Expandable bone implant

Information

  • Patent Grant
  • 9744007
  • Patent Number
    9,744,007
  • Date Filed
    Tuesday, September 2, 2014
    9 years ago
  • Date Issued
    Tuesday, August 29, 2017
    6 years ago
Abstract
An expendable bone implant has a first member with a coronal end portion configured for supporting a prosthesis. A second member is at least partially porous, engages the first member, and is configured to expand outwardly upon a longitudinal force being applied to at least one of the first and second members. This anchors the implant in bone before mastication forces are applied to the implant.
Description
TECHNICAL FIELD

The present invention relates to an implant for insertion into bone and, in particular, an expandable bone implant having improved osseointegration features.


BACKGROUND

One type of bone implant is a dental implant or endosseous root form implant which is surgically implanted into a patient's upper or lower jaw to directly or indirectly anchor and support prosthetic devices, such as an artificial tooth. The implants are usually placed at one or more edentulous sites in a patient's dentition at which the patient's original teeth have been lost or damaged in order to restore the patient's chewing function. In many cases, the implant anchors a dental abutment, which in turn provides an interface between the implant and a dental restoration. The restoration is typically a porcelain crown fashioned according to known methods.


The implant is usually either threaded or press-fit into a bore which is drilled into the patient's mandible or maxilla at the edentulous site. The implant is inserted by applying a force to the coronal end of the implant in an insertion direction.


A patient typically prefers to leave after initial surgery with some type of restoration mounted on the implant, which transfers occlusive loads to the implant. Also, it has been shown that in many instances, healing of both soft and hard tissue is improved if the implant is loaded after surgery through a restoration. While the implant rarely receives the full load of occlusion during this healing phase and even with the restoration, the loading is sufficient to displace the implant. Thus, threads are used to achieve initial stability. Before biologic integration has time to take place, the thread resists tension, twisting or bending loads the implant might be subjected to.


The surgical procedure for inserting the threaded implants, however, can be complicated and requires that the threaded implants be turned into place, which further requires the use of special tools and inserts. The torque needed to place the implant into the jaw can be high and may require tapping of the bore on the jaw, which adds yet another step to the surgical procedure where tapping typically is not desired. Also with threaded implants, it is often difficult to achieve optimal esthetics because the geometry of the thread establishes a fixed relationship between the final vertical and rotational orientation of the implant such that a vertical adjustment of the implant requires a rotational adjustment and vice-versa. Thus, a prosthetic held at an ideal rotational orientation by the implant may not have the ideal vertical position.


Alternatively, although a press fit implant has a much simpler surgical procedure; the current press fit designs provide very little initial stability and are not well suited for early and immediate loading procedures that are currently used in dentistry.


The body of the dental implant has commonly been formed of titanium metal or titanium alloys. Titanium metals and alloys may act to enhance bone attachment to the surface of the dental implant. However, the titanium metals and alloys are orders of magnitude higher in stiffness than human bone and as a result absorb much of the mastication forces introduced in the mouth. This absorption of the forces by the titanium dental implants can result in inadequate stimulation of the surrounding bone tissue in the jaw, which over extended periods of time can cause the bone tissue to be resorbed by the body resulting in saucerization of the bone, or bone die-back. Over time, this bone die-back can cause the dental implant to loosen within its hole and even cause infection to the area. Accordingly, a press-fit implant is desired that provides sufficient initial stability while also providing improved osseointegration.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, which are not necessarily drawn to scale, like numerals may describe similar components in different views. Like numerals having different letter suffixes may represent different instances of similar components. The drawings illustrate generally, by way of example, but not by way of limitation, various embodiments discussed in the present document.



FIG. 1 is an exploded, side perspective view of a first embodiment of an implant according to the present invention;



FIG. 2 is a side elevational view of the implant of FIG. 1;



FIG. 3 is a side elevational view of an osteotome according to the present invention and having the implant of FIG. 2 attached at its distal end;



FIG. 4 is an exploded, side perspective view of a second embodiment of an implant according to the present invention;



FIG. 5 is a side elevational view of the implant of FIG. 4;



FIG. 6 is a side elevational view of the implant of FIG. 4 showing a porous component expanded through slots in a shell component;



FIG. 7 is a top view of the implant of FIG. 6;



FIG. 8 is an upper, cross-sectional view of a third embodiment of an implant according to the present invention;



FIG. 9 is an exploded, side perspective view of a fourth embodiment of an implant according to the present invention;



FIG. 10 is a side cross-sectional view of a fifth embodiment of an implant according to the present invention;



FIG. 11 is a side, exploded view of a sixth embodiment of an implant according to the invention and shown on a bore in bone; and



FIG. 12 is an enlarged fragmentary view of a porous tantalum portion for any of the embodiments herein and in accordance with the present invention.





DETAILED DESCRIPTION

Referring to FIGS. 1-2, an implant 10 is provided for insertion into a surgical site such as a bore on bone, and in the particular examples here, into a mandible or maxilla. The implant 10 is used to support an abutment, and a prosthesis is mounted on the abutment. While two-stage endosseous implants are shown that terminate at the alveolar ridge, it will be understood that the implants may alternatively be single-stage implants with an integrally formed transgingival region or a one-piece implant with an integral abutment.


Implant 10, as well as other implants described herein, are press-fit implants and forego the use of threads as the main mechanism to engage bone. This permits these implants to be placed at a desired depth in bone by using a longitudinal driving force without the need to rotate the implant and while still forming sufficient initial stability to withstand mastication forces.


More specifically, implant 10 has a first, relatively rigid member or component 12, and a second, expandable, porous member or component 14 that is at least partially porous. The rigid member 12 is positioned coronally of the porous member 14 and has a coronal or proximal end portion 16 to directly or indirectly support a prosthesis. The porous member 14 engages an apical or distal end portion 18 of the rigid member 12 when it is placed in a bore in bone. With this structure, a longitudinal force may be applied to the rigid member 12 so that the rigid member 12 impacts against the porous member. This driving force causes the porous member 14 to expand radially outward (and apically) into the surrounding bone of the surgical site. Thus, this expansion occurs before mastication takes place so that the implant 10 is well settled and generally will not expand further during full load mastication.


The rigid member 12 is formed of a relatively strong, hard metal such as titanium. The porous material forming the porous member 14 is particularly suited to form an immediate strong, stable interference fit with surrounding bone while improving osseointegration of the bone into the porous member 14. The porous member 14, in one form is a porous tantalum portion 40 (shown on FIG. 12), which is a highly porous biomaterial useful as a bone substitute and/or cell and tissue receptive material. An example of such a material is produced using Trabecular Metal™ technology generally available from Zimmer, Inc., of Warsaw, Ind. Trabecular Metal™ is a trademark of Zimmer Technology, Inc. Such a material may be formed from a reticulated vitreous carbon foam substrate which is infiltrated and coated with a biocompatible metal, such as tantalum, etc., by a chemical vapor deposition (“CVD”) process in the manner disclosed in detail in U.S. Pat. No. 5,282,861, the disclosure of which is fully incorporated herein by reference. Other metals such as niobium, or alloys of tantalum and niobium with one another or with other metals may also be used.


As shown in FIG. 12, porous tantalum structure 40 includes a large plurality of ligaments 42 defining open spaces 44 therebetween, with each ligament 42 generally including a carbon core 46 covered by a thin film of metal 48 such as tantalum, for example. The open spaces 44 between ligaments 42 form a matrix of continuous channels having no dead ends, such that growth of cancellous bone through porous tantalum structure 40 is uninhibited. The porous tantalum may include up to 75%-85% or more void space therein. Thus, porous tantalum is a lightweight, strong porous structure which is substantially uniform and consistent in composition, and closely resembles the structure of natural cancellous bone, thereby providing a matrix into which cancellous bone may grow to anchor implant 10 into the surrounding bone of a patient's jaw which increases stability. The rough exterior surface of such porous metal portion has a relatively high friction coefficient with adjacent bone forming the bore that receives the implant to further increase initial stability as alluded to above. This structure can produce superior aesthetic results by restricting movement of the implant. These implants can be placed without supplementary surgical procedures, such as bone grafting, and can be placed in areas where traditional implants have been less successful, such as with reduced or decayed alveolar sections.


