None.
None.
The present invention relates to systems and methods for providing spinal implants, for example, to be used in connection with spinal fusion.
Spinal fusion is a surgical procedure that fuses two or more vertebrae together using bone graft materials supplemented with devices. Spinal fusion may be performed for the treatment of chronic neck and/or back pain, trauma, and neoplasms. Spinal fusion can be used to stabilize and eliminate motion of vertebrae segments that may be unstable, or move in an abnormal way, that can lead to discomfort and pain. Spinal fusion may be performed to treat injuries to the vertebrae, degeneration of spinal discs, abnormal spinal curvature, and/or a weak or unstable spine.
Spinal fusion generally requires a graft material, usually bone material, to fuse the vertebrae together. The bone graft material can be placed over the spine to fuse adjacent vertebrae together. Alternatively, a device (i.e. cage) may be positioned between the vertebrae being fused and filled with the bone graft material. Such a cage can include holes that allow the vertebrae and the graft material to grow together to provide fusion, with the cage supporting the weight of the vertebrae while the fusion is occurring. Most of these cages are limited to only a few cubic centimeters of bone graft material thus limiting the fusion area achieved. Because the fusion mass is under pressure, fusion can be promoted. The disc space height can be restored, taking pressure off of the nerves. The spine alignment, foraminal height, and canal diameter can be restored. In some cases the graft can be placed with minimal disruption of muscles and ligaments using minimally invasive approaches to the spine, thus preserving the normal anatomical integrity of the spine. Other interbody device assemblies are also presently known.
For example, certain interbody devices are inserted directly between two vertebrae. For designs that are inserted at their full height, these may be difficult to insert and/or distract vertebrae more than desired due to the curvature of the vertebral surfaces. Certain known interbody devices are inserted sideways (at a lower height) and then rotated (to a greater height) to ease insertion while still allowing for the desired distraction. These include those disclosed in U.S. patent application Ser. Nos. 11/623,356, filed Jan. 16, 2007, titled “Minimally Invasive Interbody Device,” and 11/932,175, filed Oct. 31, 2007, titled “Minimally Invasive Interbody Device Assembly,” which are hereby incorporated by reference in their entirety.
While these designs allow for eased insertion, these designs typically have fixed dimensions, thereby requiring a certain amount of trial and error and/or not providing for any adjustability, beyond removing a spacer and replacing it with a differently sized spacer. Certain known designs provide some flexibility by providing a series of elements aligned as a column, with the elements added serially until a desired height is reached. An example of such a device is disclosed in U.S. Published Application No. 2011/0009870, titled “Apparatus for Spinal Fusion.” These designs, however, have limitations regarding distribution of bone graft material, as they may fill the access hole created for their deployment and not allow room for insertion of bone graft material. Further, these designs may also require shaving vertebral bodies down to a generally flat surface, which can remove more of the vertebral body than desirable.
Typically, the bone graft material is autogenous bone material taken from the patient, or allograft bone material harvested from a cadaver. Synthetic bone material can also be used as the graft material. Generally, the patient's own bone material offers the best fusion material since it offers osteoinductive, osteoconductive, and osteogenesis properties. Known bone fusion. materials include iliac crest harvest from the patient, bone graft extenders, such as hydroxyapetite and demineralized bone matrix, and bone morphogenic protein.
Minimally invasive surgical procedures have been devised in an attempt to preserve normal anatomical structures during spinal surgery. Many known procedures for spinal fusion, however, still are more invasive than desired. Additionally, many known procedures do not provide the level of control over the delivery and placement of the bone graft material as could be desired. Additionally, current interbody devices only allow for a limited application of bone material (i.e., cages), and because of their relative size place the neural elements at risk during placement, often resulting in undersized implants being placed.
It is therefore one object of the present invention to provide a spinal implant system that reduces approach related morbidity, allows for more bone graft placement and/or provides improved control of the delivery and/or placement of bone graft material.
These and other objects of the invention are achieved in an expandable cage for maintaining the position of adjacent vertebrae. The expandable cage includes a cage top, a cage bottom, and a plurality of shims. The cage top is adapted for contacting a bottom surface of the upper of the adjacent vertebrae, and the cage bottom is adapted for contacting an upper surface of the lower of the adjacent vertebrae. The plurality of shims are adapted for insertion between the cage top and cage bottom to expand the cage. The shims include a proximal end having a bone graft distribution feature configured such that when bone graft material is introduced to the site of the expandable cage, the bone graft material is separated at the bone graft distribution feature and distributed to either side of the cage. For example, the proximal end of the shims may have a leading edge including tapered surfaces that lead to a generally sharp point.
