Expandable cage

Abstract
An intervertebral implant that iterates between collapsed and expanded configurations includes first and second plates spaced from one another along a first direction and defining bone-contacting surfaces facing away from each other along the first direction. An expansion assembly is positioned between the plates with respect to the first direction and includes a first support wedge that supports the first plate and defines a first ramp and a second support wedge that supports the second plate and defines second and third ramps. The expansion assembly includes an expansion wedge defining a fourth ramp. The first, second, third, and fourth ramps are each inclined with respect to a second direction that is substantially perpendicular to the first direction. At least one of the first and second support wedges is slidable along the respective supported first or second plate. The implant includes an actuator configured to apply a drive force to the expansion wedge so as to cause 1) the fourth ramp to ride along the third ramp so as to increase a distance between the bone-contacting surfaces along the first direction, and 2) the second ramp to ride along the first ramp, thereby further increasing the distance, thereby iterating the implant from the collapsed to the expanded configuration.
Description
TECHNICAL FIELD

The present invention relates to an expandable intervertebral implant, particularly to an implant having a pair of endplates, at least one of which being independently expandable and rotatable relative to the other, and related methods


BACKGROUND

Removal of an intervertebral disc is often desired if the disc degenerates. Spinal fusion may be used to treat such a condition and involves replacing a degenerative disc with a device such as a cage or other spacer that restores the height of the disc space and allows bone growth through the device to fuse the adjacent vertebrae. Spinal fusion attempts to restore normal spinal alignment, stabilize the spinal segment for proper fusion, create an optimal fusion environment, and allows for early active mobilization by minimizing damage to spinal vasculature, dura, and neural elements. When spinal fusion meets these objectives, healing quickens and patient function, comfort and mobility improve. Spacer devices that are impacted into the disc space and allow growth of bone from adjacent vertebral bodies through the upper and lower surfaces of the implant are known in the art. Yet there continues to be a need for devices that minimize procedural invasiveness yet stabilize the spinal segment and create an optimum space for spinal fusion.


SUMMARY

According to an embodiment of the present disclosure, an intervertebral implant that is configured to iterate between a collapsed configuration and an expanded configuration includes a first plate and a second plate spaced from one another along a first direction. The first plate defines a first bone-contacting surface and the second plate defines a second bone-contacting surface that faces away from the first bone-contacting surface along the first direction. The implant includes an expansion assembly disposed between the first and second plates with respect to the first direction. The expansion assembly includes a first support wedge that supports the first plate and defines a first ramp and a second support wedge that supports the second plate and defines a second ramp and a third ramp. The expansion assembly includes an expansion wedge that defines a fourth ramp, wherein each of the first, second, third, and fourth ramps is inclined with respect to a second direction that is substantially perpendicular to the first direction. At least one of the first and second support wedges is slidable along the respective supported first or second plate. The implant includes an actuator configured to apply a drive force to the expansion wedge so as to cause 1) the fourth ramp to ride along the third ramp so as to increase a distance between the first and second bone-contacting surfaces along the first direction, and 2) the second ramp to ride along the first ramp, thereby further increasing the distance, thereby iterating the implant from the collapsed configuration to the expanded configuration.


According to another embodiment of the present disclosure, an implant for lateral insertion into an intervertebral space includes an expansion mechanism disposed between a first endplate and a second endplate with respect to a vertical direction. The first endplate defines a first-bone contacting surface and the second endplate defines a second bone-contacting surface that faces away from the first bone-contacting surface along the vertical direction. The expansion mechanism includes an anterior actuation assembly arranged along a first axis and a posterior actuation assembly arranged along a second axis. The first and second axes are each oriented along a longitudinal direction that is substantially perpendicular to the vertical direction. The first and second axes are spaced from one another along a transverse direction that is substantially perpendicular to the vertical and longitudinal directions. A first distance between the first and second bone-contacting surfaces along the vertical direction intersects the first axis, and a second distance between the first and second bone-contacting surfaces along the vertical direction intersects the second axis. The anterior and posterior actuation assemblies each include a first support wedge that supports the first endplate and a second support wedge that supports the second endplate and is slidable with respect to the first support wedge. The actuation assemblies each also include an expansion wedge slidable with respect to the second support wedge, and a drive shaft that is coupled to the expansion wedge and is rotatable about the respective first or second axis so as to cause 1) the expansion wedge to ride along the second support wedge, and 2) the second support wedge to ride along the first support wedge, thereby varying the respective first or second distance. The drive shafts of the anterior and posterior actuation assemblies are rotatable independently of each other so as to provide a difference between the first and second distances.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed description of illustrative embodiments of the intervertebral implant of the present application, will be better understood when read in conjunction with the appended drawings. For the purposes of illustrating the expandable intervertebral implant of the present application, there is shown in the drawings illustrative embodiments. It should be understood, however, that the application is not limited to the precise arrangements and instrumentalities shown. In the drawings:



FIG. 1 is an end view of an implant positioned between adjacent vertebral bodies, wherein the implant is in a collapsed configuration, according to a first example embodiment of the present disclosure;



FIG. 2 is a perspective view of the implant of FIG. 1, shown in the collapsed configuration;



FIG. 3 is an end view of the implant of FIG. 1, shown in the collapsed configuration;



FIG. 4 is a longitudinal sectional view of the implant shown of FIG. 1, shown in the collapsed configuration;



FIG. 5 is a partially exploded, perspective view of the implant of FIG. 1, with bone plates of the implant separated in a manner showing an internal expansion mechanism of the implant in a collapsed configuration;



FIG. 6 is an exploded view of the implant of FIG. 1;



FIG. 7 is an enlarged view of an end portion of one of the bone plates shown in FIG. 6;



FIG. 8 is a reverse perspective view of an end portion of the other bone plate shown in FIG. 6;



FIG. 9 is a longitudinal side view of an actuation member of the expansion mechanism shown in FIGS. 5 and 6;



FIG. 10 is a perspective view of a first expansion wedge of the expansion assemblies shown in FIGS. 5 and 6;



FIG. 11 is another perspective view of the first expansion wedge of FIG. 10;



FIG. 12 is a side view of the first expansion wedge of FIG. 10;



FIG. 13 is a perspective view of a variant of the first expansion wedge shown in FIGS. 10 through 12;



FIG. 14 is another perspective view of the variant of the first expansion wedge of FIG. 13;



FIG. 15 is a side view of the variant of the first expansion wedge of FIG. 13;



FIG. 16 is a perspective view of a second expansion wedge of the expansion assemblies shown in FIGS. 5 and 6;



FIG. 17 is another perspective view of the second expansion wedge of FIG. 16;



FIG. 18 is a side view of the second expansion wedge of FIG. 16;



FIG. 19 is a perspective view of a third expansion wedge of the expansion assemblies shown in FIGS. 5 and 6;



FIG. 20 is another perspective view of the third expansion wedge of FIG. 19;



FIG. 21 is a side view of the third expansion wedge of FIG. 19;



FIG. 22 is a perspective view of a fourth expansion wedge of the expansion assemblies shown in FIGS. 5 and 6;



FIG. 23 is another perspective view of the fourth expansion wedge of FIG. 22;



FIG. 24 is a side view of the fourth expansion wedge of FIG. 22;



FIG. 25 is a front end view of the fourth expansion wedge of FIG. 22;



FIG. 26 is a side, partial sectional view of the first and fourth wedges during a first phase of expansion of an expansion assembly shown in FIGS. 5 and 6;



FIG. 27 is a side, partial sectional view of the first and fourth wedges of FIG. 26 between the first phase and a second phase of expansion of the expansion assembly;



FIG. 28 is a side, partial sectional view of the first and fourth wedges during a second phase of expansion of the expansion assembly;



FIG. 29 is a perspective view of an internal end of an expansion assembly of FIGS. 5 and 6, wherein the expansion assembly is shown in an expanded and lordotic configuration;



FIG. 30 is a side view of an actuation assemblies shown in FIGS. 5 and 6, with a proximal expansion assembly shown in a collapsed configuration and a distal expansion assembly shown in a fully expanded configuration for comparison;



FIG. 31 is an enlarged view of the longitudinal sectional view of FIG. 4, showing the implant in the collapsed configuration;



FIG. 32 is a perspective view of the implant of FIG. 1 in a partially expanded configuration;



FIG. 33 is an end view of the implant shown in FIG. 32;



FIG. 34 is a longitudinal sectional view of the implant shown in FIGS. 32 and 33, taken along section line 34-34 of FIG. 33;



FIG. 35 is a longitudinal sectional view of the implant of FIG. 1, shown in a fully expanded configuration;



FIG. 36 is a perspective view of the implant shown in FIG. 35;



FIG. 37 is an end view of the implant shown in FIG. 36;



FIG. 38 is a perspective view of the implant of FIG. 1, shown in a partially expanded, lordotic configuration;



FIG. 39 is a perspective view of the implant of FIG. 38, shown with a bone plate removed for illustrative purposes;



FIG. 40 is an end view of the implant of FIG. 38;



FIG. 41 is an end view of a pair of wedge members of an actuation assembly shown in FIGS. 5 and 6, illustrating rotation of one of the wedge members relative to the other;



FIG. 42 is a perspective view of an implant in a collapsed configuration, according to a second example embodiment of the present disclosure;



FIG. 43 is another perspective view of the implant of FIG. 42, shown with bone plates of the implant separated in a manner showing an internal expansion mechanism of the implant in a collapsed configuration, and also with a top one of the bone plates unfolded in book-like fashion showing internal faces of the bone plates;



FIG. 44 is a perspective view of a pair of wedge members of the expansion mechanism of FIG. 43 positioned along a drive shaft of the expansion mechanism;



FIG. 45 is another perspective view of the wedge members of FIG. 44, shown with one of the wedge members rotated relative to the other wedge member about the drive shaft;



FIG. 46 is an exploded, perspective view of the wedge members of FIG. 44;



FIG. 47 is a perspective view of the implant of FIG. 42 shown in a fully expanded configuration with one of the bone plates removed for illustrative purposes;



FIG. 48 is an end view of the implant of FIG. 42 in a lordotic configuration;



FIG. 49 is a partially exploded perspective view of the implant of FIG. 48; and



FIG. 50 is a perspective view of a driving tool configured to expand the implant shown in FIG. 38.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The present disclosure can be understood more readily by reference to the following detailed description taken in connection with the accompanying figures and examples, which form a part of this disclosure. It is to be understood that this disclosure is not limited to the specific devices, methods, applications, conditions or parameters described and/or shown herein, and that the terminology used herein is for the purpose of describing particular embodiments by way of example only and is not intended to be limiting of the scope of the present disclosure. Also, as used in the specification including the appended claims, the singular forms “a,” “an,” and “the” include the plural, and reference to a particular numerical value includes at least that particular value, unless the context clearly dictates otherwise.