Porous tantalum structure 40 may be made in a variety of densities in order to selectively tailor the structure for particular applications. In particular, as discussed in the above-incorporated U.S. Pat. No. 5,282,861, the porous tantalum may be fabricated to virtually any desired porosity and pore size, whether uniform or varying, and can thus be matched with the surrounding natural bone in order to provide an improved matrix for bone in-growth and mineralization. This includes a gradation of pore size on a single implant such that pores are larger on an apical end to match cancellous bone and smaller on a coronal end to match cortical bone, or even to receive soft tissue ingrowth. Also, the porous tantalum could be made denser with fewer pores in areas of high mechanical stress. Instead of smaller pores in the tantalum, this can also be accomplished by filling all or some of the pores with a solid material which is described in further detail below.


To provide additional initial mechanical strength and stability to the porous structure 14, the porous structure 14 may be infiltrated with filler material such as a non-resorbable polymer or a resorbable polymer. Examples of non-resorbable polymers for infiltration of the porous structure 14 may include a polyaryl ether ketone (PAEK) such as polyether ketone ketone (PEKK), polyether ether ketone (PEEK), polyether ketone ether ketone ketone (PEKEKK), polymethyl methacrylate (PMMA), polyetherimide, polysulfone, and polyphenolsulfone. Examples of resorbable polymers may include poly lactic acid (PLA), poly glycolic acid (PGA), poly lactic co-glycolic acid (PLGA), polyhydroxybutyrate (PHB), polyhydroxyvalerate (PHV), and copolymers thereof, polycaprolactone, polyanhydrides, and polyorthoesters. The resorbable material would resorb as the bone grows in and replaces it, which maintains the strength and stability of the implant.


Regarding the initial stability, as the porous member 14 is inserted into the bore in bone, the porous material will bite into the bone by grating, chipping and/or flaking bone pieces off of the sidewalls of the bore in which the implant device is being placed. When the implant is press-fit into the bore rather than threaded into the bore, this “rasping” action may form slight recesses or indents within the bore sidewall in which the implant device sits. This restricts rotational or twisting motion of the implant device within the bore since the implant device does not have the clearance to rotate out of the indents and within the bore.


The rasping action also accelerates osseointegration onto the implant device and into the pores of the porous material due to the bone compaction into the pores. First, the grating of the bone structure causes the bone to bleed which stimulates bone growth by instigating production of beneficial cells such as osteoblasts and osteoclasts. Second, the bone pieces that fall into the pores on the porous material assist with bone remodeling. In the process of bone remodeling, osteoblast cells use the bone pieces as scaffolding and create new bone material around the bone pieces. Meanwhile osteoclast cells remove the bone pieces through resorption by breaking down bone and releasing minerals, such as calcium, from the bone pieces and back into the blood stream. The osteoblast cells will continue to replace the grated bone pieces from the pores and around the implant device with new and healthy bone within and surrounding the extraction site. The composite of in-grown bone and porous tantalum has elastic properties much closer to bone than a solid metal implant, creating a loading environment that is conducive to maintaining bone near the implant. Thus, with the porous material, the porous member 14, and in turn the implant 10, has increased resistance to twisting or rotation, allows for immediate or very early loading, and increases long-term stability due to the improved osseointegration. Such an implant with ingrown bone has stability greater than a comparably sized implant with only on-grown bone.


The properties of the porous material also enable expansion of the porous member 14 to anchor the porous member 14 into the surrounding bone. To expand the porous material for any of the implants described herein, the modulus of elasticity (i.e., the amount of deformation in the elastic region of the stress/strain curve when a given stress is applied) of the porous material, or at least that portion of the porous member that will expand, should be about 3 Gpa or less.


As the porous material of any of the implants described herein expands radially against the bone, the porous material cuts into the bone. This occurs because the outer surface of the porous material can be made to have trabeculi or sharp protrusions of metal that extend from the outer surface. These trabeculi are formed when a “cell” of the porous tantalum is cut leaving only a portion of each strut that make up a porous tantalum “cell.” It is believed that the trabeculi, when compressed against the bone surface, cut into the bone because the porous tantalum metal can withstand greater stress than many types of bone tissue. The result of this digging in or rasping action with the cut struts further increases the initial stability of the implant in the surgical site in addition to the uncut struts described above.


To provide this cutting action as the porous member for any of the implants described herein expands, the compressive strength of the porous metal should be from about 50 to about 90 MPa, which is relatively higher than the compressive strength of cancellous bone which is about 10 to about 50 MPa. The area of contact between each trabeculi and the bone will be very small due to the geometry of the trabeculi as described above. This will result in high stress (load/area) when even moderate loads are applied. Since the amount of stress the porous tantalum metal can achieve prior to yield is higher than the surrounding bone tissue, the porous material will dig into the bone.


Referring again to FIGS. 1-2, in one form, the rigid member 12 is generally bullet-shaped with a cylindrical outer surface 20 that terminates in the apical end portion 18 which is rounded. The outer surface 20 can be smooth but may be roughened or otherwise treated to promote bone growth or restrict bacterial growth.


The coronal end portion 16 of the rigid member 12 is open to an inner longitudinal cavity 22 for receiving a driving device such as an osteotome 24 (shown in FIG. 3) and/or for receiving fasteners to secure an abutment to the implant 10. The longitudinal cavity 22 may have a circular cross-section for the purpose of receiving a longitudinal force from the driving tool. The longitudinal cavity 22, however, may also have a non-circular cross-section, or have a non-circular portion, such as polygonal, to receive an abutment, a fastener holding an abutment, or to limit rotation of the driving tool relative to the implant 10 for convenience while inserting the implant 10 in the bore.


The porous member 14 is generally cup-shaped and forms a coronally accessible, longitudinally extending, interior cavity 26. The porous member 14 has a generally cylindrical wall 28 as well as a rounded apical end portion 30 that cooperatively defines the cavity 26. The apical end portion 30 has a shape that corresponds to the shape of apical end portion 18. To facilitate expansion, the wall 28 should not be too thick, and in one aspect, has a thickness from about 0.020 inches to about 0.040 inches.


The apical end portion 18 is configured to be inserted into the cavity 26 to expand the porous member 14. Thus, in one form, an inner diameter d of the porous member 14 and defined by the cavity 26 may be slightly smaller than an outer diameter D of the rigid member 12. Since the modulus of elasticity of the porous member 14 is significantly less than the modulus of elasticity of the rigid member 12, urging the rigid member 12 apically into the cavity 26 will expand the porous member 14 generally radially outward and against the bone in the bore.


To place the implant 10 in a bore in bone, first, the practitioner uses a tool, which may be the same osteotome 24 or a separate tool, received in the cavity 26 to press the initially separate porous member 14 into the bore by applying a longitudinal force on the tool. Thus, the porous member 14 is placed in the bore before placing the rigid member 12 in the bore. Once the porous member 14 is in place, the practitioner uses the osteotome 24 to engage the rigid member 12 to create a longitudinal force and press or tap the rigid member 12 into the bore and subsequently into the cavity 26 of the porous member 14. As mentioned above, this action will expand the porous member 14 radially outward as well as compress the apical end portion 30 of the porous member 14 between the rigid member 12 and a bottom of the bore (similar to the bottom 64 of the bore 60 shown in FIG. 11). This forces the porous member 14 to cut into the adjacent bone defining the bore and create initial stability in multiple directions as described above. Once the apical end portion 18 is fully inserted into the cavity 26, the rigid member 12 forms a core for the porous member 14, and the porous member 14 at least generally covers the apical end portion 18.


