The present disclosure relates generally to arrows and arrow components, and more particularly relates to blunt arrow points.
Various types of arrow points have been utilized over the years. A broadhead is one common type of arrow point. A typical broadhead includes a pointed tip, a body portion, and razor-sharp broadhead blades which may sometimes be referred to as bleeder blades. The broadhead blades are arranged around the body portion between the pointed tip and the shaft of the arrow. Although broadheads are commonly used to bowhunt big game animals, they are less commonly used for hunting small game, such as groundhogs, rabbits, raccoons, opossums, and squirrels and even some types of game birds. There are many reasons why broadheads are not ideal for small game, including the common occurrence of complete penetration of the arrow through the small game animal. When complete penetration occurs, much of the kinetic energy is wasted because the arrow simply passes through the small game animal. With small game, the more kinetic energy that may be imparted directly to and absorbed by the small game animal, the more likely the animal will expire quickly and recovered more readily.
Blunt arrow points are more commonly used for small game. Blunt arrow points are constructed to render a complete passthrough of the arrow less likely. Traditional blunt points include, without limitation, judo points and rubber blunts. Blunt points are effective on small game because most of the kinetic energy of the arrow is imparted directly to the small game. Traditional blunt arrow points suffer, however, from a number of drawbacks. For example, the relatively larger size (as compared to an arrow shaft diameter and other types of arrow points) result in reduced aerodynamic efficiency. This, in return, results in relatively poor arrow flight and, accordingly, relatively poor accuracy.
In view of the foregoing, there is a need for improved “blunt” arrow point designs that address these and other shortcomings in the art.
One aspect of the present disclosure relates an arrow point that includes a base portion, a tip portion, and a plurality of extension members. The base portion has a proximal end adapted for connection to an arrow shaft. The tip portion is mounted to the base portion and defines a distal end of the arrow point. Each of the plurality of extension members has a distal end, a proximal end, and a blunt surface. The proximal end of the extension members is pivotally mounted to the base portion. The extension members are movable between a retracted position wherein the blunt surface is unexposed, and an extended position wherein the blunt surface is exposed and facing in a generally distal direction.
The tip portion may be axially movable relative to the base portion. The tip portion may contact the extension members when in the retracted position. Axial movement of the tip portion in a proximal direction may cause the extension members to move from the retracted position toward the extended position. The tip portion may include a shaft that extends into the base portion, and a point positioned at a distal end include a shaft that extends into the base portion, and a point positioned at a distal end of the shaft. The shaft may have a smaller maximum outer dimension than a maximum outer dimension of the point. The blunt surface may face the orthogonal axis of the shaft in the retracted position, and face generally perpendicular to the orthogonal axis of the shaft in the extended position.
The extensions may be oriented generally parallel with a length dimension of the arrow point in the retracted position, and generally perpendicular to the length dimension in the extended position. The plurality of extensions may include two extension members, wherein the extensions define a continuous circumference of the arrow point when in the retracted position. The plurality of extensions may include three extensions, wherein the extensions define a continuous circumference of the arrow point when in the retracted position. Outer surfaces of the extensions may define a surface that tapers toward the tip portion when the extension members are in the retracted position.
The arrow point may further include a plurality of attachment pins configured to releaseably connect the extension members to the base portion. The attachment pins may include a locking portion and a pivot portion, wherein the locking portion is configured to retain the attachment pin in the base portion, and the pivot portion defines a pivot axis about which the extensions pivot. The arrow point may also include an extension member retainer positioned radially adjacent to a portion of the plurality of extensions. The extension member retainer may be removable from the radially adjacent position when the extension members move from the retracted position to the extended position.
Another aspect of the present disclosure is directed to an arrow point adapted to be secured to an end of an arrow shaft. The arrow point includes a tip portion and a plurality of blunt extension members. Each extension member may include a distal end and a proximal end. The extension members are pivotable about the proximal end to orient a blunt surface of the extension member in a generally distal facing direction.