Certain embodiments of the present invention provide an expandable cage system including a cage and a funnel. The cage includes a cage top, a cage bottom, and a plurality of shims. The cage top is adapted for contacting a bottom surface of the upper of the adjacent vertebrae, and the cage bottom is adapted for contacting an upper surface of the lower of the adjacent vertebrae. The plurality of shims are adapted for insertion between the cage top and cage bottom to expand the cage. The shims include a proximal end having a leading edge including tapered surfaces that lead to a generally sharp point. The funnel defines a conduit through which bone graft material may passed from an external source to the implanted cage system. The funnel includes a delivery end that is positioned proximate to the proximal end of the plurality of shims during the delivery of bone graft material. The delivery end of the funnel may include a notch sized and configured to be accepted by the leading edge of the plurality of shims.
As seen in
The cage top 20 includes a distal end 22 and a proximal end 24, as well as a bottom surface 26 configured to contact the shims 50 when the expandable cage system 10 is in an expanded position caused by the insertion of the shims 50. The cage top 20 also includes a top surface 28 that includes features 29. As indicated above, the top surface 28 is formed to generally match with a shape of the vertebral surface that it contacts. In the illustrated embodiment, the top surface 28 is radiused to have a greater height at a central portion than at either the distal end 22 or the proximal end 24, and is generally symmetric from end to end and from side to side. The top surface 28 may, for example, be about 28 millimeters long by about 9 millimeters wide. In alternate embodiments, different sizes and/or shapes may be used to suit different patients and/or procedures. For example, the distal end 22 may have a greater height than the proximal end 24 for certain procedures to correct a lordosis. As another example, the top surface may be radiused from side to side to match certain vertebral contours. Such radiusing may be symmetric or asymmetric, and the radius may vary at different points along the length of the top surface as well. In the illustrated embodiment, the top surface 28 includes features 29 that may include for example, ridges and/or pyramids and/or teeth and/or notches and/or grooves, that provides for improved grip along the vertebral surface to help secure the expandable cage system 10 in place while shims 50 are being added, and/or when bone graft material is being added to the site of interest, and/or after the procedure has been completed. Further, in certain embodiments, the features may allow an amount of bone graft material to fill in spaces between the top surface and the vertebral surface.
The cage bottom 30 includes a distal end 32 and a proximal end 34, as well as an upper surface 36 configured to contact the shims 50 when the expandable cage system 10 is in an expanded position caused by the insertion of the shims 50. The cage bottom 30 also includes a bottom surface 38 that includes features 39. As indicated above, the bottom surface 38 is formed to generally match with a shape of the vertebral surface that it contacts. In the illustrated embodiment, the bottom surface 38 is radiused to have a greater height at a central portion than at either the distal end 32 or the proximal end 34, and is generally symmetric from end to end and from side to side. The bottom surface 38 may, for example, be about 28 millimeters long by about 9 millimeters wide. In alternate embodiments, different sizes and/or shapes may be used to suit different patients and/or procedures. For example, the distal end 32 may have a greater height than the proximal end 34 for certain procedures to correct a lordosis. As another example, the bottom surface may be radiused from side to side to match certain vertebral contours. Such radiusing may be symmetric or asymmetric, and the radius may vary at different points along the length of the top surface as well. In the illustrated embodiment, the bottom surface 38 has a generally similar contour as the top surface 28, and is generally symmetric with the top surface 28. In certain embodiments, however, the top surface 28 and bottom surface 38 may not be symmetric, and may have differently configured contours, sizes, and/or proportions.
Similar to the top surface 28, in the illustrated embodiment, the bottom surface 38 includes features 39 that may include for example, ridges and/or pyramids and/or teeth and/or notches and/or grooves, that provides for improved grip along the vertebral surface to help secure the expandable cage system 10 in place while shims 50 are being added, and/or when bone graft material is being added to the site of interest, and/or after the procedure has been completed. Further, in certain embodiments, the features may allow an amount of bone graft material to fill in spaces between the top surface and the vertebral surface.
Proximate to the proximal end 54 of the shim 50, tapered surfaces 60 extend generally proximally as well as inwardly from the sides 56. The tapered surfaces 60 extend substantially inwardly to provide a geometry configured to separate introduced bone graft material and direct the introduced bone graft material to either side of the shim 50 and cage system 10. In the illustrated embodiment, the tapered surfaces 60 extend toward and meet at a point located substantially along a center line of the shim 50, thereby forming a sharp point 62. The tapered surfaces 60 and sharp point 62 are an example of a wedge-shaped leading edge, and also provide an example of a bone graft distribution feature. Other wedge-shaped leading edges may be employed in alternate embodiments, such as a more rounded tip than shown in the illustrated embodiment. In alternate embodiments, the tapered surfaces 60 may not meet at a sharp point but may include a small flat area, however, the flat portion should be kept appropriately small to insure the configuration still effectively separates the bone graft material to either side of the cage system.