In an alternative aspect, however, the rigid member 12 and the porous member 14 can be assembled together before insertion into the bore, and even preassembled by the manufacturer or supplier before the implant 10 is received by the practitioner. In this case, the porous member 14 is at least partially mounted on the apical end portion 18 of the rigid member 12 before the two members 12 and 14 are placed in a bore in bone. If the implant 10 is assembled first before it is inserted into the bore, the rigid member 12 may be driven into the porous member 14 a sufficient depth just to retain the porous member 14 on the rigid member 12 without significantly expanding the porous member 14. Once the implant 10 is placed into the bore, then the osteotome 24 can be pressed with a longitudinal force sufficient to expand the porous member 14 radially outward and into the bone.


As another option, the porous member 14 can be secured to the rigid member 12 by a loose press-fit that permits the porous member 14 to be separated from the rigid member 12 easily, such as by hand. In other words, the apical end portion 18 of the rigid member 12 is dimensioned to easily slip in and out of cavity 26. In this case, the diameters d and D of the cavity 26 and rigid member 12 are sufficiently close to form an interference fit that holds the members 12 and 14 together without significant expansion until the implant is inserted and assembled in the bore in the bone. Once inserted, significant force may be applied to the osteotome 24 in multiple directions to press the porous member 14 against the surrounding bone forming the bore.


While an interference fit between the rigid member 12 and porous member 14 is mentioned, it will be understood that adhesives, welding, and/or heat may be used to additionally or alternatively connect the two parts together, especially when the implant 10 is to be preassembled.


It will also be appreciated that the porous member 14 may alternatively extend over most, or substantially all, of the coronal-apical length of the implant 10, or the porous member 14 may only cover certain sections of the rigid member 12 instead of only cupping the apical end 18 of rigid member 12. Thus, it may be cylindrical, and the rigid member 12 may or may not extend all the way through the porous member 14 to form an apical end of the implant 10. Also, the apical end portion 30 of the porous member 14 may be provided in varying desired thicknesses (in the coronal-apical direction) to provide different porous lengths extending apically from the apical end portion 18 of the rigid member 12. Otherwise, the total assembled length of implant 10 may be provided in different desired dimensions by varying the length of rigid member 12.


Alternatively, a wide portion 32 (shown in dashed line on FIGS. 1-2) of the rigid member 12 may be provided to additionally engage a coronally facing, annular surface 34 of the porous member 14. Specifically, the wide portion 32 has a diameter larger than a diameter of the apical end portion 18 to form an apically facing, annular shoulder 38 extending radially outward from the apical end portion 18. The shoulder 38 engages the surface 34 when the rigid member 12 is pressed apically against the porous member 14. In this case, when the practitioner impacts the driving tool 24 longitudinally on the apical end portion or driving end 16 of the rigid member 12, the wall or sidewall 28 of the porous member 14 is compacted between the shoulder 38 of the rigid member 12 and the bottom of the bore (similar to bottom 64 shown in FIG. 11) in which it is disposed. This causes the sidewall 28 to bulge or expand radially outward to contact, and cut into, surrounding bone.


While the wide portion 32 is shown to extend to the coronal end portion 16 of the rigid member 12, it will be understood that instead, the wide portion 32 may extend coronally from shoulder 38 any coronal-apical distance along the length of the rigid member 12 that is sufficient to transfer adequate force to the porous member 14. In one example, the wide portion 32 is in the form of a relatively thin flange 36 (as shown in dashed line in FIG. 2).


Referring to FIG. 11, in another alternative basic form, an implant 50 has a rigid member 52 that engages a porous member 54 at least partially made of the porous material as described above and as with the implant 10. Here, however, the porous member 54 does not have a main cavity. Instead, the porous member 54 has a coronally facing surface 56 for engaging an apical end portion 58 of the rigid member 52. As with implant 10, either the members 52 and 54 are placed separately into the bore 60 as shown in FIG. 11, or the members 52 and 54 are assembled before insertion into a bore 60 in bone 62. In the former case, the porous member 54 is placed in the bore 60, and the rigid member 52 is then placed in the bore 60 and pressed or tapped in a longitudinal direction (as represented by arrow ‘A’ on FIG. 11) until the rigid member 52 engages the porous member 54 so that the porous member 54 is compacted between a bottom 64 of the bore 60 and the rigid member 52. This causes a sidewall 66 of the porous member 54 to bulge or expand radially outward to engage the surrounding bone. The porous member 54 also is pressed apically to cut into the bone on the bottom 64 of the bore 60.


If the members 52 and 54 are to be preassembled before insertion into the bore 60, the members 52 and 54 may be attached to each other by interlocking structure on the apical end portion 58 and surface 56 or by other ways such as fasteners, adhesives, welding, heat, and so forth. Otherwise, once the implant 50 is placed in the bore 60 the procedure is the same as if the members 52 and 54 were initially separate. Instead of being completely porous, porous member 54 may have a core of a different solid material or have its pores filled with a different material as described above as long as it does not significantly interfere with the required compression of the porous member 54 for its radial expansion.


Referring now to FIG. 8, as yet another alternative form, an implant 70 has a similar structure to implant 10 including a rigid member 72 and a porous member 74 with a longitudinal cavity 76 for receiving the rigid member 72. Except here, the rigid member 72, or at least an apical end portion 78 of the rigid member 72 that extends into cavity 76, and the porous member 74 have transverse cross sections that are non-circular. While other shapes are contemplated (such as polygonal, other shapes with flat sides, other irregular curved shapes, or combinations of the two), in the illustrated form, the cross sections of the apical end portion 78 and the porous member 74 are oval or elliptical. So configured, once the apical end portion 78 extends within the cavity 76 in a corresponding orientation as that of the porous member 74 (i.e., where the major axes of both cross sections extend generally in the same direction), the rigid member 72 may be rotated relative to the porous member 74, as illustrated by arrows X. The porous member 74 is sufficiently thin such that the rotation of the rigid member 72 causes the major diameter of the apical end portion 78 to be forced toward or into the minor diameter of the porous member 74, which causes the porous member 74 to bulge or expand radially outward (as shown by bulges 80) to engage the surrounding bone.


Referring to FIG. 9, an implant 90 has further alternative features that may also be applied to implant 10. The implant 90, as with implant 10, comprises a rigid member 92 and a porous member 94 with a cavity 96 for receiving an apical end portion 98 of the rigid member 92. Here, however, the apical end portion 98 can further include threads 91 for screwing the rigid member 92 into the cavity 96. The cavity 96 may or may not have a threaded portion 93 for engaging the threads 91. Whether or not the apical end portion 98 is threaded, the apical end portion 98 may be tapered such that the apical end portion 98 is sloped inward as it extends apically. The taper 95 helps to locate the apical end portion 98 in the cavity 96 and to expand the porous member 94 when the tapered apical end portion 98 has diameters that are larger than the inner diameter defining the cavity 96 as the taper 95 at the apical end portion 98 extends coronally. To expand the porous member 94 once placed in a bore in bone, the rigid member 92 is driven longitudinally and apically, albeit by rotating the rigid member 92, into the porous member 94 to expand the porous member 94 generally radially outward and onto the surrounding bone. In this case, a coronal cavity 97 on rigid member 92 may be non-circular to receive a rotational force from a driving tool.


Referring to FIG. 10, in another form, an implant 100 has three pieces instead of two. The implant 100 includes a first, coronal, shell or rigid member 102; a second, porous member 104 made of the same material as porous member 14; and a third, apical, core member 106 threaded to the shell member 102. The porous member 104 is cylindrical and is mounted around a core portion 108 of the core member 106. The porous member 104 is clamped between an annular ledge 110 extending radially outward from the core portion 108 on the core member 106 and an annular, apical end surface 112 formed by the shell member 102.


The core portion 108 is threaded and fits into an interiorly threaded bore 114 defined by the shell member 102 and that is apically accessible. The core portion 108 has a coronal-apical length sufficient to extend through the porous member 104 and protrude coronally from the porous member 104 to engage the threaded bore 114. The shell member 102 has a coronally accessible cavity 116 for receiving a driving tool for rotating the shell member 102 to thread the shell member 102 onto the core member 106. This rotation adjusts the shell member 102 and core member 106 toward each other to longitudinally compress the porous member 104 between the surface 112 and shoulder 110, causing the porous member 104 to bulge or expand radially outward, as indicated by arrows B, to engage the surrounding bone. The threaded bore 114 is sufficiently deep to accommodate the insertion length of the core portion 108.