The tip portion may be movable in a proximal direction relative to the arrow shaft, and proximal movement of the tip portion pivots the extension members. The extension members may be pivotable from a retracted position in which the blunt surface is oriented in a radially inward facing direction, and an extended position wherein the blunt surface is oriented in a generally distal facing direction. Each extension member may include a plurality of blunt surfaces that face in the generally distal direction when in the extended position. The tip portion may define a first cam surface that faces generally in a proximal direction, and the extension members may each define a second cam surface that faces generally in a distal direction. The tip portion may be moveable in the proximal direction to contact the first cam surface with the second cam surface thereby pivoting the extension members toward the extended position.
Another aspect of the present disclosure relates to an arrow assembly that includes an arrow shaft and an arrow point, wherein the arrow point is mounted to the arrow shaft. The arrow point includes a plurality of blunt extension members having proximal and distal ends and being pivotally mounted to the arrow point at the proximal end. The distal end may be movable between a retracted position wherein the blunt extension members define a tapered outer surface of the arrow point, and an extended position wherein the distal ends are positioned radially outward and a blunt surface of the blunt extension members is exposed.
The arrow point may further comprise a base portion to which the blunt extension members are pivotally mounted, and a slidable tip portion that moves the blunt extension members from the retracted position to the extended position. The blunt extension members may extend perpendicularly relative to a longitudinal dimension of the arrow point when in the extended position.
A still further aspect of the present disclosure is directed to a method of operating an expandable arrow point. The method may include providing an arrow point having a base portion, a plurality of extension members, and a tip portion, wherein the extension members are pivotally mounted to the base portion at a proximal end of the extension members, and the extension members define a blunt surface. The method may also include arranging the extension members in a retracted position with a distal end of the extension members positioned adjacent to the tip portion and the blunt surface facing radially inward. The method may further include moving the tip portion proximally, wherein proximal movement of the tip portion pivots the extension members toward an extended position to expose the blunt surface. The extended position may orient the blunt surface facing in a generally distal direction.
Features from any of the above-mentioned embodiments may be used in combination with one another in accordance with the general principles described herein. These and other embodiments, features, and advantages will be more fully understood upon reading the following detailed description in conjunction with the accompanying drawings and claims.
The accompanying drawings illustrate a number of exemplary embodiments and are a part of the specification. Together with the following description, these drawings demonstrate and explain various principles of the present disclosure.
Throughout the drawings, identical reference characters and descriptions indicate similar, but not necessarily identical, elements. While the exemplary embodiments described herein are susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. However, one of skill in the art will understand that the exemplary embodiments described herein are not intended to be limited to the particular forms disclosed. Rather, the instant disclosure covers all modifications, equivalents, and alternatives falling within the scope defined by the appended claims.
Hunting small game and fowl with an archery bow poses some unique challenges. For example, many types of arrow points (e.g., broadheads) used for larger animals have several disadvantages when used for small game and fowl, as set forth above.
Blunt arrow points have been adapted for use with small game and fowl. Use of a blunt portion on the arrow point may reduce the risk of the arrow passing through the small game or fowl. Blunt arrow points are often easier to find after shooting because they do not penetrate targets, brush, foliage, etc. as easily. Arrow points having blunt portions may also be more effective at transferring the kinetic energy of the arrow to the animal or bird, thus creating a shock or stun effect on the target that may be helpful for recovery. Blunt features on an arrow point may also be less aerodynamic than broadhead arrow points. The less aerodynamic an arrow point, the less accurately the arrow flies.
The present disclosure is directed to an arrow point that has a relatively low profile, aerodynamic shape during flight. The arrow point includes expandable extension members to cause the blunt arrow point to assume a different configuration upon contacting the target. The arrow point in an expanded configuration includes a plurality of blunt extension members that maximize the transfer of kinetic energy of the arrow to the target.