The term “plurality”, as used herein, means more than one. When a range of values is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. All ranges are inclusive and combinable.


Referring to FIG. 1, a superior vertebral body 2 and an adjacent inferior vertebral body 4 define an intervertebral space 5 extending between the vertebral bodies 2, 4. The superior vertebral body 2 defines superior vertebral surface 6, and the adjacent inferior vertebral body 4 defines an inferior vertebral surface 8. The vertebral bodies 2, 4 can be anatomically adjacent, or can be remaining vertebral bodies after an intermediate vertebral body has been removed from a location between the vertebral bodies 2, 4. The intervertebral space 5 in FIG. 1 is illustrated after a discectomy, whereby the disc material has been removed or at least partially removed to prepare the intervertebral space 5 to receive an expandable intervertebral implant 10. The implant 10 is shown in a collapsed configuration, in which configuration the implant 10 can be configured for lateral insertion (i.e., along a medial-lateral trajectory) within the intervertebral space 5.


Once inserted in the intervertebral space 5, the implant 10 can be expanded in a cranial-caudal (i.e., vertical) direction, or otherwise iterated, between the collapsed configuration and a fully expanded configuration to achieve appropriate height restoration. Additionally, one of the sides of the implant 10 can be expanded vertically to a greater extent than the opposite side to achieve lordosis or kyphosis, as disclosed in more detail below.


The intervertebral space 5 can be disposed anywhere along the spine as desired, including at the lumbar, thoracic, and cervical regions of the spine. It is to be appreciated that certain features of the implant 10 can be similar to those set forth in U.S. Patent Publication No. 2014/0243982 A1, published Aug. 28, 2014 in the name of Miller, the entire disclosure of which is incorporated herein by this reference.


Certain terminology is used in the following description for convenience only and is not limiting. The words “right”, “left”, “lower” and “upper” designate directions in the drawings to which reference is made. The words “inner”, “internal”, and “interior” refer to directions towards the geometric center of the implant 10, while the words “outer”, “external”, and “exterior” refer to directions away from the geometric center of the implant. The words, “anterior”, “posterior”, “superior,” “inferior,” “medial,” “lateral,” and related words and/or phrases are used to designate various positions and orientations in the human body to which reference is made. When these words are used in relation to the implant 10 or a component thereof, they are to be understood as referring to the relative positions of the implant 10 as implanted in the body as shown in FIG. 1. The terminology includes the above-listed words, derivatives thereof and words of similar import.


The implant 10 is described herein as extending horizontally along a longitudinal direction “L” and a transverse direction “T”, and vertically along a vertical direction “V”. The longitudinal direction L can be at least substantially perpendicular to each of the transverse and vertical directions T, V. The transverse direction T can be at least substantially perpendicular to each of the longitudinal and vertical directions L, V. The vertical direction V can be at least substantially perpendicular to each of the longitudinal and transverse directions L, T. Unless otherwise specified herein, the terms “longitudinal,” “transverse,” and “vertical” are used to describe the orthogonal directional components of various implant components and implant component axes with reference to the orientation in which the implant 10 is configured to be located in the intervertebral space 5; however, such directional terms can be used consistently with reference to the implant regardless of its actual orientation. Additionally, it should be appreciated that while the longitudinal and transverse directions L, V are illustrated as extending along and defining a horizontal plane (also referred to herein as a “longitudinal-transverse plane”), and that the vertical direction is illustrated as extending along a vertical plane (such as either a “vertical-longitudinal plane” or a “vertical-transverse plane,” as respectively referred to herein), the planes that encompass the various directions may differ during use. For instance, when the implant 10 is inserted into the intervertebral space 5, the vertical direction V extends generally along the superior-inferior (or caudal-cranial) direction, the longitudinal direction L extends generally along the medial-lateral direction, and the transverse direction L extends generally along the anterior-posterior direction. Thus, the horizontal plane lies generally in the anatomical plane defined by the anterior-posterior direction and the medial-lateral direction. Accordingly, the directional terms “vertical”, “longitudinal”, “transverse”, and “horizontal” may be used to describe the implant 10 and its components as illustrated merely for the purposes of clarity and illustration, and such terms. With the foregoing in mind, the terms “expand” and “expansion,” when used in reference to the implant 10, refer to expansion along the vertical direction V.


Referring now to FIG. 2, the implant 10 according to a first embodiment can define a proximal end 12 and a distal end 14 spaced from one another along the longitudinal direction L. In particular, the distal end 14 can be spaced from the proximal end 12 in a distal direction and the proximal end 12 can be spaced from the distal end 14 in a proximal direction opposite the distal direction. Thus, as used herein, the term “longitudinal direction L” is bi-directional and is defined by the mono-directional distal and opposed proximal directions. Additionally, the implant 10 can define an anterior side 16 and a posterior side 18 spaced from one another along the transverse direction T. In particular, the anterior side 16 can be spaced from the posterior side 18 in an anterior direction and the posterior side 18 can be spaced from the anterior side 16 in a posterior direction opposite the anterior direction. Thus, as used herein, the term “transverse direction T” is bi-directional and is defined by the mono-directional anterior and opposed posterior directions.


The implant 10 can include a first or inferior plate 20 and a second or superior plate 22 spaced from each other along the vertical direction V. The inferior and superior plates 20, 22 may be referred to as “endplates.” The inferior plate 20 can define first or inferior plate body 24 and the superior plate 22 can define a second or superior plate body 26. The inferior plate body 24 can define a first or inferior bone-contacting surface 28 on an exterior thereof. The superior plate body 26 can define a second or superior bone-contacting surface 30 on an exterior thereof, as shown in FIG. 3. The inferior and superior bone-contacting surfaces 28, 30 can face away from one another. In particular, the superior bone-contacting surface 30 can face the superior vertebral surface 6 of the superior vertebra 2 and the inferior bone-contacting surface 28 can face the inferior vertebral surface 8 of the inferior vertebral body 4. The inferior and superior bone-contacting surfaces 28, 30 can each be substantially planar; however, in other embodiments, each bone-contacting surface 28, 30 can be at least partially convex, for example, and can at least partially define a texture (not shown), such as spikes, ridges, cones, barbs, indentations, or knurls, which are configured to engage the respective vertebral bodies 2, 4 when the implant 10 is inserted into the intervertebral space 5.


When the implant 10 is in the collapsed configuration, the inferior and superior bone-contacting surfaces 28, 30 can be spaced from one another by a distance D in the range of about 5 mm and about 20 mm along the vertical direction V, by way of non-limiting example, although other sizes are within the scope of the present disclosure. Additionally, when the implant 10 is in the collapsed configuration, the inferior and superior bone-contacting surfaces 28, 30 can be parallel with one another with respect to both the transverse direction T, and thus can have a neutral (i.e., neither lordotic or kyphotic) collapsed profile. As used herein, the terms “lordosis”, “kyphosis”, and their respective derivatives can be used interchangeably, with each term referring to any configuration of the implant 10 wherein the inferior and superior bone-contacting surfaces 28, 30 are angled with respect to each other in the vertical-transverse plane.


It is to be appreciated that the inferior and superior plate bodies 24, 26 can overly one another such that the proximal and distal ends 12, 14 of the implant 10 can be characterized as the proximal and distal ends 12, 14 of each plate 20, 22 or plate body 24, 26. Similarly, the anterior and posterior sides 16, 18 of the implant 10 can also be characterized as the anterior and posterior sides 16, 18 of each plate 20, 22 or plate body 24, 26.


As shown in FIGS. 2 and 3, the proximal end 12 of the implant 10 can include a coupling feature, such as a coupling aperture 32, for receiving an insertion instrument configured to insert the implant 10 into the intervertebral space. The coupling aperture 32 can be collectively defined by the inferior and superior plate bodies 24, 26. The implant 10 can also define one or more vertical apertures 34 (FIG. 2) extending through the inferior and superior plate bodies 24, 26 along the vertical direction V. The vertical apertures 34 can be in communication with one another and with the coupling aperture 32 and can be configured to receive bone growth material following expansion of the implant 10 for fusion with the superior and inferior vertebral bodies 2, 4.


With continued reference to FIG. 2, the implant 10 can generally define an anterior portion 36 and a posterior portion 38 each elongated along the longitudinal direction L and located on opposite sides of the vertical apertures 34 with respect to the transverse direction T. The implant 10 can also generally define a distal portion 40 spaced from the vertical apertures 34 in the distal direction. The distal end 14 of the implant 10 can also be termed the “insertion end” of the implant 10. To facilitate insertion, the superior and inferior plate bodies 12, 18 can each define a tapered surface 42 adjacent the distal end 14, wherein each tapered surface 42 is declined in the distal direction, as shown in FIGS. 2 and 4.


Referring now to FIGS. 5 and 6, each of the inferior and superior plate bodies 24, 26 can define an internal face 44 opposite the respective bone-contacting surface 28, 30 with respect to the vertical direction V. Additionally, the internal faces 44 of the inferior and superior plate bodies 24, 26 can each define one or more internal contact surfaces 46. When the implant 10 is in the collapsed configuration, the internal contact surfaces 46 of the superior plate body 26 can abut the internal contact surfaces 46 of the inferior plate body 24. The internal faces 44 of the inferior and superior plate bodies 24, 26 can be coupled to, and configured to interface with, an expansion mechanism 48 that is configured to move expansion members, such as wedges 51, 52, 53, 54, with respect to one another in a manner expanding the implant 10 along the vertical direction V, as discussed in more detail below.