Alternative configurations are apparent such as where the core portion is on the coronal member rather than the apical member, the porous member extends additionally or alternatively on other sections of the coronal-apical length of the implant 100, and/or the core member and shell member are attached to each by other than threads such as a press-fit or by fasteners.


Referring to FIGS. 4-7, in a different form, an implant 200 is similar to implant 10 in that it has a first, coronal, rigid or shell member 202 and a second, porous member 204 made of similar materials as that mentioned above for implant 10. Here, however, shell member 202 forms an outer shell to cover at least a part of the second, porous member 204, and rather than being cup-shaped with an interior cavity, the porous member 204 is a relatively solid piece as with porous member 54 on implant 50. The porous member 204 is at least partially porous, but in the illustrated embodiment substantially porous, or alternatively may have a core of a different material or the porous material may be injected to form a core with a different filler material as mentioned previously.


The shell member 202 has a body 206 that defines a longitudinal or axial cavity 208 open at an apical or distal end portion 210 of the shell member 202. The porous member 204 is at least partially disposed within the longitudinal cavity 208 when assembled together, and in the illustrated form, extends apically from the shell member 202 to form the apical end 212 of the implant 200. The porous member 204 may also have a sidewall 214 that tapers inwardly as it extends coronally to assist with locating the porous member in cavity 208 and expanding radially outward when pressed to the shell member 202.


The longitudinal cavity 208 extends at least along the apical end portion 210 but may alternatively extend the entire length of the shell member 202 so that the longitudinal cavity 208 forms a coronally accessible hole 216 for receiving a driving tool 24 (FIG. 3). In this case, the interior surface 218 (shown in dashed line) defining the longitudinal cavity 208 has a jog or annular shoulder 220 to engage a coronal surface 222 of the porous member 204. With this configuration, the shell member 202 will engage the porous member 204 at the shoulder 220 to impact the porous member 204 as the shell member 202 is tapped or driven apically on the porous member 204. Otherwise, with the longitudinal cavity 208 open the entire length of the shell member 202, the driving tool may additionally or alternatively impact the porous member 204 directly as explained in greater detail below.


Alternatively, an interior wall 224 (shown in dashed line) divides the longitudinal cavity 208 from the coronal hole 216 that receives the driving tool. In this case, the apical surface 226 of the interior wall 224 engages the porous member 204.


The body 206 of the shell member 202 also has at least one opening 227 providing generally radial access to the longitudinal cavity 208 to permit the porous member 204 to extrude radially outward and through the openings to engage bone. In one form, the openings are generally longitudinally extending slots 228 extending along the apical end portion 210 to an apical end surface 230 of the shell member 202. In the illustrated form, a plurality of longitudinal slots 228 is uniformly spaced around the body 206. Here, six slots 228 are provided but any desired number of slots may be used. The height of the slots 228 may vary, either uniformly or from each other, and may extend at least a majority of the length of the body 206 or even substantially the entire length of the body 206 if desired. In the illustrated form, the porous member 204 extends longitudinally within longitudinal cavity 208 for a length at least sufficient to engage the entire length of the slots 228 as shown in FIG. 5.


In order to permit the porous member 204 to expand or extrude through the slots 228, or at least into the slots 228 and to the exterior of the shell member 202, the body 206 is made of a cylindrical wall 232 that defines the slots 228 and that has a thickness at least in the vicinity of the slots 228 of about 0.010 inches or less. So configured, the porous member 204 need only expand 0.010 inches or more to engage bone. The body 206 should not bend significantly if at all. In one form, the body 206 may be made of titanium and has a stiffness of about 110 GPa compared to the 3 GPa of the porous member 204 and as described above for porous member 14. Expanding or extruding the porous member 204 through the slots 228 will form an outwardly and radially extending porous rib 234 (as shown on FIG. 6) at each slot 228 for engaging surrounding bone. Each rib 234 generally runs longitudinally along the shell member 202 to correspond to the shape of the slot 228.


With the structure of implant 200 described, the porous member 204 can be separately placed in a bore in bone (such as the bore 60 shown in FIG. 11), and the shell member 202 is placed subsequently in the bore and onto the porous member 204. In another form, however, the porous member 204 is placed in the longitudinal cavity 208 before the implant 200 is placed in the bore in bone. In either case, the porous member 204 may be secured within the longitudinal cavity 208 by an interference fit, or alternatively, the porous member 204 merely initially has a loose press-fit within the longitudinal cavity 208. In the latter case, and when the porous member 204 is provided in different coronal-apical lengths, for example, the practitioner can replace the porous member 204 from the shell member 202 until a porous member 204 of an adequate coronal-apical length is selected. Once the porous member 204 is mounted on the shell member 202, the osteotome 24 or other driving tool is mounted on the driving end of the shell member 202 or more specifically, in the coronal hole 216 on the shell member 202 to place the implant 200 within the bore in the bone (such as that shown in FIG. 11). As the osteotome 24 is driven or tapped in an insertion direction, the osteotome 24 engages the interior wall 224, if present, and/or a coronal end surface 236 of the shell member 202. It will be understood that the interior surface 218 of the shell member 202 may also have shoulders or ledges to receive the driving member or osteotome 24 for driving the shell member 202 apically.


Once the porous member 204 is seated on a bottom of the bore in the bone, further impacting the driving tool on the driving end of the shell member 202 with a longitudinal force compacts the porous member 204 between the shell member 202 and the bottom of the bore. This, in turn, causes the sidewall 214 of the porous member 204 to expand radially outward and extrude into or through the slots 228 to form the ribs 234 to engage surrounding bone (as shown in FIG. 6).


For the alternative configuration where the longitudinal cavity 208 extends the length of the shell member 202 and the interior wall 224 is not present, the driving tool 24 may directly engage the driving end or coronal surface 222 of the porous member 204. In this case, the driving tool engages the coronal end surface 236 of the shell member 202, engages a shelf or shoulder on the interior surface 218, or has an interference fit with the interior surface 218 for initial placement of the implant 200 in the bore in bone. Once so disposed, further impact of the driving tool on the driving end (or in this case, the porous member 204) compacts the porous member 204 between the driving tool and the bottom of the bore. This expands the sidewall 214 of the porous member 204 radially outward and into or through the slots 228 to form the ribs 234. The expanded porous ribs 234 cut into the bone as described above and anchors the implant 200 in the bore in which it is disposed to provide stable initial stability to receive immediate mastication forces. Since the ribs 234 extend into the cortical bone, such configuration provides the implant 200 an additional torsional stability. The porous nature of the material forming the ribs 234 also aids in enhancing the speed of osseointegration of the implant 200 with the bone as described above.


The above described press-fit dental implants may be conventionally machined or cut using Electrical Discharge Machining (EDM). The above described press-fit dental implants may also be made by using the net-shape manufacturing process as owned by Zimmer Trabecular Metal Technologies, Inc.


Each of these non-limiting examples can stand on its own, or can be combined in any permutation or combination with any one or more of the other examples.


The above detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show, by way of illustration, specific embodiments in which the present subject matter can be practiced. These embodiments are also referred to herein as “examples.” Such examples can include elements in addition to those shown or described. However, the present inventors also contemplate examples in which only those elements shown or described are provided. Moreover, the present inventors also contemplate examples using any combination or permutation of those elements shown or described (or one or more aspects thereof), either with respect to a particular example (or one or more aspects thereof), or with respect to other examples (or one or more aspects thereof) shown or described herein.


In the event of inconsistent usages between this document and any documents so incorporated by reference, the usage in this document controls.


In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.” In this document, the term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated. In this document, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Also, in the following claims, the terms “including” and “comprising” are open-ended, that is, a system, device, article, composition, formulation, or process that includes elements in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim. Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.


