some engine applications, it may be desirable to permanently seal the cylinder head 10 to the cylinder block 12 without the aid of a gasket 16. Reminiscent of prior art fixed head engines, in which the cylinder head and cylinder block form one inseparable unit, an engine assembly thus formed has the advantage of eliminating the expense of a gasket 16 and its vulnerability as a leak path over time. However, sealing a cylinder head 10 to a cylinder block 12 without the aid of a gasket 16 is a very difficult undertaking because there are many flow passages 17 which must be sealed. For example, liquid coolant and liquid oil are routed in respective passages 17 between the cylinder head 10 and the cylinder block 12 for proper lubrication and cooling. There are also sometimes passages provided for valve train components. The cylinder bore itself can even be considered a flow passage If these passages are not independently sealed in isolation from one another, then the engine will leak fluids and there can be contamination between the various fluids and passages.
The subject invention overcomes these issues in the manner shown in
An energy source, such as the representative match 20 shown in
In addition to joining a cylinder head 10 to a block 12 using the exothermic assembly 18, it is possible to permanently seal other components in an internal combustion engine using these techniques. For example, the engine exhaust ports can be permanently sealed to the exhaust manifold, the intake ports can be permanently sealed to the intake manifold, or any of the various covers or housings can be fixed in a permanently sealed condition. Anywhere a gasket has been used in the past, and even in non-automotive applications, the component parts can instead be permanently fixed and sealed using the exothermic assembly 18 and techniques here described.
The exothermic assembly 18 thus applied to permanently seal engine components can be accomplished using prior art type exothermic materials. However, the invention also contemplates a novel technique for producing an exothermic assembly 18 using bulk wires of constituent materials, as shown in
In
As shown in
Once drawn through the first dies 26, the wires 22, 24 are merged and drawn as a bundle through a second die 28 which squeezes the wires 22, 24 into a cord 30. A representative cross-section of the chord 30 is shown in
The cord 30 exiting the second draw die 28 can be used immediately in an exothermic reaction in the form thus created, or can be further shaped by progressive rolling dies 32 to create a ribbon similar to the configuration illustrated in
It will be appreciated that all of the various assembly techniques can be blended to form additional hybrid variations with the resulting exothermic assembly useful in any application in which prior art reactive multilayer foils and coatings have been used. Thus, while the invention has been described in an illustrative manner, it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation.
Obviously, many modifications and variations of the invention are possible in light of the above teachings. It is, therefore, to be understood that the invention may be practiced otherwise than as specifically described.
This invention claims priority to U.S. Provisional Application No. 60/667,999 filed Apr. 4, 2005.
Number | Date | Country | |
---|---|---|---|
60667999 | Apr 2005 | US |