The shim 50 also includes a bottom 64 and a top 66. The distance between the bottom 64 and top 66 defines the height of the shim 50. The height may be, for example, about one millimeter. Thus, a series of wedges may be inserted into the cage system one at a time, allowing adjustment in increments of about one millimeter. In alternate embodiments, thinner or thicker shims, or a combination of different thicknesses, may be used to provide different adjustment increments. Further, in certain embodiments, the thickness of the shim may be tapered, sloped, or wedged to provide a leading sloped surface across the height or a portion of the height of the shim at the distal and/or proximal end of the shim to ease the insertion of shims into the expandable cage.
As seen in
The expandable cage system 10 may also include an inserter configured to facilitate insertion of the shims 50 between the cage top 20 and the cage bottom 30. An inserter formed in accordance with an embodiment of the present invention is illustrated in
The inserter 70 includes a handle end 72 and an inserter end 74. The handle end 72 is oriented proximally and includes a handle 76 configured for grasping by a practitioner. The inserter end 74 is oriented distally and includes and insertion feature 76 configured to interact with one or more shims 50 for insertion into the cage system 10 and/or for manipulation of a shim 50 and/or the cage system 10 after a shim 50 is partially or fully inserted. In the illustrated embodiment, the insertion feature 76 includes sloped surfaces 78 corresponding to the tapered surfaces 60 of the shim 50 and forming an opening configured to accept at least a portion of the proximal portion of the shim 50.
The expandable cage system 10 may also include a funnel 80 configured to help provide bone graft material toward the cage system 10 and surrounding anatomy.
An example of the use of an expandable cage system will now be discussed with reference to
The cage system 100 of the illustrated embodiment includes an expandable cage 110 and a funnel 120, and may be generally similar to the above discussed embodiments. The expandable cage 110 is designed to be implanted in a disc space 140 to establish a desired spacing between adjacent vertebrae.
To implant the expandable cage 110, first an incision is made for access to the site of interest, and the site of interest, including the vertebral bodies, prepared. Because the expandable cage 110 of the illustrated embodiment is contoured to generally match the surface contour of the vertebral bodies, less time preparing the bodies, such as scraping material from the vertebral bodies, is required, and less material is removed. With the site of interest prepared, the top and bottom of the expandable cage 110 are inserted into the site, with the top oriented toward the bottom surface of the higher of the vertebrae, and the bottom oriented toward the upper surface of the lower of the vertebrae, and positioned as desired. At insertion, the top and bottom may be inserted without any shims between them. Alternatively, if the gap between the vertebral bodies at insertion is sufficiently large so that the top and bottom, along with a given number of shims, may be inserted between the vertebrae while still maintaining a clearance between the expandable cage 100 and the vertebral bodies, then a number of shims may be inserted with the top and bottom of the cage, with the shims already between the top and bottom.
With the expandable cage 110 inserted and positioned as desired, additional shims are then added to expand the expandable cage 110 and thereby also position the vertebral bodies at the desired spacing. The shims are added with their bone graft distribution feature positioned proximally. With the vertebral bodies spaced and positioned as desired, bone graft material may now be introduced to fill in the open volume around the cage, for example, on either side of the cage, and to provide fusion, and improve the stability of the implant site. To provide the bone graft material to the site of interest, the funnel 120 is positioned with a delivery end proximate to the proximal end of the cage and the bone graft distribution feature of the shims, and bone graft material 130 passed through the funnel 120 to the site of interest. For example, a tamping rod (not shown) may be used to advance the material through the funnel. As the bone graft material 130 meets the bone graft distribution feature (for example, a wedge with a generally sharp leading edge), the bone graft material is separated and distributed to each side of the cage as it passes along and past the bone graft distribution feature. After a desired amount of bone graft material has been added and positioned in the site of interest, the funnel may be withdrawn.
In certain embodiments, an expandable cage system may be adapted for and used for vertebral body replacement. In such embodiments, the cage would be placed within the general outline of a single vertebral body that has been damaged, for example crushed, and used to help return the vertebral body to its original height. For example, when a vertebral body is crushed, the cage can be inserted into the center of the body and expanded to the body's original height, with bone and/or bone substitutes and/or bone cement injected to help rebuild the vertebrae. The cage top for such a cage system would not need to be configured to correspond to a lower surface of the higher of two vertebrae as discussed above, but instead the cage top could engage an upper portion of the vertebral body being repaired. Similarly, the cage bottom could engage a lower portion of the vertebral body being repaired.
In certain embodiments of the present invention, a kit is provided including a variety of sizes and/or types of cage top and bottoms, and/or a variety of sizes of shims to accommodate different patients and procedures.
While particular embodiments of the invention have been shown, it will be understood that the invention is not limited thereto since modifications may be made by those skilled in the art, particularly in light of the foregoing teaching. It is therefore, the appended claims that define the true spirit and scope of the invention.
Number | Date | Country | |
---|---|---|---|
61583894 | Jan 2012 | US |