The above description is intended to be illustrative, and not restrictive. For example, the above-described examples (or one or more aspects thereof) may be used in combination with each other. Other embodiments can be used, such as by one of ordinary skill in the art upon reviewing the above description. The Abstract is provided to comply with 37 C.F.R. §1.72(b), to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. Also, in the above Detailed Description, various features may be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter may lie in less than all features of a particular disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description as examples or embodiments, with each claim standing on its own as a separate embodiment, and it is contemplated that such embodiments can be combined with each other in various combinations or permutations. The scope of the present subject matter should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

Claims
  • 1. A bone implant, comprising: a coronal member formed of a coronal member material and defining an apical end portion that slopes radially inward while extending apically; anda porous member formed of a porous member material that is at least partially porous, the porous member being removably positionable on the apical end portion of the coronal member, such that moving the coronal member and the porous member toward each other longitudinally expands the porous member generally radially outward on the sloped apical end portion.
  • 2. The bone implant of claim 1, wherein the apical end portion of the coronal member is threaded; and wherein the porous member is rotatable on the threaded apical end portion to move the porous member longitudinally on the coronal member.
  • 3. The bone implant of claim 2, wherein the porous member defines a threaded cavity configured for receiving and engaging with the threaded apical end portion of the coronal member.
  • 4. The bone implant of claim 2, wherein the threaded apical end portion is capable of penetrating the porous member to engage the coronal member with the porous member.
  • 5. The bone implant of claim 1, wherein the coronal member comprises a smooth exterior surface portion.
  • 6. The bone implant of claim 1, wherein the porous member material comprises a porous metal.
  • 7. The bone implant of claim 1, wherein the porous member material comprises tantalum.
  • 8. The bone implant of claim 1, wherein the porous member has a compressive strength in a range of approximately 50 to 90 Mpa.
  • 9. The bone implant of claim 1, wherein the porous member has a stiffness of about 3 Gpa or less.
  • 10. A bone implant comprising: a body defining an apical end portion; anda porous member formed of a porous material, the porous member being removably positionable on the apical end portion of the body, such that moving the body and the porous member relative to each other expands the porous member generally radially outward, wherein the porous member comprises a cavity sized to receive the apical end portion, and the body is movably longitudinally within the cavity, the porous member being configured to expand generally radially outward when the body is moved longitudinally within the cavity.
  • 11. The bone implant of claim 10, wherein the body comprises a coronal section with a smooth exterior surface.
  • 12. The bone implant of claim 10, wherein the porous member has a stiffness of about 3 Gpa or less.
  • 13. The bone implant of claim 10, wherein the porous member is a porous sleeve disposed around the apical end portion.
  • 14. The bone implant of claim 10, wherein the porous member is rotationally attachable to the body, and rotation of the body relative to the porous member acts to expand the porous member generally radially outward.
  • 15. The bone implant of claim 10, wherein the apical end portion is sloped inwardly as it extends apically, and part of the apical end portion has a diameter that is greater than a diameter of part of the cavity.
  • 16. The bone implant of claim 10, wherein the apical end portion is threaded.
  • 17. The bone implant of claim 10, further comprising an apical core member engageable with the apical end portion of the body.
  • 18. The bone implant of claim 17, wherein the porous member is positionable between the apical core member and the body, and movement of the apical core member relative to the body causes the porous member to expand generally radially outward.
  • 19. The bone implant of claim 10, wherein the porous member has a porosity that replicates natural cancellous bone, and the porous member has a modulus of elasticity that is less than a modulus of elasticity of the body.
CLAIM OF PRIORITY

This application is a continuation of U.S. patent application Ser. No. 13/314,869, filed on Dec. 8, 2011, which is a divisional of U.S. patent application Ser. No. 12/266,318, filed on Nov. 6, 2008, the benefit of priority of each of which is claimed hereby, and each of which are incorporated by reference herein in its entirety.