The internal face 44 of each plate body 24, 26 can also define an anterior channel 56 and a posterior channel 58 each elongated along the longitudinal direction L. The anterior channel 56 and the posterior channel 58 of each plate 20, 22 can extend into the respective plate body 24, 26 from the internal contact surface 46 thereof toward the respective bone-contacting surface 28, 30 along the vertical direction V. The anterior channels 56 of the plates 12, 18 can be located within the anterior portion 36 of the implant 10, and the posterior channels 58 of the plates 12, 18 can be located within the posterior portion 38 of the implant 10. The anterior channels 56 of the plates 12, 18 can overly one another so as to at least partially define a first or anterior compartment 60 of the implant 10, while the posterior channels 58 of the plates 12, 18 can overly one another so as to at least partially define a second or posterior compartment 62 of the implant 10 (FIG. 3). The anterior and posterior compartments 60, 62 can be configured to house components of the expansion mechanism 48. Thus, the compartments 60, 62 can be termed “expansion compartments.”


As shown more clearly in the enlarged view of FIG. 7, the anterior and posterior channels 56, 58 can each extend between opposed anterior and posterior sidewalls 64, 66 spaced apart along the transverse direction T. Each channel 56, 58 can also extend along the vertical direction V from the internal contact surface 46 to a base surface 68 of the channel 56, 58. Thus, the base surface 68 of each channel 56, 58 can be characterized as being vertically recessed within the plate body 24, 26 from the respective internal contact surface 46 toward the respective bone-contacting surface 28, 30. The base surface 68 of each channel can extend along the longitudinal and transverse directions L, T, and can optionally be substantially planar.


Each channel 56, 58 can also include a guide feature, such as a guide slot 70, that is recessed from the base surface 68 toward the bone-contacting surface 28, 30. Each guide slot 70 of the channels 56, 58 can also be referred to as a “plate guide slot” 70. The plate guide slot 70 can have a geometry configured to guide movement of one or more components of the expansion mechanism 48 within the channel 56, 58 along the longitudinal direction L. Optionally, the plate guide slot 70 can also be configured to provide mechanical interference with such components in the vertical direction V toward to the internal contact surface 46 of the associated plate 20, 22. Stated differently, the plate guide slot 70 can optionally have a geometry such that the plate body 24, 26 interlocks with said component of the expansion mechanism 48 in a manner preventing decoupling of the component from the plate guide slot 70 (and, by extension, from the channel 56, 58). Thus, the plate guide slot 70 can also be characterized as a retention feature. For example, the plate guide slot 70 can have a dovetail profile in the vertical-transverse plane, as shown. However, it is to be appreciated that other profiles and geometries of the plate guide slot 70 are within the scope of the present disclosure.


The internal faces 44 of the inferior and superior plate bodies 24, 26 can also define one or more coupling features for coupling the inferior and superior plate bodies 24, 26 together, particularly in the collapsed configuration. The coupling features of the plate bodies 14, 20 can be configured to nest within one another in a manner stabilizing the implant 10 throughout various phases of operation. For example, as shown in FIGS. 5 and 6, at the distal portion 40 of the inferior plate body 24, the internal face 44 can define a first transverse slot 72, a second transverse slot 74 spaced from the first transverse slot 72 in the distal direction, and a transverse wall 76 positioned between the first and second transverse slots 72, 74. The transverse wall 76 can extend along the transverse direction T between an anterior wall end 78 and a posterior wall end 80.


As shown in FIG. 8, at the distal portion 40 of the superior plate body 26, the inner face 44 can define a first transverse protrusion 82 and a second transverse protrusion 84 spaced from the first transverse protrusion 82 in the distal direction. Each of the first and second transverse protrusions 82, 84 can protrude from the superior plate body 26 beyond the internal contact surfaces 46 thereof toward the inferior plate body 24. The first and second transverse protrusions 82, 84 can each extend along the transverse direction T between an anterior end 86 and a posterior end 88, and can extend along the longitudinal direction L between a proximal face 90 and a distal face 92. When the implant 10 is in the collapsed configuration, the first and second transverse protrusions 82, 84 of the superior plate body 26 can nest within the first and second transverse slots 72, 74, respectively, of the inferior plate body 24 (FIG. 4). As the implant 10 expands from the collapsed configuration, the transverse protrusions 82, 84 and transverse slots 72, 74 can effectively stabilize the implant and inhibit relative movement between the inferior and superior plate bodies 24, 26 along the longitudinal direction L.


Referring again to FIGS. 5 and 6, the expansion mechanism 48 can be positioned between the inferior and superior plates 20, 22. In the illustrated embodiment, the expansion mechanism 48 can be configured to convert one or more rotational input forces applied by a physician into one or more corresponding linear expansion forces along the vertical direction V. The expansion mechanism 48 can include one or more actuation assemblies 94, 96 each configured to convert a rotational input force into linear expansion forces along the vertical direction V. As shown, the expansion mechanism 48 can include a first or anterior actuation assembly 94 and a second or posterior actuation assembly 96 spaced from each other along the transverse direction T. The anterior actuation assembly 94 can be configured to convert a first rotational input force R1 into a plurality of linear expansion forces Z1, Z2, Z3, Z4, along the vertical direction V so as expand the anterior portion 36 of the implant 10 along the vertical direction V. Similarly, the posterior actuation assembly 96 can be configured convert a second rotational input force R2 into a plurality of linear expansion forces Z1, Z2, Z3, Z4, along the vertical direction V so as expand the posterior portion 38 of the implant 10 along the vertical direction V.


The anterior and posterior actuation assemblies 94, 96 can be driven so as to provide uniform or non-uniform expansion or contraction of the implant 10 along the vertical direction, as desired by a physician. For example, either of the actuation assemblies 94, 96 can be driven independently of the other. When driven independently, the anterior and posterior actuation assemblies 94, 96 can expand the anterior and posterior portions 36, 38 of the implant 10 to different expanded heights along the vertical direction V, providing the implant 10 with a lordotic profile in the intervertebral space 5, as discussed in more detail below. Thus, the implant 10 allows vertical expansion within the intervertebral space and adjustment of the lordotic angle of the implant 10 independently of one another.


The anterior and posterior actuation assemblies 94, 96 can be configured substantially similarly; accordingly, the same reference numbers will be used herein with reference to the corresponding components and features of the actuation assemblies 94, 96. Each actuation assembly 94, 96 can include an actuator, such as a drive shaft 98, as also shown in FIG. 9. Each drive shaft 98 can define a central shaft axis X1 that extends along the longitudinal direction L, and can also define a proximal end 100 and a distal end 102 spaced from one another along the central shaft axis X1.


With continued reference to FIG. 9, the drive shaft 98 can include one or more threaded portions 104, 106 configured to transmit one or more linear drive forces F1, F2 along the longitudinal direction L. For example, the drive shaft 98 can include a first or proximal threaded portion 104 and a second or distal threaded portion 106 spaced from the proximal threaded portion 104 in the distal direction along the central shaft axis X1. The threading of the proximal and distal threaded portions 104, 106 can have different thread qualities. For example, in the illustrated embodiment, the proximal threaded portion 104 defines a thread pattern that is oriented in a direction opposite that of the distal threaded portion 106. In this manner, upon rotation of the drive shaft 98, the proximal threaded portion 104 can provide a first linear drive force F1, the distal threaded portion 106 can provide a second linear drive force F2, and the first and second linear drive forces F1, F2 can be opposite one another.


The drive shaft 98 can include an intermediate portion 108 positioned between the proximal and distal threaded portions 104, 106. The threading of the proximal threaded portion 104 can be substantially contiguous with the threading of the distal threaded portion 106 at the intermediate portion 108. Thus, the intermediate portion 108 can define a boundary between the threaded portions 104, 106. In the illustrated embodiment, the intermediate portion 108 can be characterized as an internal end of each of the proximal and distal threaded portions 104, 106, while the proximal end 100 of the drive shaft 98 can define the external end of the proximal threaded portion 104, and the distal end 102 of the drive shaft 98 can define the external end of the distal threaded portion 106. Furthermore, in the illustrated embodiment, the intermediate portions 108 of the anterior and posterior drive shafts 98 can define a center or midpoint of the implant 10 with respect to the longitudinal direction L. Thus, with respect to each threaded portion 104, 106 of the drive shaft 98 (and any component positioned thereon), an external longitudinal direction LE extends from the internal end 108 to the external end 100, 102, and an internal longitudinal direction L1 extends from the external end 100, 102 to the internal end 108.


A head 110 can be located at the distal end 102 of the drive shaft 98 and can be contiguous with the distal threaded portion 106. The head 110 can be monolithic with the drive shaft 98 or can be a separate component, such as a nut that is threadedly coupled to the distal threaded portion 106. The head 110 can define a proximal end 112 and a distal end 114 spaced from the proximal end 112 along the longitudinal direction L. A drive coupling, such as a nut socket 116, can be threadedly coupled to the proximal end 100 of the drive shaft 98 and can be contiguous with the proximal threaded portion 104. The nut socket 116 can define a socket aperture 118 extending from a proximal end 120 of the nut socket 116 toward a distal end 122 thereof. The socket aperture 118 can define a hex socket, as depicted, although other socket configurations can be employed for connection to a driving tool operated by a physician.


Referring again to FIGS. 5 and 6, each actuation assembly 94, 96 can include one or more expansion assemblies 124, 126 (also referred to as “wedge assemblies”) that expand along the vertical direction V. For example, a first or proximal wedge assembly 124 can be engaged with the proximal threaded portion 104 of the drive shaft 98 and a second or distal wedge assembly 126 can be engaged with the distal threaded portion 106 of the drive shaft 98. In FIG. 6, the proximal wedge assembly 124 of the posterior actuation assembly 96 is identified in dashed lines, while the distal wedge assembly 126 of the anterior actuation assembly 94 is identified in dashed lines. The proximal and distal wedge assemblies 124, 126 can be characterized as sub-assemblies of the respective anterior and posterior actuation assemblies 94, 96. Additionally, within each actuation assembly 94, 96, the proximal and distal wedge assemblies 124, 126 can optionally be substantial mirror images of one another about a vertical-transverse plane positioned at the intermediate portion 108 of the drive shaft 98. Stated differently, the distal wedge assembly 126 can be configured virtually identical (or at least substantially similar) to the proximal wedge assembly 126, with the primary difference being that the distal wedge assembly 126 is flipped with respect to the longitudinal direction L. Some minor variations in the proximal and distal wedge assemblies 124, 126 will be set forth more fully below.


Each proximal and distal wedge assembly 124, 126 can include a plurality of expansion members, or wedges 51, 52, 53, 54, that are movable relative to each other so as to increase their collective height along the vertical direction V. For example, the expansion members can include a first wedge 51, a second wedge 52, a third wedge 53, and a fourth wedge 54. One or more of the wedges 51, 52, 53, 54 can engage the respective threaded portion 104, 106 of the drive shaft 98.