In one example, the expandable arrow point includes a tip portion and a plurality of movable blunt projections or blunt extension members to limit penetration of the arrow. The tip portion is moveable in the proximal direction upon contacting the target. The movable extension members may be pivotable arms that move into a penetration limiting configuration. Proximal movement of the tip portion automatically extends the extension members from a retracted orientation into an expanded, radially outward extending position. When the extension members are oriented in the expanded position, a plurality of blunt surfaces are exposed. Contact of the blunt surfaces with the target enhance the transfer of the kinetic energy from the arrow to the target. The extension members in the expanded position may also inhibit penetration of the expandable arrow point into the target. Typically, when the extension members are in the expanded position the expandable arrow point has an increased outer profile and surface area facing in the distal direction for contact with the target.
In at least one arrangement, the extension members in the expanded position are arranged generally perpendicularly relative to a longitudinal axis of the arrow. The extension members may be pivotal about a proximal end portion of the extension members. That is, when the extension members are in the retracted position a distal end portion of the extension members are positioned adjacent to a point of the tip portion and the proximal end portion of the extension members are pivotally mounted to the expandable arrow point. Upon movement of the tip portion in the proximal direction, the extension members rotate about the pivot point at the proximal end portion to move the distal end portion of the extension members in the proximal direction and radially outward orientation to expose the blunt surfaces of the extension members.
The example expandable arrow point disclosed herein may have different numbers of extension members. In one example, a single pair of extension members are used. In other arrangements, three or more extension members are used. When the extension members are in the retracted position, an outer surface of the extension members is exposed. The outer surface of the extension members may define a tapered surface that improves aerodynamic properties of the expandable arrow point during flight.
The extension members may be secured to a base portion of the expandable arrow point with an attachment pin. The attachment pin may be removable to provide replacement of the extension members. The tip portion of the expandable arrow point may also be removably mounted to the base portion. A retaining member (e.g., an O-ring) may be mounted on an exterior surface of the expandable arrow point to retain the extension members in the retracted or closed position during stowage and flight, and permit movement of the extension members when the tip portion contacts a target. After use of the expandable arrow point (i.e., contacting the target and movement of the extension members into the expanded position), the expandable arrow point may be reused by advancing the tip portion distally and pivoting the extension members back into the retracted position.
The entire expandable arrow point may be removably mounted to an arrow shaft. The arrow shaft may have any shape or size (e.g., diameter and length). In one example, a base portion of the expandable arrow point includes a threaded shaft or shank that engages a threaded bore of an arrow outsert or insert, or arrow shaft. The expandable arrow point may be constructed to mount at least in part to or over an outer surface of the arrow shaft. The expandable arrow point may include at least one blade having a cutting edge. One aspect of the present disclosure relates to an arrow that includes a shaft and an expandable arrow point having those features disclosed herein.
Referring now to
Movement of the tip portion 14 in a proximal or rearward direction relative to the position shown in
In at least some arrangements, the extension members 16A-C are movable between the retracted and extended positions independent of the tip portion 14. As a result, the extension members 16A-C may move between retracted and extended positions without the tip portion 14 moving in the proximal or rearward direction. However, during actual use of the expandable arrow point 10, the extension members 16A-C are typically configured to maintain the retracted position shown in
Referring now to
Extension member openings 24 are sized to receive proximal portions of the extension members 16A-C. Extension member openings 24 may define a pathway within which the extension members 16A-C travel. A portion of the extension member openings 24 may define a position stop for the extension members 16A-C in the fully extended position.
The pivot member opening 26 is sized to receive a pivot leg 70 (also referred to as a pivot portion or pivot member) of the attachment pins 18 (see
The biasing member opening 28 is sized to receive a biasing leg 72 (also referred to as a biasing portion or biasing member) of the attachment pins 18. The biasing member opening 28 typically has a greater size (e.g., diameter) than a size of the biasing leg 72 that is positioned in the biasing member opening 28. This larger size permits radial or lateral movement of the biasing leg 72 within the biasing member opening 28 as will be described in further detail herein.
Extension member support 20 has a proximal portion 30 that tapers in the proximal or rearward direction. This tapered construction may provide additional aerodynamics for the base portion 12. Other constructions are possible for the extension member support 20.