US Referenced Citations (374)
Number Name Date Kind
2721387 Ashuckian Oct 1955 A
3314420 Smith et al. Apr 1967 A
3423830 Halpern et al. Jan 1969 A
3423831 Semmelman Jan 1969 A
3435526 Brancato Apr 1969 A
3497953 Weissman Mar 1970 A
3685115 Scott Aug 1972 A
3713860 Auskern Jan 1973 A
3740851 Weissman Jun 1973 A
3779239 Fischer Dec 1973 A
3797113 Brainin Mar 1974 A
3849887 Brainin Nov 1974 A
3896547 Kulwiec Jul 1975 A
3905109 Cohen et al. Sep 1975 A
3906550 Rostoker et al. Sep 1975 A
3919773 Freeman Nov 1975 A
3934347 Lash et al. Jan 1976 A
3992725 Homsy Nov 1976 A
4011602 Rybicki Mar 1977 A
4016651 Kawahara et al. Apr 1977 A
4086701 Kawahara et al. May 1978 A
4097935 Jarcho Jul 1978 A
4122605 Hirabayashi et al. Oct 1978 A
4131597 Bluethgen et al. Dec 1978 A
4178686 Riess et al. Dec 1979 A
4195366 Jarcho et al. Apr 1980 A
4199864 Ashman Apr 1980 A
4229170 Perez Oct 1980 A
4244689 Ashman Jan 1981 A
4252525 Child Feb 1981 A
4259072 Hirabayashi et al. Mar 1981 A
4281991 Michl et al. Aug 1981 A
4321042 Scheicher Mar 1982 A
4375967 Schaefer Mar 1983 A
4379694 Riess Apr 1983 A
4381918 Ehrnford May 1983 A
4411624 Ogino et al. Oct 1983 A
4431420 Adair Feb 1984 A
4439152 Small Mar 1984 A
4448758 Nagai et al. May 1984 A
4475892 Faunce Oct 1984 A
4478904 Ducheyne et al. Oct 1984 A
4483678 Nishio et al. Nov 1984 A
4484570 Sutter et al. Nov 1984 A
4492577 Farris et al. Jan 1985 A
4531915 Tatum, Jr. Jul 1985 A
4531916 Scantelbury et al. Jul 1985 A
4536158 Bruins et al. Aug 1985 A
4548959 Nagai et al. Oct 1985 A
4556534 Burnett et al. Dec 1985 A
4708652 Fujiu et al. Nov 1987 A
4713006 Hakamatsuka et al. Dec 1987 A
4722688 Lonca Feb 1988 A
4731085 Koch Mar 1988 A
4737411 Graves et al. Apr 1988 A
4743260 Burton May 1988 A
4744757 Adair et al. May 1988 A
4744759 Bowen May 1988 A
4820157 Salvo Apr 1989 A
4842517 Kawahara Jun 1989 A
4871384 Kasuga Oct 1989 A
4872839 Branjnovic Oct 1989 A
4872840 Bori Oct 1989 A
4877400 Holsclaw Oct 1989 A
4880610 Constantz Nov 1989 A
4906190 Michna Mar 1990 A
4909738 Ai et al. Mar 1990 A
4957554 Mathers et al. Sep 1990 A
4957819 Kawahara et al. Sep 1990 A
4960733 Kasuga et al. Oct 1990 A
4969817 Hiranuma et al. Nov 1990 A
4969913 Ojima Nov 1990 A
4983182 Kijima et al. Jan 1991 A
5000685 Brajnovic Mar 1991 A
5002488 Homsy Mar 1991 A
5004421 Lazarof Apr 1991 A
5007835 Valen Apr 1991 A
5009709 Ibsen et al. Apr 1991 A
5049074 Otani et al. Sep 1991 A
5055497 Okada et al. Oct 1991 A
5059193 Kuslich Oct 1991 A
5061285 Koch Oct 1991 A
5062798 Tsuge et al. Nov 1991 A
5064731 Miyazaki et al. Nov 1991 A
5076789 Tanaka Dec 1991 A
5087200 Branjovic et al. Feb 1992 A
5120340 Ducheyne et al. Jun 1992 A
5123844 Wakai et al. Jun 1992 A
5125839 Ingber et al. Jun 1992 A
5125971 Nonami et al. Jun 1992 A
5139424 Yli-Urpo Aug 1992 A
5152687 Amino Oct 1992 A
5176747 Panzera et al. Jan 1993 A
5180303 Hornburg et al. Jan 1993 A
5186626 Tanaka Feb 1993 A
5192325 Kijima et al. Mar 1993 A
5194000 Dury Mar 1993 A
5194001 Salvo Mar 1993 A
5199873 Schulte et al. Apr 1993 A
5205745 Kamiya et al. Apr 1993 A
5232365 Ikehara Aug 1993 A
5232878 Kasuga et al. Aug 1993 A
5236458 Ducheyne et al. Aug 1993 A
5238405 Marlin Aug 1993 A
5254005 Zuest Oct 1993 A
5282861 Kaplan Feb 1994 A
5282863 Burton Feb 1994 A
5288232 Panzera et al. Feb 1994 A
5306673 Hermansson et al. Apr 1994 A
5308391 Komma et al. May 1994 A
5310343 Hasegawa et al. May 1994 A
5312254 Rosenlicht May 1994 A
5314334 Panzera et al. May 1994 A
5342201 Oden Aug 1994 A
5344318 Wilson et al. Sep 1994 A
5344457 Pilliar et al. Sep 1994 A
5346397 Braiman Sep 1994 A
5415546 Cox, Sr. May 1995 A
5419702 Beaty et al. May 1995 A
5425640 Scharf Jun 1995 A
5439380 Marlin Aug 1995 A
5443515 Cohen et al. Aug 1995 A
5449291 Lueschen et al. Sep 1995 A
5458488 Chalifoux Oct 1995 A
5468544 Marcolongo et al. Nov 1995 A
5470230 Daftary et al. Nov 1995 A
5476383 Beaty et al. Dec 1995 A
5531792 Huene Jul 1996 A
5549123 Okuyama et al. Aug 1996 A
5554665 Tateosian et al. Sep 1996 A
5562733 Weissbach et al. Oct 1996 A
5571016 Ingber et al. Nov 1996 A
5572652 Robusto et al. Nov 1996 A
5575652 Gaffar et al. Nov 1996 A
5584693 Nishihara Dec 1996 A
5591030 Thiel et al. Jan 1997 A
5612049 Li et al. Mar 1997 A
5614330 Panzera et al. Mar 1997 A
5621035 Lyles et al. Apr 1997 A
5624262 Yarovesky et al. Apr 1997 A
5645934 Marcolongo et al. Jul 1997 A
5674069 Osorio Oct 1997 A
5676745 Kelly et al. Oct 1997 A
5683249 Ibsen et al. Nov 1997 A
5685714 Beaty et al. Nov 1997 A
5695337 Tyszblat Sadoun Dec 1997 A
5697785 Delahaye Dec 1997 A
5697976 Chesterfield et al. Dec 1997 A
5697997 Aronsson et al. Dec 1997 A
5698019 Frank et al. Dec 1997 A
5713994 Kramer et al. Feb 1998 A
5723007 Engel et al. Mar 1998 A
5727943 Beaty et al. Mar 1998 A
5755809 Cohen et al. May 1998 A
5759036 Hinds Jun 1998 A
5762500 Lazarof Jun 1998 A
5772438 Deom Jun 1998 A
5775912 Panzera et al. Jul 1998 A
5785524 Wolf Jul 1998 A
5833463 Hurson Nov 1998 A
5833464 Foser Nov 1998 A
5839900 Billet et al. Nov 1998 A
5843348 Giordano Dec 1998 A
5849068 Hofmann et al. Dec 1998 A
5873721 Willoughby Feb 1999 A
5910273 Thiel et al. Jun 1999 A
5915967 Clokie Jun 1999 A
5925180 Frank et al. Jul 1999 A
5931674 Hanosh Aug 1999 A
5934906 Phimmasone Aug 1999 A
5939211 Mormann Aug 1999 A
5947732 Beaty et al. Sep 1999 A
5947737 Billet et al. Sep 1999 A
5951290 Ardizio et al. Sep 1999 A
5951293 Billet et al. Sep 1999 A
5951295 Lyles et al. Sep 1999 A
5964592 Hites et al. Oct 1999 A
5971760 Letcher Oct 1999 A
5975905 Kim et al. Nov 1999 A
5984683 Sakata et al. Nov 1999 A
5989026 Rogers et al. Nov 1999 A
5989027 Wagner et al. Nov 1999 A
6010337 Billet et al. Jan 2000 A
6012923 Bassett et al. Jan 2000 A
6013591 Ying et al. Jan 2000 A
6027742 Lee et al. Feb 2000 A
6039568 Hinds Mar 2000 A
6045361 Misch et al. Apr 2000 A
6048203 Rosenberg Apr 2000 A
6048205 Wright Apr 2000 A
6054400 Brink et al. Apr 2000 A
RE36689 Beaty et al. May 2000 E
6056547 Names May 2000 A
6063442 Cohen et al. May 2000 A
6080692 Reise et al. Jun 2000 A
6087553 Cohen et al. Jul 2000 A
6117456 Lee et al. Sep 2000 A
6120293 Lazzara et al. Sep 2000 A
6126445 Willoughby Oct 2000 A
6126732 Hofmann et al. Oct 2000 A
6135775 Weisman Oct 2000 A
6146423 Cohen et al. Nov 2000 A
6152737 Beaty et al. Nov 2000 A
6159010 Rogers et al. Dec 2000 A
6159417 Giordano Dec 2000 A
6168435 Beaty et al. Jan 2001 B1
6168436 O'Brien Jan 2001 B1
6168633 Shoher et al. Jan 2001 B1
6183256 Fisher et al. Feb 2001 B1
6183515 Barlow et al. Feb 2001 B1
6186791 Karmaker et al. Feb 2001 B1
6193516 Story Feb 2001 B1
6200137 Holand et al. Mar 2001 B1
6206192 Winstead et al. Mar 2001 B1
6213775 Reipur Apr 2001 B1
6214368 Lee et al. Apr 2001 B1