With reference to FIG. 4, when the implant 10 is in the collapsed configuration, the first wedge 51 can be positioned adjacent the external end of the respective threaded portion 104, 106 of the drive shaft 98; the second wedge 52 can be spaced from the first wedge 51 in the internal longitudinal direction LI; the third wedge 53 can be spaced from the second wedge 52 in the internal longitudinal direction LI; and the fourth wedge 54 can be spaced from the third wedge 53 in the internal longitudinal direction LI. Accordingly, the first wedge 51 can be characterized as an “external-most” wedge, while the fourth wedge 54 can be characterized as an “internal-most” wedge, although other configurations are possible. Additionally, the wedges 51, 52, 53, 54 can define geometries that provide each wedge assembly 124, 126 with telescopic mobility in the longitudinal and vertical directions L, V. Stated differently, the wedges 51, 52, 53, 54 can be shaped such that, as the wedges 51, 52, 53, 54 engage one another, their collective height can increase while their collective length decreases, and vice versa, as set forth in more detail below.


Referring now to FIGS. 10 through 12, the first wedge 51 can have a first wedge body 128 that defines an internal end 130 and an external end 132 spaced from the internal end 130 along the longitudinal direction L. The first wedge body 128 can also define anterior and posterior side surfaces 134, 136 spaced from each other along the transverse direction T. The external end 132 of the first wedge body 128 can define an external face 138 extending between an upward apex 140 and a bottom or base surface 142 of the body 128 along the vertical direction V. The external face 138 can be substantially planar, although other geometries are within the scope of the present disclosure. The external face 138 can be configured to abut another component of the implant 10 in a manner limiting or preventing motion of the first wedge body 128 in the external longitudinal direction LE during operation of the implant 10 within a patient. For example, in the proximal wedge assembly 124, the external face 138 of the first wedge 51 can be configured to abut the distal end 122 of the nut socket 116, by way of non-limiting example.


The upward apex 140 can be located at the external end 132 of the first wedge body 128. The base surface 142 of the first wedge body 128 can be configured to engage the base surface 68 of the respective anterior or posterior channel 56, 58 of the inferior plate body 24. At least a portion of the base surface 142 of the first wedge body 128 can be substantially planar and can be configured to translate at least partially across the base surface 68 of the respective channel 56, 58, for example, at least during assembly of the implant 10. In other embodiments, once in place within the respective channel 56, 58, the first wedge 51 can be fixed to the inferior plate body 24, such as by welding, brazing, adhesives, or mechanical fasteners. In further embodiments, the first wedge 51 can be monolithic with the inferior plate body 24. As the first wedge 51 can be characterized as “supporting” the inferior plate body 24, the first wedge 51 can be referred to herein as a “support member” or a “support wedge.”


In the illustrated embodiments, the first wedge 51 can also include a first or inferior guide element, such as a guide protrusion 144, that is configured to translate within the plate guide slot 70 of the associated channel 56, 58 during assembly of the implant 10, for example. The guide protrusion 144 can extend from the base surface 142 of the first guide body 128. A bottom surface 146 of the guide protrusion 144 can define a bottom-most portion of the first wedge 51 and of the respective wedge assembly 124, 126. The guide protrusion 144 can have a geometry that is configured to guide movement of the first wedge body 128 within the respective channel 56, 58 along the longitudinal direction L. Additionally, the guide protrusion 144 of the first wedge body 128 and the respective guide slot 70 of the inferior plate body 24 can be cooperatively shaped so that the first wedge body 128 interlocks with the inferior plate body 24 in a manner preventing the first wedge body 128 and the inferior plate body 24 from detaching along the vertical direction V. For example, the guide protrusion 144 and the plate guide slot 70 can have corresponding dovetail profiles in the vertical-transverse plane, as shown, although other geometries are within the scope of the present disclosure. In this manner, the first wedge 51 can be longitudinally movable but substantially vertically immovable within the respective channel 56, 58 of the inferior plate body 24. Thus, the guide protrusion 144 can also be characterized as a retention feature of the first wedge 51. Additionally, the profiles of the guide protrusion 144 and of the plate guide slot 70 can allow the first wedge 51 and the inferior plate body 24 to be rotationally interlocked with one another so that, for example, the first wedge 51 and the inferior plate body 24 can maintain the same angular position about the central shaft axis X1 during expansion and optionally during lordosis. In other embodiments, the rotational interlocking of the first wedge 51 and the inferior plate body 24 can allow rotation of the first wedge 51 about the central shaft axis X1 to cause a substantially similar degree of rotation of the inferior plate body 24 about the central shaft axis X1, and vice versa.


The first wedge body 128 can also include an engagement element configured to engage a portion of one or more other wedges of the respective wedge assembly 124, 126, such as the second wedge 52 and the fourth wedge 54, for example. The engagement element can include a first inclined surface, or ramp 148, extending between the internal end 130 and the upward apex 140 of the first wedge body 128. When positioned within the respective actuation assembly, 94, 96, the first wedge 51 can be oriented so that the first ramp 148 is inclined in the external longitudinal direction LE. In the illustrated embodiment, the first ramp 148 can be oriented at a first incline angle α1 in a range of about 10 degrees and about 60 degrees with respect to the longitudinal direction L (FIG. 12). In other embodiments, the first incline angle cu can be in the range of about 20 degrees and about 40 degrees with respect to the longitudinal direction L. In further embodiments, the first incline angle α1 can be in the range of about 25 degrees and about 35 degrees with respect to the longitudinal direction L. In additional embodiments, the first incline angle α1 can be less than 10 degrees or greater than 60 degrees with respect to the longitudinal direction L.


The first wedge body 128 can also define a second or superior guide feature, such as a guide slot 150, configured to guide relative motion between the first wedge 51 and another wedge of the associated wedge assembly 124, 126, such as the fourth wedge 54, for example. The guide slot 150 can be recessed into the first wedge body 128 from the first ramp 148. The guide slot 150 can extend from a guide slot opening 152 at the internal end 130 of the first wedge body 128 to the external face 138 of the first guide body 128 with respect to the longitudinal direction L. The guide slot 150 can extend parallel with the first ramp 148 and can have a geometry configured to guide movement therein of an associated guide element of the fourth wedge 54. Optionally, the guide slot 150 can also be configured to interlock with the associated guide element in a manner preventing the fourth wedge 54 from detaching from the first wedge 51, at least in a direction orthogonal to the first ramp 148. As shown, the guide slot 150 can have a dovetail profile in the vertical-transverse plane, although other geometries are within the scope of the present disclosure. The guide slot 150 can traverse an entire length of the first ramp 148, as shown, or can optionally traverse less than the entire length. Additionally, the guide slot 150 can separate the first ramp 148 into anterior and posterior portions 154, 156, which can be characterized as “rails.”


The first wedge body 128 can define a channel 158 extending through the body 128 along the longitudinal direction L. The channel 158 can be U-shaped, and portions of the first wedge body 128 located on opposite transverse sides of the channel 158 can be characterized as anterior and posterior arms 160, 162 of the first wedge body 128 (FIG. 10). The channel 158 can be sized, shaped, and/or otherwise configured to provide space for the respective threaded portion 104, 106 of the drive shaft 98 to extend at least partially through the body 128 (i.e., between the arms 160, 162) without mechanically interfering with the body 128. Accordingly, the first wedge body 128 can have a U-shaped profile in a vertical-transverse plane. The channel 158 can also intersect the guide slot 150 in a manner effectively dividing a portion of the guide slot 150 into anterior and posterior slots 164, 166 defined in the anterior and posterior arms 160, 162, respectively.


Referring now to FIGS. 13 through 15, a variation of the first wedge 51′ is shown. In particular, the variant 51′ can be employed in the posterior actuation assembly 96. The variant 51′ can be substantially similar to the first wedge 51 shown in FIGS. 10 through 12; thus, like reference numbers can be used, with the corresponding features of the variant first wedge 51′ denoted with a “prime” notation. The primary difference in the variant first wedge 51′ can be that the external face 138′ of the first wedge body 128′ is a first external face 138′ that is defined by a transversely external one of the anterior and posterior arms 160′, 162′. Additionally, the opposite (i.e., transversely internal) one of the arms 160′, 162′ can define a second external face 139′ that is recessed from the first external face 138′ in the internal longitudinal direction L1.


The first external face 138′ of the first wedge 51′ can abut the proximal side 112 of the head 110, and the second external face 139′ can abut the proximal face 90 of the first transverse protrusion 82 of the superior plate body 26 (FIG. 30). Thus, the proximal face 90 of the first transverse protrusion 82 can be termed an abutment surface of the superior plate body 26. Such a configuration can add stability to the implant 10 at least during expansion, contraction, and/or lordotic angulation of the implant 10. In other embodiments, however, the first wedge 51 of the distal wedge assembly 126 can be virtually identical to the first wedge 51 of the proximal wedge assembly 124. As with the first wedge 51, the variant 51′ can be characterized as a “support member” or “support wedge” and can optionally be rigidly fixed to the inferior plate body 24 by welding, brazing, adhesives, or mechanical fasteners. It is to be appreciated that the variant first wedge 51′ of the anterior actuation assembly 94 can be a substantial mirror image of its counterpart in the posterior actuation assembly 96 about a vertical-longitudinal plane positioned between the actuation assemblies 94, 96.


Referring now to FIGS. 16 through 18, the second wedge 52 can have a second wedge body 168 that defines an internal end 170 and an external end 172 spaced from the external end 172 along the longitudinal direction L. The second wedge body 168 can also define anterior and posterior side surfaces 174, 176 spaced from each other along the transverse direction T. The second wedge body 168 can also define an external face 178 at the external end 172. The external face 178 of the second wedge body 168 can extend along the vertical and transverse directions V, T and can be substantially planar, although other geometries are within the scope of the present disclosure. The second wedge body 168 can also define an upper base surface 180 and an opposed downward apex 182 spaced from the upper base surface 180 along the vertical direction V. The upper base surface 180 can extend along the longitudinal direction L between the internal and external ends 170, 172 of the body 168. The downward apex 182 can be located between the external and internal ends 170, 172 of the second wedge body 168 with respect to the longitudinal direction L.