The shank 22 is constructed to connect the arrow point 10 to an arrow shaft.
The base portion 12 may also include a tip aperture 36 that receives the tip portion 14 (see
The tip portion 14 is shown in further detail with reference to
The proximal surface 46 may face in a generally proximal or rearward direction. The proximal surface 46 may be defined by a continuous conical structure positioned proximal or rearward of the distal surface 44. The proximal surface 46 may be arranged to face a portion of the extension members 16A-C when the extension members are in a retracted position. In at least some arrangements, the proximal surface 46 is arranged parallel with and facing a cam surface of the extension members 16A-C (see, e.g.
The shaft 42 may include a retention portion or cutout 48. The retention portion 48 may be sized and arranged to permit a portion of the tip retention pin 38 to be inserted therein (see, e.g.,
The extension members 16A-C are shown and described in further detail with reference to
The pivot aperture 54 is sized to receive a portion of the attachment pin 18 to permit pivotal movement of the extension members 16A-C relative to the base portion 12. The extension members 16A-C each include a proximal cam surface 51 having first, second and third portions 51A, 51B, 51C at the proximal end 52. Each of the portions 51A, 51B, 51C is spaced from a central axis of the pivot aperture 54 a distance R1, R2, R3, respectively. The distances R1, R2, R3 may each be different. Typically, the distance R1 is less than the distance R2. The distance R3 may also be less than the distance R2. The distances R1 and R3 may be the same. The difference in size between the distances R1, R2, R3 may influence rotatability of the extension members 16A-C between the various positions shown in, for example,
The portions 51A, 51B, 51C may have different shapes and sizes. In one example, the first portion 51A is a generally planar surface, the second portion 51B is a generally contoured surface, and the third portion 51C is a generally planar surface. A transition between the shapes of the first, second and third portions 51A, 51B, 51C may influence rotatability of the extension members 16A-C between the various positions shown in, for example,
The first and second inner surfaces 56, 58 and the tip shaft contact surface 60 face generally radially inward when the extension members 16A-C are in the retracted position shown in
When the extension members 16A-C are in the fully extended position shown in
A comparison of
The point contact surface 62 may be arranged facing the point 40 of the tip portion 14 when the extension members 16A-C are in the retracted position. The point contact surface 62 may be arranged as the surface of the extension members 16A-C that is first contacted by the tip portion 14 as the tip portion 14 moves in the proximal or rearward direction. The point contact surface 62 may be arranged generally parallel to and facing the proximal surface 46 of the point 40. The point contact surface 62 may be referred to as a extension member cam surface because of the interface between the proximal surface 46 of the point 40 and the point contact surface 62 as the tip portion 14 moves in the proximal or rearward direction. The proximal surface 46 of the point 40 may contact other surfaces of the extension members 16A-C as the tip portion 14 moves proximally.
The point contact surface 62 may be arranged facing in a generally distal direction to define at least in part a distal facing surface of the extension members 16A-C as the extension members 16A-C begin to rotate radially outward and proximally. The point contact surface 62 along with a distal surface 66 may be the first surfaces of the extension members 16A-C that contact the target. Point contact surface 62, along with the first and second inner surfaces 56, 58 and tip shaft contact surface 60 may define a surface area facing in the generally distal direction as shown in at least
The outer surface 64 of the extension members 16A-C may be arranged at a tapered angle 0 (see
Each of the proximal cam surface portions 51A-C relates to a different rotated position of the extension members 16A-C relative to the base portion 12. The first portion 51A relates to an unexpanded position of the extension members 16A-C (see
Referring now to
As the extension members 16A-C rotate between the unexpanded or retracted position (see
The biasing leg 72 may apply less of a laterally directed biasing force against the extension members 16A-C when the first and third portion 51A, 51C contact the contact surface 74 of the biasing leg 72 than when the second portion 51B is in contact with the contact surface 74. The biasing force applied by the biasing leg 72 to the extension members 16A-C tends to help hold the extension members 16A-C in the unexpanded position until that biasing force is overcome by rotational forces of the extension members 16A-C caused by axial forces applied to the point 40 that are transferred to the surfaces 60, 62 of the extension members 16A-C to rotate the extension members 16A-C toward the partially expanded and fully expanded positions.