6224662 Nemeth May 2001 B1
6227860 Hobo May 2001 B1
6244869 Billet et al. Jun 2001 B1
6250922 Bassett et al. Jun 2001 B1
6267597 Kim Jul 2001 B1
6270347 Webster et al. Aug 2001 B1
6271282 Giordano Aug 2001 B1
6280863 Frank et al. Aug 2001 B1
6283753 Willoughby Sep 2001 B1
6287341 Lee et al. Sep 2001 B1
6299448 Zdrahala et al. Oct 2001 B1
6306784 Drescher et al. Oct 2001 B1
6319255 Grundei Nov 2001 B1
6322728 Brodkin et al. Nov 2001 B1
6325628 Morgan Dec 2001 B1
6331312 Lee et al. Dec 2001 B1
6342458 Schweiger et al. Jan 2002 B1
6343930 Beaty et al. Feb 2002 B1
6345984 Karmaker et al. Feb 2002 B2
6354836 Panzera et al. Mar 2002 B1
6355069 DeCarlo, Jr. Mar 2002 B1
6362250 Karmaker et al. Mar 2002 B1
6362251 Alkemper et al. Mar 2002 B1
6379153 Schroering Apr 2002 B1
6386876 Lee May 2002 B1
6394806 Kumar May 2002 B1
6402517 Hozumi et al. Jun 2002 B1
6419491 Ricci et al. Jul 2002 B1
6431868 Story Aug 2002 B2
6439890 Karmaker et al. Aug 2002 B1
6447549 Taft Sep 2002 B1
6450813 McDonald et al. Sep 2002 B1
6451292 Warford, III et al. Sep 2002 B2
6454569 Hollander et al. Sep 2002 B1
6485849 Petticrew Nov 2002 B2
6495073 Bodenmiller et al. Dec 2002 B2
6497573 Wagner et al. Dec 2002 B2
6503625 Rieder et al. Jan 2003 B1
6514453 Vigliotti et al. Feb 2003 B2
6527553 Yeung Mar 2003 B2
6540784 Barlow et al. Apr 2003 B2
6627327 Reidt et al. Sep 2003 B2
6641775 Vigliotti et al. Nov 2003 B2
6648645 MacDougald et al. Nov 2003 B1
6666684 Names Dec 2003 B1
6669476 Prestipino et al. Dec 2003 B2
6679701 Blacklock Jan 2004 B1
6689202 Panzera Feb 2004 B2
6743936 Wellinghoff et al. Jun 2004 B1
6752863 Lyles et al. Jun 2004 B2
6755651 Brodbeck Jun 2004 B2
6787584 Jia et al. Sep 2004 B2
6797006 Hodorek Sep 2004 B2
6808659 Schulman et al. Oct 2004 B2
6821462 Schulman et al. Nov 2004 B2
6846181 Karmaker et al. Jan 2005 B2
6878456 Castro et al. Apr 2005 B2
6881488 Giordano Apr 2005 B2
6916177 Lin et al. Jul 2005 B2
6932606 Aravena et al. Aug 2005 B2
6945448 Medlin et al. Sep 2005 B2
6949251 Dalal et al. Sep 2005 B2
6953594 Lee et al. Oct 2005 B2
6976999 Charlebois et al. Dec 2005 B2
6984261 Cummings et al. Jan 2006 B2
6986660 Kumar et al. Jan 2006 B2
6994726 Lin et al. Feb 2006 B2
7011522 Panzera et al. Mar 2006 B2
7291012 Lyren Nov 2007 B2
7867264 McDevitt Jan 2011 B2
8088169 Dorr Jan 2012 B2
8231387 Salvi et al. Jul 2012 B2
8851891 Lomicka Oct 2014 B2
8876909 Meridew Nov 2014 B2
8968415 Meridew Mar 2015 B2
9011549 Splieth Apr 2015 B2
9155578 Chegini Oct 2015 B2
9364339 Mayer Jun 2016 B2
9393126 Mayer Jul 2016 B2
20010000486 Story Apr 2001 A1
20010051832 Bakker et al. Dec 2001 A1
20020022887 Huene Feb 2002 A1
20020028424 Prestipino et al. Mar 2002 A1
20020039718 Kwan Apr 2002 A1
20020076673 Wagner et al. Jun 2002 A1
20020115742 Trieu et al. Aug 2002 A1
20020155412 Panzera et al. Oct 2002 A1
20020160334 Brodbeck Oct 2002 A1
20030031984 Rusin et al. Feb 2003 A1
20030068598 Vallittu et al. Apr 2003 A1
20030073394 Reidt et al. Apr 2003 A1
20030078581 Frei Apr 2003 A1
20030087984 Erbe et al. May 2003 A1
20030096214 Luthardt et al. May 2003 A1
20030134925 Guzauskas Jul 2003 A1
20030148247 Sicurelli, Jr. et al. Aug 2003 A1
20040024081 Trieu et al. Feb 2004 A1
20040024471 Ferree Feb 2004 A1
20040058299 Molin et al. Mar 2004 A1
20040064192 Bubb Apr 2004 A1
20040097627 Vallittu et al. May 2004 A1
20040106085 Vallittu et al. Jun 2004 A1
20040106087 Weigl et al. Jun 2004 A1
20040131562 Gower et al. Jul 2004 A1
20040133204 Davies Jul 2004 A1
20040152034 Cummings et al. Aug 2004 A1
20040152048 Dinkelacker Aug 2004 A1
20040170946 Lyren Sep 2004 A1
20040197737 Uckelmann et al. Oct 2004 A1
20040234925 Benhamou Nov 2004 A1
20040241614 Goldberg et al. Dec 2004 A1
20050014108 Wohrle et al. Jan 2005 A1
20050023710 Brodkin et al. Feb 2005 A1
20050028424 Poinski Feb 2005 A1
20050031704 Ahn Feb 2005 A1
20050084533 Howdle et al. Apr 2005 A1
20050084819 Sims et al. Apr 2005 A1
20050084821 Sims et al. Apr 2005 A1
20050096652 Burton May 2005 A1
20050100724 Seargeant May 2005 A1
20050109060 Cummings et al. May 2005 A1
20050123672 Justin et al. Jun 2005 A1
20050184134 Charlebois et al. Aug 2005 A1
20050191248 Hunter et al. Sep 2005 A1
20050221259 Anderson Oct 2005 A1
20050261795 Ghosh et al. Nov 2005 A1
20050266382 Soler et al. Dec 2005 A1
20060075826 Roberts et al. Apr 2006 A1
20070015110 Zhang et al. Jan 2007 A1
20070111165 Wallick et al. May 2007 A1
20070118221 Robie et al. May 2007 A1
20070184265 Ranganathan et al. Aug 2007 A1
20080050699 Zhang et al. Feb 2008 A1
20080140207 Olmos Jun 2008 A1
20080241793 Collins et al. Oct 2008 A1
20090011384 Collins et al. Jan 2009 A1
20090036908 Zokol et al. Feb 2009 A1
20090061387 Lomicka et al. Mar 2009 A1
20090061388 Collins et al. Mar 2009 A1
20090061389 Lomicka et al. Mar 2009 A1
20090098510 Zhang Apr 2009 A1
20090098511 Zhang Apr 2009 A1
20090215007 Caterini et al. Aug 2009 A1
20100003638 Collins et al. Jan 2010 A1
20100003639 Salvi et al. Jan 2010 A1
20100003640 Damstra et al. Jan 2010 A1
20100114314 Lomicka May 2010 A1
20100217325 Hochschuler Aug 2010 A1
20100228301 Greenhalgh Sep 2010 A1
20100286692 Greenhalgh Nov 2010 A1
20110269103 Shimko Nov 2011 A1
20120129132 Lomicka et al. May 2012 A1
20120184993 Arambula Jul 2012 A1
20130204387 Meridew Aug 2013 A1
20140356812 Anderson Dec 2014 A1
20140363787 Tissi Dec 2014 A1
20150238319 Meridew Aug 2015 A1
20150257888 Acker Sep 2015 A1
Foreign Referenced Citations (50)
Number Date Country
2506845 Jul 2004 CA
4209569 Nov 1994 DE
19529036 Mar 1997 DE
10105398 Aug 2002 DE
0266313 May 1988 EP
0271236 Jun 1988 EP
0345581 Dec 1989 EP
0366018 May 1990 EP
0417018 Mar 1991 EP
0467948 Jan 1992 EP
0498923 Aug 1992 EP
0333503 Feb 1993 EP
0560279 Sep 1993 EP
0806211 Nov 1997 EP
0950421 Oct 1999 EP
1281372 Feb 2003 EP
1598028 Nov 2005 EP
1712205 Oct 2006 EP
2796265 Jan 2001 FR
1526780 Sep 1978 GB
2401867 Nov 2004 GB
2416996 Feb 2006 GB
61275205 Dec 1986 JP
63290559 Nov 1988 JP
1025849 Jan 1989 JP
2002126071 May 2002 JP
WO-8900410 Jan 1989 WO
WO-9011979 Oct 1990 WO
WO-9320773 Oct 1993 WO
WO-9421190 Sep 1994 WO
WO-9528973 Nov 1995 WO
WO-9721393 Jun 1997 WO
WO-9741809 Nov 1997 WO
WO-9830170 Jul 1998 WO
WO-0021455 Apr 2000 WO
WO-0132072 May 2001 WO
WO-0187193 Nov 2001 WO
WO-0234155 May 2002 WO
WO-0236039 May 2002 WO
WO-02062901 Aug 2002 WO
WO-02064100 Aug 2002 WO
WO-03065939 Aug 2003 WO
WO-03065996 Aug 2003 WO
WO-03078508 Sep 2003 WO
WO-03094774 Nov 2003 WO
WO-2004054464 Jul 2004 WO
WO-2006082610 Aug 2006 WO
WO-2007027794 Mar 2007 WO
WO-2007086832 Aug 2007 WO
WO-2010053767 May 2010 WO
Non-Patent Literature Citations (54)
Entry