The upper base surface 180 can be configured to engage the base surface 68 of the respective anterior or posterior channel 56, 58 of the superior plate body 26. Accordingly, the second wedge 52 can be characterized as “supporting” the superior plate body 26 and can be referred to herein as a “support member” or “support wedge.” At least a portion of the upper base surface 180 can be substantially planar and can be configured to translate at least partially across the base surface 68 of the respective channel 56, 58 during expansion of the implant 10. Thus, the second wedge 52 can also be referred to as a “slider.”


The second wedge body 168 can define a third or superior guide element, such as a guide protrusion 184, extending from the upper base surface 180 along the vertical direction V. A top surface 186 of the guide protrusion 184 can define a top-most portion of the second wedge 52. The top surface 186 can also define a top-most portion of the respective wedge assembly 124, 126. The guide protrusion 184 can be configured to translate within the guide slot 70 of the associated channel 56, 58 of the superior plate body 26. The guide protrusion 184 of the second wedge body 168 can have a design and function generally similar to those of the guide protrusion 144 of the first wedge body 128 set forth above. By way of non-limiting example, the guide protrusion 184 of the second wedge body 168 and the guide slot 70 of the associated channel 56, 58 of the superior plate body 26 can have corresponding dovetail profiles that interlock the second wedge 52 to the superior plate body 26. In this manner, guide protrusion 184 (which can also be characterized as a “retention” feature) can be longitudinally movable but substantially vertically immovable within the respective channel 56, 58 of the superior plate body 26. Additionally, the profiles of the guide protrusion 184 and of the plate guide slot 70 can allow the second wedge 52 and the superior plate body 26 to be rotationally interlocked with one another so that, for example, rotation of the second wedge 52 about the central shaft axis X1 of the drive shaft 98 causes a substantially similar degree of rotation of the superior plate body 26 about the central shaft axis X1, and vice versa.


The second wedge 52 can include one or more engagement elements configured to engage portions of one or more of the other wedges of the associated wedge assembly 124, 126. By way of non-limiting example, the second wedge body 168 can define a second inclined surface, or ramp 188, extending from the external face 178 to the downward apex 182, and a third inclined surface, or ramp 190, extending from the downward apex 182 to the internal end 170 of the second wedge body 168. The internal end 170 of the second wedge body 168 can define a shared edge between the upper base surface 180 and the third ramp 190. The second wedge 52 can be oriented in each actuation assembly 94, 96 so that the second ramp 188 is inclined in the external longitudinal direction LE and the third ramp 190 is declined in the external longitudinal direction LE (and thus inclined in the internal longitudinal direction LI). The second ramp 188 can be configured to engage the first ramp 148 of the first wedge body 128 during expansion of the implant 10. The third ramp 190 can be configured to engage a portion of another wedge of the respective wedge assembly 124, 126, such as the third wedge 53, for example.


The second ramp 188 can optionally be substantially parallel with the first ramp 148 of the first wedge body 128. The second ramp 188 can be oriented at a second incline angle α2 in a range of about 10 degrees and about 60 degrees with respect to the longitudinal direction L (FIG. 18). In other embodiments, the second incline angle α2 can be in the range of about 20 degrees and about 40 degrees with respect to the longitudinal direction L. In further embodiments, the second incline angle α2 can be in the range of about 25 degrees and about 35 degrees with respect to the longitudinal direction L. In additional embodiments, the second incline angle α2 can be less than 10 degrees or greater than 60 degrees with respect to the longitudinal direction L.


The third ramp 190 can be oriented at a third incline angle α3 in the range of about 10 degrees and about 60 degrees with respect to the longitudinal direction L. In other embodiments, the third incline angle α3 can be in the range of about 20 degrees and about 40 degrees with respect to the longitudinal direction L. In further embodiments, the third incline angle α3 can be in the range of about 25 degrees and about 35 degrees with respect to the longitudinal direction L. In additional embodiments, the third incline angle α3 can be less than 10 degrees or greater than 60 degrees with respect to the longitudinal direction L.


The second wedge 52 can include a fourth guide feature, such as a guide slot 192, configured to guide relative motion between the second wedge 52 and another wedge of the associated wedge assembly 124, 126, such as the third wedge 53, for example. The guide slot 192 can be recessed into the second wedge body 168 from the third ramp 190 and can separate the third ramp 190 into anterior and posterior portions 194, 196, which can be characterized as “rails.” The guide slot 192 can extend parallel with the third ramp 190 and can have a geometry configured to guide movement of, and optionally interlock with, an associated guide element of the third wedge 53. As shown, the guide slot 192 can have a dovetail profile, and can be configured similarly to the guide slot 150 of the first wedge body 128, as set forth above, although other geometries are within the scope of the present disclosure. The guide slot 192 can extend from a guide slot opening 198 at the upper base surface 180 to a stop feature 200 configured to prevent the guide element of the third wedge 53 from moving beyond the stop feature 200 along the external longitudinal direction LE. The stop feature 200 can be spaced from the downward apex 182 in the internal longitudinal direction LI. Thus, the guide slot 192 can extend less than an entire length of the third ramp 190.


The second wedge body 168 can define a channel 202 extending therethrough along the longitudinal direction L. The channel 202 of the second wedge body 168 can be configured similarly to the channel 158 of the first wedge body 128 set forth above. Thus, the second wedge body 168 can have a U-shaped profile in a vertical-transverse plane and can include anterior and posterior arms 204, 206 on opposite transverse sides of the channel 202. Additionally, the channel 202 can separate the second ramp 188 into anterior and posterior portions 208, 210, which can be characterized as “rails.” The channel 202 can also intersect the guide slot 192 in a manner effectively converting a portion of the guide slot 192 into anterior and posterior slots 212, 214 defined in the anterior and posterior arms 204, 206, respectively.


Referring now to FIGS. 19 through 21, the third wedge 53 can have a third wedge body 216 that defines an internal end 218 and an external end 220 spaced from the internal end 218 along the longitudinal direction L. The third wedge body 216 can also define anterior and posterior side surfaces 222, 224 spaced from each other along the transverse direction T. The third wedge body 216 can also define an internal face 226 at the internal end 218 thereof and an external face 228 at the external end 220. The internal and external faces 226, 228 of the third wedge body 216 can each extend along the vertical and transverse directions V, T and can each be substantially planar, although other geometries are within the scope of the present disclosure. The third wedge body 216 can define a central bore 230 extending along a central bore axis X2. The central bore 230 can be a through bore, and the central bore axis X2 can extend along the longitudinal direction L. The central bore 230 can define threading 232 that is configured to engage at least one of the proximal and distal threaded portions 104, 106 of the drive shaft 98 so that rotation of the drive shaft 98 threadedly translates the third wedge 53 along the longitudinal direction L. Accordingly, the central bore axis X2 can be coextensive with the central shaft axis X1. The third wedge body 216 can also be configured to rotate about the central bore axis X2, as set forth in more detail below.


The third wedge 53 can include one or more engagement elements configured to engage portions of one or more of the other wedges of the associated wedge assembly 124, 126, such as the second and fourth wedges 52, 54. For example, the internal face 226 of the third wedge 53 can be configured to engage (such as by abutting) a portion of the fourth wedge 54. Additionally, the third wedge body 216 can define a fourth inclined surface, or ramp 234, located at an upper side of the body 216. The fourth ramp 234 can extend between the internal and external faces 226, 228 along the longitudinal direction L. The fourth ramp 234 can be declined in the external longitudinal direction LE (and thus inclined in the internal longitudinal direction LI).


The fourth ramp 234 can be configured to engage the third ramp 188 of the second wedge body 168, including during expansion of the implant 10. The fourth ramp 234 can optionally be substantially parallel with the third ramp 190 of the second wedge body 168. The fourth ramp 234 can be oriented at a fourth incline angle α4 in a range of about 10 degrees and about 60 degrees with respect to the longitudinal direction L (FIG. 21). In other embodiments, the fourth incline angle α4 can be in the range of about 20 degrees and about 40 degrees with respect to the longitudinal direction L. In further embodiments, the fourth incline angle α4 can be in the range of about 25 degrees and about 35 degrees with respect to the longitudinal direction L. In additional embodiments, the fourth incline angle α4 can be less than 10 degrees or greater than 60 degrees with respect to the longitudinal direction L.


The third wedge 53 can include a fifth guide element, such as a guide protrusion 236, configured to guide motion between the third wedge 53 and the second wedge 52. For example, the guide protrusion 236 of the third wedge 53 can extend vertically from the fourth ramp 234 and can be configured to translate within the guide slot 192 of the second wedge 52. The guide protrusion 236 can be cooperatively shaped with the guide slot 192 in a manner preventing the guide protrusion 236 from exiting the guide slot 192, at least in a direction orthogonal to the third ramp 190. For example, the guide protrusion 236 and the guide slot 192 can have corresponding dovetail profiles in a vertical-transverse plane, as shown. In such an embodiment, the guide protrusion 236 can only enter and exit the guide slot 192 through the guide slot opening 198. Additionally, the profiles of the guide slot 192 and the guide protrusion 236 can allow the second and third wedges 52, 53 to be rotationally interlocked with one another so that, for example, rotation of the third wedge 53 about the central bore axis X2 causes a substantially similar degree of rotation of the second wedge 52 about the central bore axis X2.


The third wedge 53 can have a geometry configured to avoid contact with the first wedge 51 during relative movement between the first and third wedges 51, 53. For example, the third wedge body 216 can have a rounded underside 238 configured so as not to contact or otherwise directly engage or interfere with the first ramp 148 or the anterior and posterior arms 160, 162 of the first wedge body 128 during translational and rotational movement of the third wedge body 216 over the first wedge body 128. Additionally, the underside 238 can define a fifth inclined surface, or ramp 240, that is oriented at a fifth incline angle as that is substantially parallel with the first incline angle α1 of the first ramp 148. The fifth ramp 240 can be configured so as not to contact the first ramp 148. For example, the fifth ramp 240 can include a pair of planar portions 242 positioned on opposite transverse sides of a rounded portion 244. The rounded portion 244 can be configured to extend within the guide slot 150 of the first wedge body 128 without contacting the first ramp 148 or any other portion of the first wedge body 128 during translational and rotational movement of the third wedge body 216 over the first wedge body 128. Additionally, the planar portions 242 of the fifth ramp 240 can be remote from the first ramp 148 or any other portion of the first wedge body 128 during movement of the third wedge body 216 over the first wedge body 128.