Once the extension members 16A-C rotate past a transition point between the first and second portions 51A-B of the proximal cam surface 51, the extension members 16A-C may more easily rotate to the partially expanded and fully expanded positions. Once the extension members 16A-C rotate into the fully expanded position (e.g., see
The use of both a pivot leg 70 and a biasing leg 72 for the attachment pins 18 may provide both a pivot point for the extension members 16A-C and apply a biasing force against the extension members 16A-C to help maintain the extension members 16A-C in a given rotated position using a single piece device. The biasing leg 72, alone or in combination with the pivot leg 70 and attachment pin 18 generally, may be referred to as a spring lock or a biasing lock.
Other arrangements for the attachment pins include, for example, separate pins, wherein one pin provides a pivotal connection of the extension members 16A-C to the base portion 12, and a separate pin applies a biasing force to the extension members 16A-C. Many other devices having various constructions may be used to help retain the extension members 16A-C mounted to the base portion 12, provide a pivotal connection of the extension members 16A-C to the base portion 12, and provide a biasing force to the extension members 16A-C to help retain the extension members 16A-C in certain rotated positions. In some arrangements, multiple devices may be used to provide these and other functions related to the extension members 16A-C.
Referring now to
In at least some arrangements, an expandable arrow point having three or more extension members has a greater exposed surface area facing in the distal direction as compared to an expandable arrow point having two or fewer extension members. As the number of extension members for an expandable arrow point increases, the surface area facing in the distal direction for a given extension member typically decreases.
The expandable arrow points disclosed herein may be maintained in the closed state or position during stowage and flight using an extension member retainer. The extension member retainer may be positioned on an exterior of the arrow point. The extension member retainer may be use in place of or in addition to other features (e.g., the biasing leg 72 and proximal cam surface 51 described above) that help retain the extension members in particular rotated positions.
Referring now to
In one example, the extension member retainer 80 is positioned radially adjacent to a portion of the base portion 12 as well as radially adjacent to a portion of the extension members 16A-C when the extension members 16A-C are in the retracted or unexpanded position (see
The extension member retainer 80 may be mounted to the expandable arrow point 10 by inserting the tip portion 14 through an open interior of the extension member retainer 80 while the extension members 16A-C are in the retracted or unexpanded position.
The extension member retainer 80, when expanded outward to fit on an exterior surface of the expandable arrow point 10, may exert a radially inward directed force that may help retain the extension members 16A-C in the retracted, closed position shown in
In one arrangement, the extension member retainer 80 is constructed as an O-ring. The O-ring construction may permit easier movement (e.g., rolling) of the extension member retainer 80 when being mounted to the exterior surface of the expandable arrow point 10 and when moving proximally as the extension members 16A-C begin rotating from the retracted position (see
In some examples, the expandable arrow point 10 may include a groove or recess (not shown) along a portion of an outer surface of the extension members 16A-C and/or the body portion 12. This groove or recess may help retain the extension member retainer 80 in a temporary axial position during stowage and flight of the expandable arrow point 10.
The preceding description has been provided to enable others skilled in the art to best utilize various aspects of the exemplary embodiments described herein. This exemplary description is not intended to be exhaustive or to be limited to any precise form disclosed. Many modifications and variations are possible without departing from the spirit and scope of the instant disclosure. It is desired that the embodiments described herein be considered in all respects illustrative and not restrictive and that reference be made to the appended claims and their equivalents for determining the scope of the instant disclosure.
Unless otherwise noted, the terms “a” or “an,” as used in the specification and claims, are to be construed as meaning “at least one of.” In addition, for ease of use, the words “including” and “having,” as used in the specification and claims, are interchangeable with and have the same meaning as the word “comprising.”