“European Application Serial No. 09744565.4, Communication Pursuant to Article 94(3) EPC mailed Mar. 18, 2016”, 4 pgs.
“European Application Serial No. 09744565.4, Examination Notification Art. 94(3) mailed May 11, 2015”, 5 pgs.
“European Application Serial No. 09744565.4, Response filed May 19, 2015 to Examination Notification Art. 94(3) mailed May 11, 2015”, 54 pgs.
“European Application Serial No. 09744565.4, Response filed Jul. 25, 2016 to Communication Pursuant to Article 94(3) EPC mailed Mar. 18, 2016”, 8 pgs.
“U.S. Appl. No. 12/266,318, Final Office Action mailed Aug. 9, 2011”, 10 pgs.
“U.S. Appl. No. 12/266,318, Non Final Office Action mailed Feb. 23, 2011”, 9 pgs.
“U.S. Appl. No. 12/266,318, Response filed Feb. 4, 2011 to Restriction Requirement mailed Jan. 4, 2011”, 7 pgs.
“U.S. Appl. No. 12/266,318, Response filed May 27, 2011 to Non Final Office Action mailed Feb. 23, 2011”, 12 pgs.
“U.S. Appl. No. 12/266,318, Response filed Oct. 7, 2010 to Restriction Requirement mailed Sep. 14, 2010”, 7 pgs.
“U.S. Appl. No. 12/266,318, Restriction Requirement mailed Jan. 4, 2011”, 6 pgs.
“U.S. Appl. No. 12/266,318, Restriction Requirement mailed Sep. 14, 2010”, 6 pgs.
“U.S. Appl. No. 13/314,869, Examiner Interview Summary mailed Nov. 21, 2012”, 3 pgs.
“U.S. Appl. No. 13/314,869, Final Office Action mailed Jan. 24, 2013”, 8 pgs.
“U.S. Appl. No. 13/314,869, Non Final Office Action mailed Aug. 29, 2012”, 7 pgs.
“U.S. Appl. No. 13/314,869, Non Final Office Action mailed Dec. 30, 2013”, 7 pgs.
“U.S. Appl. No. 13/314,869, Notice of Allowance mailed May 30, 2014”, 5 pgs.
“U.S. Appl. No. 13/314,869, Preliminary Amendment filed Dec. 8, 2011”, 8 pgs.
“U.S. Appl. No. 13/314,869, Response filed May 21, 2013 to Final Office Action mailed Jan. 24, 2013”, 12 pgs.
“U.S. Appl. No. 13/314,869, Response filed Jun. 25, 2012 to Restriction Requirement mailed May 24, 2012”, 9 pgs.
“U.S. Appl. No. 13/314,869, Response filed Nov. 27, 2012 to Non Final Office Action mailed Aug. 29, 2012”, 12 pgs.
“U.S. Appl. No. 13/314,869, Response filed May 20, 2014 to Non-Final Office Action dated Dec. 20, 2013”, 12 pgs.
“U.S. Appl. No. 13/314,869, Restriction Requirement mailed May 24, 2012”, 8 pgs.
“U.S. Appl. No. 13/314,869, Supplemental Notice of Allowability mailed Jun. 11, 2014”, 4 pgs.
“U.S. Appl. No. 13/314,869, Supplemental Notice of Allowability mailed Jul. 22, 2014”, 2 pgs.
“European Application Serial No. 09744565.4, Examination Notification Art. 94(3) mailed Oct. 11, 2013”, 6 pgs.
“European Application Serial No. 09744565.4, Office Action mailed May 29, 2012”, 5 pgs.
“European Application Serial No. 09744565.4, Office Action mailed Sep. 9, 2011”, 2 pgs.
“European Application Serial No. 09744565.4, Response filed Apr. 15, 2014 to Examination Notification Art. 94(3) mailed Oct. 11, 2013”, 9 pgs.
“European Application Serial No. 09744565.4, Response filed Dec. 5, 2012 to Examination Notification Art. 94(3) mailed May 29, 2012”, 14 pgs.
“Flocculants, Binders, and Bonds”, Chapter 11, Molecular Binders, (1995), 173-177.
“International Application Serial No. PCT/US2006/020130, International Search Report mailed Feb. 6, 2007”, 7 pgs.
“International Application Serial No. PCT/US2006/033893, International Search Report mailed Jan. 29, 2007”, 1 pg.
“International Application Serial No. PCT/US2007/069562, International Search Report mailed Jul. 7, 2008”, 4 pgs.
“International Application Serial No. PCT/US2008/074616, International Search Report mailed Dec. 16, 2008”, 4 pgs.
“International Application Serial No. PCT/US2008/074642, International Search Report mailed Feb. 12, 2009”, 4 pgs.
“International Application Serial No. PCT/US2008/074645, International Search Report mailed Dec. 29, 2008”, 9 pgs.
“International Application Serial No. PCT/US2008/074655, International Search Report mailed Feb. 18, 2009”, 9 pgs.
“International Application Serial No. PCT/US2009/048456, International Search Report mailed Apr. 27, 2010”, 5 pgs.
“International Application Serial No. PCT/US2009/048469, International Search Report and Written Opinion mailed Oct. 19, 2009”, 9 pgs.
“International Application Serial No. PCT/US2009/048476, International Search Report mailed Dec. 10, 2009”, 13 pgs.
“International Application Serial No. PCT/US2009/048481, International Search Report mailed Dec. 10, 2009”, 13 pgs.
“International Application Serial No. PCT/US2009/062308, International Preliminary Report on Patentability mailed May 10, 2011”, 8 pgs.
“International Application Serial No. PCT/US2009/062308, International Search Report mailed Jan. 21, 2010”, 9 pgs.
“International Application Serial No. PCT/US2009/062308, Written Opinion mailed Jan. 21, 2010”, 8 pgs.
“Peek-Classix”, Information Sheet Invibio Ltd., Properties of Peek-Classix White Granular, (Nov. 2003), 2 pgs.
“The Clinical Assessment of a Ceramic-Coated Transmucosal Dental Implant Collar”, International Journal of Prosthodonics vol. 9, Issue 5, (1996), 466-472.
“Two Applications of Transmucosal Milled Ceramic in Implantology”, Preliminary Clinical Examples; Implant Quintessence International vol. 27, Issue 8, (1996), 533-548.
Cass, Richard B, et al., “Innovative Ceramic-Fiber Technology Energizes Advanced Cerametrics”, The American Ceramic Society, American Ceramic Society Bulletin, (Nov. 2003), 9701-9706.
Ganz, Scott D, “Presurgical Planning With CT-Derived Fabrication of Surgical Guides”, J Oral Maxiofac Surg 63, Suppl 2, (2005), 59-73 pgs.
Kan, Joseph Y K, “Computer-Guided Immediate Provisionalization of Anterior Multiple Adjacent Implants: Surgical and Prosthodontic Rationale”, Practical Procedures & Aethetic Dentistry, vol. 18, No. 10, (2006), 617-623 pgs.
Matinlinna, Jukka P, et al., “An Introduction to Silanes and Their Clinical Applications in Dentistry”, The International Journal of Prosthodontics, vol. 17, No. 2, (2004), 155-164.
Reed, James S., “Chapter 24, Injection Molding”, Principles of Ceramics Processing, 2nd Edition, New York : Wiley, (1995), 477-481.
Rosenfeld, Alan L, “Prosthetically Directed Implant Placement Using Computer Software to Ensure Precise Placement and Predictable Prosthetic Outcomes. Part 1: Diagnostics, Imaging, and Collaborative Accountability”, International Journal of Periodontics & Restorative Dentistry, vol. 26, No. 3, (2006), 215-221.
Zhou, Yan, et al., “Shape Optimization of Randomly Oriented Short Fibers for Bone Cement Reinforcements”, Materials Science & Engineering A 393, (2005), 374-381.
Related Publications (1)
Number Date Country
20140370460 A1 Dec 2014 US
Divisions (1)
Number Date Country
Parent 12266318 Nov 2008 US
Child 13314869 US
Continuations (1)
Number Date Country
Parent 13314869 Dec 2011 US
Child 14474719 US