Referring now to FIGS. 22 through 25, the fourth wedge 54 can have a fourth wedge body 246 that defines an internal end 248 and an external end 250 spaced from the internal end 248 along the longitudinal direction L. The fourth wedge body 246 can also define anterior and posterior side surfaces 252, 254 spaced from each other along the transverse direction T. The fourth wedge body 246 can also define an internal face 256 at the internal end 248 thereof and an external face 258 at the external end 250. The internal and external faces 256, 258 of the fourth wedge body 246 can each extend along the vertical and transverse directions V, T and can each be substantially planar, although other geometries are within the scope of the present disclosure. The fourth wedge body 246 can include a top surface 260 and a bottom surface 262 opposite the top surface 260 with respect to the vertical direction V. The bottom surface 262 can also be referred to as a “base” surface of the fourth wedge 54, and can extend along the longitudinal and transverse directions L, T. The bottom surface 262 can optionally be planar. The fourth wedge body 246 can be rounded or chamfered between the top surface 260 and the side surfaces 252, 254 so as to avoid contacting or otherwise directly engaging or interfering with the third ramp 190 or any other portion of the second wedge body 168 during translational and rotational movement of the fourth wedge body 246 under the second wedge body 168, for example.


The fourth wedge body 246 can define a central bore 264 extending along a central bore axis X3. The central bore 264 can be a through bore and can extend along the longitudinal direction L. The central bore axis X3 of the fourth wedge body 246 can be coextensive with the central shaft axis X1 of the drive shaft 98 and with the central bore axis X2 of the third wedge body 216. The central bore 264 of the fourth wedge body 246 can define threading 266 that is configured to engage the same one of the proximal and distal threaded portions 104, 106 as the threading 232 of the third wedge body 216. In the illustrated embodiments, rotation of the drive shaft 98 can threadedly translate the third and fourth wedges 53, 54 together along the longitudinal direction L at the same rate. However, in other embodiments, the third and fourth wedges 53, 54 of each wedge assembly 124, 126 can move at different rates and/or in opposite directions along the drive shaft 98.


The fourth wedge 54 can include one or more engagement elements configured to engage portions of at least one of the other wedges of the associated wedge assembly 124, 126, such as the third wedge 53. For example, the external face 258 of the fourth wedge body 246 can be characterized as an engagement element because it can be configured to abut the internal face 226 of the third wedge body 216. The external face 258 of the fourth wedge body 54 can optionally be configured to abut the internal face 226 of the third wedge body 216 in a manner ensuring that the third and fourth wedge bodies 216, 158 translate along the respective threaded portion 104, 106 of the drive shaft 98 at the same rate. In this manner, the fourth wedge 54 can be characterized as a “pusher” or a “pusher member” that effectively pushes the third wedge 53 in the external longitudinal direction LE. Additionally, it is to be appreciated that the third and fourth wedges 53, 54 can collectively be referred to as an “expansion wedge”, with the third wedge 53 being referred to as a “first member” or “first portion” of the expansion wedge, and the fourth wedge 54 being referred to as a “second member” or “second portion” of the expansion wedge. Additionally, each of the third and fourth wedges 53, 54 can be referred to individually as an “expansion wedge.”


The fourth wedge body 246 can also define a sixth inclined surface, or ramp 268, adjacent the bottom surface 262 of the body 246. The sixth ramp 268 can extend between the bottom surface 262 and the external face 256 of the fourth wedge body 246 with respect to the longitudinal direction L. The sixth ramp 268 can be inclined in the external longitudinal direction LE (and thus declined in the internal longitudinal direction LI). The sixth ramp 268 can be configured to engage the first ramp 148 of the first wedge body 128 during expansion of the implant 10. The sixth ramp 268 can optionally be substantially parallel with the first ramp 148. The sixth ramp 268 can be oriented at a sixth incline angle α6 in a range of about 10 degrees and about 60 degrees with respect to the longitudinal direction L (FIG. 24). In other embodiments, the sixth incline angle α6 can be in the range of about 20 degrees and about 40 degrees with respect to the longitudinal direction L. In further embodiments, the sixth incline angle α6 can be in the range of about 25 degrees and about 35 degrees with respect to the longitudinal direction L. In additional embodiments, the sixth incline angle α6 can be less than 10 degrees or greater than 60 degrees with respect to the longitudinal direction L.


The fourth wedge 54 can include a sixth guide element, such as a guide protrusion 270, configured to guide motion between the fourth wedge 54 and each of the inferior plate 12 and the first wedge 51. The guide protrusion 270 can extend from each of the bottom surface 262 and the sixth ramp 268. The guide protrusion 270 can be configured such that, in one phase of expansion of the implant 10, the protrusion 270 can translate within the guide slot 70 of the respective channel 68 of the inferior plate body 24 and, during another phase of expansion, the protrusion 270 can translate within the guide slot 150 of the first wedge 51.


The guide protrusion 270 of the fourth wedge body 246 can include one or more portions configured to selectively engage guide features of the inferior plate body 24 and guide features of the first wedge 51. For example, in the non-limiting example shown in FIGS. 22 through 24, the guide protrusion 270 can include a first portion 271, a second portion 272, a third portion 273, and a fourth portion 274. The first portion 271 can extend from the sixth ramp 268. The fourth portion 274 can extend from the bottom surface 262. The second portion 272 can be located underneath the first portion 271. The third portion 273 can be generally underneath the fourth portion 274. The first and fourth portions 271, 274 can each have a rectangular profile in the vertical-transverse plane. The second and third portions 272, 273 can each have a dovetail profile in the vertical-transverse plane. On each of the anterior and posterior sides 252, 254 of the fourth wedge body 246, an edge 276 between the first and second portions 271, 272 can be parallel with the bottom surface 262. Also on each side 252, 254, an edge 278 between the third and fourth portions 273, 274 can be parallel with the sixth ramp 268. The second portion 272 can taper transversely inward toward the first portion 271 from an edge 280 between the second and third portions 272, 273. The third portion 273 can taper transversely inward toward the fourth portion 274 from the edge 280 between the second and third portions 272, 273.


As shown in FIG. 26, during a first phase of expansion of the implant 10, the second, third and fourth portions 272, 273, 274 of the guide protrusion 270 of the fourth wedge 54 can be positioned within the respective plate guide slot 70 while the first portion 271 is positioned external of the plate guide slot 70. As shown in FIG. 27, at the conclusion of the first phase, which can also be considered the commencement of a second phase of expansion, the protrusion 270 can be simultaneously positioned in both the plate guide slot 70 and the guide slot 150 of the first wedge 51. The geometry of the protrusion 270 allows it to transition from the plate guide slot 70 to the first wedge guide slot 150, and to remain within the first wedge guide slot 150 during the second phase of expansion, as shown in FIG. 28. During the second phase, the first, second, and third portions 271, 272, 273 of the guide protrusion 270 can be positioned within the guide slot 150 of the first wedge 51 while the fourth portion 274 can be external of the guide slot 150.


It is to be appreciated that the dovetail profile of the guide protrusion 270, particularly at the edge 280 between the second and third portions 272, 273, can substantially match the dovetail profiles of the guide slots 70 of each channel 62, 64 as well as the guide slot 102 of the first wedge 51. The second portion 272 of the guide protrusion 270 can be configured to allow the guide protrusion 270 to transfer from the guide slot 70 of the inferior plate body 24 to the guide slot 150 of the first wedge 51 between the first and second phases. The third portion 273 of the guide protrusion 270 can be configured to allow the guide protrusion 270 to transfer from the guide slot 150 of the first wedge 51 to the guide slot 70 of the inferior plate body 24 during an optional reverse expansion process (i.e., during a collapsing or “contracting” process) of the implant 10, as set forth in more detail below.


The third portion 273 of the guide protrusion 270, particularly at the edge 280 between the second and third portions 272, 273, can be cooperatively shaped with the guide slot 150 of the first wedge 51 in a manner preventing the guide protrusion 270 from exiting the guide slot 150, at least in a direction orthogonal to the first ramp 148 and optionally in any direction except a direction parallel with the first ramp 148. In the illustrated embodiment, the guide protrusion 270 can enter and exit the guide slot 150 only at the internal end 130 (through the guide slot opening 198) or optionally at the external end 132 of the first wedge body 128.


Additionally, the second portion 272 of the guide protrusion 270, particularly at the edge 280 between the second and third portions 272, 273, can be cooperatively shaped with the guide slot 70 of the respective channel 62, 64 of the inferior plate body 24 in a manner preventing the guide protrusion 270 from exiting the guide slot 70, at least in a direction orthogonal to the channel base surface 68 and optionally in any direction except the longitudinal direction L or a direction parallel with the first ramp 148. Additionally, the profiles of the guide protrusion 270 and of the plate guide slot 70 can allow the inferior plate body 24 to be rotationally interlocked with the fourth wedge 54 when the guide protrusion 270 is within the plate guide slot 70 (FIG. 26) so that, for example, the fourth wedge 54 and the inferior plate body 24 can maintain the same angular position about the central shaft axis X1. Because the first wedge 51 can be rotationally interlocked with the inferior plate body 24 (FIG. 40), and the fourth wedge 54 can be rotationally interlocked with either the inferior plate body 24 or with the first wedge 51 (FIGS. 26 through 28), the inferior plate body 24 can thus be rotationally interlocked with both of the first and fourth wedges 51, 54 during all phases of expansion.


It is to be appreciated that, in the illustrated embodiment, the second, third and fourth wedges 52, 53, 54 of the proximal wedge assembly 124 can be substantially similar, or even virtually identical, to their respective counterparts in the distal wedge assembly 126. However, in other embodiments, one or more of the second, third and fourth wedges 52, 53, 54 of the proximal wedge assembly 124 can be configured differently than their respective counterparts in the distal wedge assembly 126.


Referring now to FIG. 29, a distal wedge assembly 126 is illustrated during the second phase of expansion. The profiles of the guide slot 192 of the second wedge 52 and the guide protrusion 236 of the third wedge can allow the second wedge 52 to be rotationally interlocked with the third wedge 53 as the third wedge 53 rotates relative to the fourth wedge 54 about the axis X1 of the drive shaft 98, as set forth above. Additionally, as also set forth above, the profiles of the guide slot 150 of the first wedge 51 and the guide protrusion 270 of the fourth wedge 54 can allow the first and fourth wedges 51, 54 to be rotationally interlocked with one another when the guide protrusion 270 is within the guide slot 150 so that, for example, the first and fourth wedges 51, 54 maintain the same angular position about the central shaft axis X1 or, in other embodiments, so that the first and fourth wedges 51, 54 rotate by the same degree about the central shaft axis X1 during operation of the implant 10.


Referring now to FIG. 30, the wedges 51, 52, 53, 54 of each wedge assembly 124, 126 can have telescopic mobility in the longitudinal and vertical directions L, V. It is to be appreciated that, when the implant 10 is in the collapsed configuration, each of the anterior and posterior actuation assemblies 94, 96, and each of the proximal and distal wedge assemblies 124, 126 can also be considered as being in its respective collapsed configuration. For purposes of comparison, FIG. 30 depicts the proximal wedge assembly 124 in the collapsed configuration while the distal wedge assembly 124 is depicted in the fully expanded configuration. Each wedge assembly 124, 126 can define a length, measured from the external face 138 of the first wedge 51 to the internal face 256 of the fourth wedge 54 along the longitudinal direction L, and a height, measured from the bottom surface 146 of the guide protrusion 144 of the first wedge 51 to the top surface 186 of the guide protrusion 184 of the second wedge 122 along the vertical direction V. In the collapsed configuration, each wedge assembly 124, 126 can define a collapsed length L1 and a collapsed height H1. In the fully expanded configuration, each wedge assembly 124, 126 can define an expanded length L2 that is less than the collapsed length L1, and an expanded height H2 that is greater than the collapsed height H1. Stated differently, each wedge assembly 124, 126 can decrease in length as it increases in height. The ratio of the expanded height H2 to the collapsed height H1 can be in the range of about 1.5:1 to 3.5:1, by way of non-limiting example. Accordingly, the vertical distance D between the bone-contacting surfaces 28, 30 (FIG. 31) can also increase by a similar margin during expansion of the implant 10. For example, the vertical distance D can increase by a factor in the range of about 1.05 and about 3.0 from the collapsed configuration to the fully expanded configuration, by way of non-limiting example.


Operation of the implant 10, including expansion and lordosis, will now be discussed with reference to FIGS. 31 through 41, beginning with the implant in the collapsed configuration, as shown in FIG. 31.


Referring now to FIG. 31, while the posterior actuation assembly 96 is depicted, it is to be appreciated that the following description can also apply to the corresponding components of the anterior actuation assembly 94. When the implant 10 is in the collapsed configuration, the internal contact surfaces 46 of the inferior and superior plate bodies 24, 26 can abut one another. Additionally, when collapsed, each actuation assembly 94, 96 can be disposed substantially entirely within the associated compartment 60, 62 (FIG. 2) defined by the overlying channels 56, 58 of the plates 12, 18. The proximal end 120 of the nut socket 116 can be generally aligned with the proximal end 12 of the implant 10 along the transverse direction T. The drive shaft 98 can extend along the longitudinal direction L through the channels 56, 58. One or both of the distal end 114 of the head 110 and the distal end 102 of the drive shaft 98 can abut or be adjacent to the proximal face 90 of the second transverse protrusion 84 of the superior plate body 26. The proximal end 112 of the head 110 can abut or be adjacent to the distal face 92 of the first transverse protrusion 82 of the superior plate body 26. In this manner, the head 110 can be aligned with the transverse wall 76 of the inferior plate body 24 along the transverse direction T.


With reference to the proximal wedge assembly 124 in the collapsed configuration, the external face 138 of the first wedge 51 can abut or be adjacent to the distal end 122 of the nut socket 116. The bottom base surface 142 of the first wedge 51 can abut the base surface 68 of the posterior channel 58 of the inferior plate body 24 and the guide protrusion 144 of the first wedge 51 can be received within the guide slot 70 of the posterior channel 58 of the inferior plate body 24. The proximal threaded portion 104 of the drive shaft 98 can extend through the U-shaped channel 158 of the first wedge 51.


The second wedge 52 can be positioned such that the second ramp 188 abuts the first ramp 148 at a location adjacent the internal end 130 of the first wedge 51. The upper base surface 180 of the second wedge 52 can abut the base surface 68 of the posterior channel 58 of the superior plate body 26 and the guide protrusion 184 of the second wedge 52 can be received within the guide slot 70 of the posterior channel 58 of the superior plate body 26. The proximal threaded portion 104 of the drive shaft 98 can extend through the U-shaped channel 202 of the second wedge 52.


The third wedge 53 can be positioned such that the fourth ramp 234 thereof abuts the third ramp 190 of the second wedge 52 at a location adjacent the internal end 170 thereof. The guide protrusion 236 of the third wedge 53 can be received within the guide slot 192 of the second wedge 52. The drive shaft 98 can extend through the central bore 230 of the third wedge 53, with the threading 232 thereof engaged with the proximal threaded portion 104 of the drive shaft 98.


The fourth wedge 54 can be positioned such that the external face 258 thereof abuts or is adjacent to the internal face 226 of the third wedge 53. The internal face 256 of the fourth wedge 54 can be positioned at or adjacent the intermediate portion 108 of the drive shaft 98 (i.e., the internal end of the proximal threaded portion 104). The bottom surface 262 of the fourth wedge 54 can abut the base surface 68 of the posterior channel 58 of the inferior plate body 24 and the guide protrusion 270 of the fourth wedge 54 can be received within the guide slot 70 of the posterior channel 58 of the inferior plate body 24. The drive shaft 98 can extend through the central bore 264 of the fourth wedge 53, with the threading 266 thereof engaged with the proximal threaded portion 104 of the drive shaft 98.


It is to be appreciated that, as set forth above, the distal wedge assembly 126 can effectively be a substantial mirror image of the proximal wedge assembly 124 about a vertical-transverse plane positioned at the intermediate portion 108 of the drive shaft 98. Thus, the relative positions of the wedges 51′, 52, 53, 54 of the distal wedge assembly 126 and the distal threaded portion 106 of the drive shaft 98 can be substantially similar to that of the proximal wedge assembly 124 and the proximal threaded portion 104 of the drive shaft. With regards to the variant of the first wedge 51′, the first external face 138′ thereof can abut or be adjacent the proximal end 112 of the head 110 (FIG. 5) while the second external face 139′ of the first wedge 51′ can abut or be adjacent to the proximal face 90 of the first transverse protrusion 82 of the superior plate body 26 (FIG. 4).


Expansion of the implant 10 between the collapsed configuration and a first partially expanded configuration, as shown in FIGS. 32 through 34, will now be discussed, according to an example mode of expansion. It is to be appreciated that, while FIGS. 32 through 34 depict the anterior and posterior actuation assemblies 94, 96 actuated concurrently so as to expand the implant 10 uniformly, each of the anterior and posterior actuation assemblies 94, 96 can be operated independently to provide non-uniform expansion or contraction of the implant 10 (i.e., lordosis).


During a first phase of expansion, the drive shaft 98 can be rotated about its central shaft axis X1 in a first rotational direction (such as clockwise, for example) so that the proximal threaded portion 104 provides a first or proximal drive force F1 in the external longitudinal direction LE thereof (i.e., the proximal direction) and the distal threaded portion 106 provides a second or distal drive force F2 in the external longitudinal direction LE thereof (i.e., the distal direction). The threading 232, 178 of the central bores 146, 176 of the third and fourth wedges 53, 54, respectively, can engage the associated threaded portion 104, 106 of the drive shaft 98 in a manner transmitting the respective drive force F1, F2 to the third and fourth wedges 53, 54 causing the third and fourth wedges 53, 54 to translate in the external longitudinal direction LE.


Referring to FIG. 34, as the third and fourth wedges 53, 54 translate, each of the following can occur: the bottom surface 262 of the fourth wedge 54 rides along the base surface 68 of the respective anterior channel 56, 58 of the inferior plate 20; the guide protrusion 270 of the fourth wedge 54 rides within the guide slot 70 of the respective channel 56, 58; the fourth ramp 234 of the third wedge 53 rides along the third ramp 190 of the second wedge 52; and the guide protrusion 236 of the third wedge 53 rides within the guide slot 192 of the second wedge 52. The vertical distance D between the inferior and superior bone-contacting surfaces 28, 30 can increase by a factor in the range of about 0.2 and about 1.0 as a result of the fourth ramp 234 riding along the third ramp 190. As the fourth ramp 234 rides along the third ramp 190, the first drive force F1 can be conveyed at least to the second wedge 52 causing the second ramp 188 (not visible in FIG. 34) to ride along the first ramp 148 of the first wedge 51, further increasing the distance D between the bone-contacting surfaces 28, 30 along the vertical direction V by a factor in the range of about 0.2 to 1.0 (with respect to the collapsed distance D).


As the fourth ramp 234 rides along the third ramp 190 and as the second ramp 188 rides along the first ramp 148, the sixth ramp 268 of the fourth wedge 54 can approach the first ramp 148 of the first wedge 51. In the present example, the first phase of expansion can be complete when the sixth ramp 268 abuts the first ramp 148, at which point the protrusion 270 of the fourth wedge 54 can enter the opening 152 of the guide slot 150 of the first wedge 51 (FIG. 28). As set forth above, the geometry of the guide protrusion 270 of the fourth wedge 54 can allow the protrusion 270 to be simultaneously positioned within the plate guide slot 70 and the guide slot 150 of the first wedge 51 at the conclusion of the first phase of expansion (and at the commencement of the second phase of expansion).


At the conclusion of the first phase and commencement of the second phase of expansion, the external end 172 of the second wedge 52, as well as the entire second ramp 188, can be positioned intermediate the internal and external ends 130, 132 of the first wedge 51 with respect to the longitudinal direction L. Moreover, the entire fourth ramp 234 can be positioned intermediate the downward apex 182 and the internal end 170 of the second wedge 52, while the protrusion 236 of the third wedge 53 can be positioned intermediate the stop feature 200 and the opening 198 of the guide slot 192 of the second wedge 52, each with respect to the longitudinal direction L. It is to be appreciated that, while views of the internal end 90 of the first wedge 51 and the downward apex 182 and stop feature 200 of the second wedge 52 are each obstructed in FIG. 34, such features are visible in FIG. 31.


Expansion of the implant 10 between the first partially expanded configuration, as shown in FIGS. 32 through 34, and a fully expanded configuration, as shown in FIGS. 35 through 37, will now be discussed, according to the example mode of expansion.


Referring now to FIGS. 35 through 37, the implant 10 is shown uniformly expanded at the conclusion of the second phase of expansion, which can be commensurate with the fully expanded configuration. As above, it is to be appreciated that the anterior and posterior actuation assemblies 94, 96 can each be operated independently to provide non-uniform expansion or contraction of the implant 10 (i.e., lordosis) between the first partially expanded configuration and the fully expanded configuration.


Referring to FIGS. 35 through 37, during the second phase of expansion, the drive shaft 98 can be further rotated about its central shaft axis X1 in the first rotational direction. The threading 232, 178 of the third and fourth wedges 53, 54, respectively, can continue to engage the associated threaded portion 104, 106 of the drive shaft 98 in a manner translating the third and fourth wedges 53, 54 further in the external longitudinal direction LE. The second phase of expansion can be characterized as when the sixth ramp 268 rides along the first ramp 148, which yet further increases the distance D between the inferior and superior bone-contacting surfaces 28, 30.


As the fourth wedge 54 translates at the commencement of the second phase of expansion, the protrusion 270 can transition from the guide slot 70 of the channel 56, 58 of the inferior plate body 24 to the guide slot 150 of the first wedge 51. In particular, the geometry of the first, second, third and fourth portions 271, 272, 273, 274 of the protrusion 270 can engage the guide slot 150 of the first wedge 51 so that the protrusion 270 is caused to exit the plate guide slot 70 and to be received entirely within the guide slot 150 of the first wedge 51. Additionally, the fifth ramp 240 of the third wedge 53 can extend within the guide slot 150 of the first wedge 51 without contacting the first wedge body 128.


During at least a portion of the second phase of expansion, the sixth ramp 268 can ride along the first ramp 148 while the fourth ramp 234 rides along the third ramp 190, resulting in relative motion between the second wedge 52 and each of the third and fourth wedges 53, 54 along the longitudinal and vertical direction L, V. Such relative motion between the second wedge 52 and the third and fourth wedges 53, 54 during the second phase can cause the second ramp 188 to separate from, or otherwise become remote from, the first ramp 148 with respect to the vertical direction V. Additionally, such relative motion between the second wedge 52 and the third and fourth wedges 53, 54 can be initiated by a reactionary force imparted to at least one of the second, third, and fourth wedges 52, 53, 54. For example, the reactionary force can occur when a component of the implant 10, such as a stop feature in the channel 56, 58, the guide slot 70, or other portion of the plate body 24, 26, impedes motion of the second wedge 52 in the external longitudinal direction LE. In another non-limiting example, the second and sixth ramps 124, 180 can ride along the first ramp 148 at or near the same rate until, in the proximal wedge assembly 124, the external face 178 of the second wedge 52 abuts the distal end 122 of the nut socket 116 while, in the distal wedge assembly 126, the external face 178 of second wedge 52 abuts the proximal face 90 of the first transverse protrusion 82. In each of the proximal and distal wedge assemblies 124, 126, the foregoing abutments can impede further movement of the second wedge 52 along the external longitudinal direction LE while the fourth ramp 234 continues to ride along the third ramp 190 and the sixth ramp 268 continues to ride along the first ramp 148, thus driving the second wedge 52 upward with respect to the first wedge 51.


In another non-liming example, the reactionary force can occur at the commencement of the second phase of expansion, causing the fourth ramp 234 to ride along the third ramp 190 as soon as the sixth ramp 268 rides along the first ramp 148. In such an example, in each of the proximal and distal wedge assemblies 124, 126, the fourth ramp 234 can ride along the third ramp 190 until the guide protrusion 236 of the third wedge 53 abuts the stop feature 200 of the guide slot 192 of the second wedge 52, after which the sixth ramp 268 can continue to ride along the first ramp 148 without any relative motion between the second wedge 52 and the third and fourth wedges 53, 54 along the longitudinal and vertical directions L, V. Thus, in each of the two preceding non-limiting examples, the second phase of expansion can include at least one portion or sub-phase that involves relative motion between the second wedge 52 and each of the third and fourth wedges 53, 54 with respect to the longitudinal and vertical directions L, V, and at least one other portion or sub-phase during which the second, third, and fourth wedges 52, 53, 54 are driven together along the longitudinal and vertical directions L, V without any relative motion therebetween.


In yet another non-limiting example, relative motion can occur between the second wedge 52 and each of the third and fourth wedges 53, 54 along the longitudinal and vertical directions L, V during substantially the entire second phase of expansion. In this example, in each of the proximal and distal wedge assemblies 124, 126, the reactionary force can occur at the commencement of the second phase of expansion, causing the fourth ramp 234 to ride along third ramp 190 and the guide protrusion 236 of the third wedge 53 to concurrently ride within the guide slot 192 as soon as the sixth ramp 268 rides along the first ramp 148. Furthermore, in this example, the guide protrusion 236 of the third wedge 53 can abut the stop feature 200 of the second wedge 52 substantially at the same time as the external face 178 of the second wedge 52 abuts the distal end 122 of the nut socket 116.


At the conclusion of the second phase of expansion, in the proximal wedge assembly 124, the external end 172 of the second wedge 52 can be substantially aligned with the external end 132 of the first wedge 51 along the vertical direction V, and, in the distal wedge assembly, the external end 172 of the second wedge 52 can be substantially aligned with the second external face 139′ of the first wedge 51′. Additionally, in each wedge assembly 124, 126, the third and fourth wedges 53, 54 can each be entirely intermediate the internal and external ends 130, 132 of the first wedge 51 as well as the external and internal ends 170, 172 of the second wedge 52. Similarly, at the conclusion of the second phase of expansion, the downward apex 182 of the second wedge 52 can be spaced upward of the upward apex 140 of the first wedge 51.


Throughout expansion of the implant 10, the respective first wedges 51, 51′ of the proximal and distal wedge assemblies 124, 126 can remain adjacent the external ends of the proximal and distal threaded portions 104, 106 of the drive shaft 98. Additionally, the second, third and fourth wedges 52, 53, 54 of each wedge assembly 124, 126 can move in the external longitudinal direction LE during expansion. Thus, the points of contact between the wedge assemblies 124, 126 and the superior and inferior plates 12, 28 are either initially located adjacent the proximal and distal ends 12, 14 of the implant 10 (as in the case of the first wedges 51, 51′ coupled to the inferior plate 20) or move toward the proximal and distal ends 12, 14 of the implant 10 during expansion (as in the case of the second wedges 52 coupled to the superior plate 22). Such an arrangement provides enhanced support and stability to the implant 10 during expansion, particularly with respect to reactive forces, such as inner body forces, imparted to the implant 10 along the vertical direction V within the intervertebral space 5. However, it is to be appreciated that, in other embodiments (not shown), the respective first wedges 51, 51′ of the proximal and distal wedge assemblies 124, 126 can be located adjacent the internal ends of the threaded portions 104, 106 of the drive shaft 98, and the second, third and fourth wedges 52, 53, 54 of each wedge assembly 124, 126 can move in the internal longitudinal direction LI during expansion.


Operation of the implant 10 to achieve lordosis will now be discussed.


Referring now to FIGS. 38 through 40, the anterior and posterior actuation assemblies 94, 96 can be driven independently in a manner providing the implant 10 with a lordotic profile, as set forth above. Stated differently, the anterior and posterior actuation assemblies 94, 96 can be operated in a manner causing at least one of the inferior and superior plates 20, 22 to tilt relative to the other plate 20, 22 with respect to the transverse direction T. In some embodiments, at least one of the plates 20, 22 can tilt relative to the other plate 20, 22 about at least one of the first and second central shaft axes X1. This can be accomplished by placing the wedge assemblies 124, 126 of one of the anterior and posterior actuation assemblies 94, 96 at a degree of expansion that is different than that of the wedge assemblies 124, 126 of the other actuation assembly 94, 96. In the example lordotic configuration of FIGS. 38 through 40, in the posterior actuation assembly 96, the proximal and distal wedge assemblies 124, 126 thereof can be at about the collapsed configuration (FIG. 39) while, in the anterior actuation assembly 94, the wedge assemblies 124, 126 thereof can be expanded to near the first partially expanded configuration, thus causing the superior plate 22 to tilt relative to the inferior plate 20 with respect to the transverse direction T at a lordotic angle β (FIG. 40).


When at least one of the plates 20, 22 is tilted lordotically with respect to the other, a first distance D1 between the inferior and superior bone-contacting surfaces 28, 30, measured along the vertical direction L and intersecting the central shaft axis X1 of the anterior actuation assembly 94, can be shorter or longer than a second distance D2 between the inferior and superior bone-contacting surfaces 28, 30, measured along the vertical direction L and intersecting the central shaft axis X1 of the posterior actuation assembly 96. Additionally, when at least one of the plates 20, 22 is tilted lordotically with respect to the other, a vertical distance D3 between the inferior and superior plates 20, 22 at the anterior side 16 of the implant 10 can be shorter or longer than a vertical distance D4 between the plates 20, 22 at the posterior side 18 of the implant 10. As shown in FIG. 40, one of D3 and D4 can be as small as zero, at which point the internal contact surfaces 46 at the respective side 16, 18 of the implant 10 can define a fulcrum. In some embodiments, the internal faces 44 of the inferior and superior plate bodies 24, 26 can be curved, canted or can otherwise define a gap therebetween at one or both of the anterior and posterior sides 16, 18 so that at least one of the plates 20, 22 can be tilted lordotically while one of the anterior and posterior actuation assemblies 94, 96 is in the collapsed configuration (i.e., lordosis can be induced from the collapsed configuration).


It is to be appreciated that the lordotic profile illustrated in FIGS. 38 through 40 represents merely one of numerous lordotic profiles achievable with the implant 10 of the present disclosure. For example, the physician can actuate the anterior actuation assembly 94 to a first expanded configuration and the posterior actuation assembly 96 to a second expanded configuration to provide a difference between the first distance D1 and the second distance D2. In particular, the physician can actuate one of the anterior and posterior actuation assemblies 94, 96 to the fully expanded configuration while the other actuation assembly 96, 94 remains near the fully collapsed configuration to provide the implant 10 with a maximum lordotic angle β in the range of about 0 degrees and about 45 degrees. It is to be appreciated that the physician can independently place each of the actuation assemblies 94, 96 in the collapsed configuration, the fully expanded configuration, or any position therebetween to provide the implant 10 with the desired lordotic angle β. It is also to be appreciated that an initial lordotic angle β can be built in to the implant 10. In such embodiments, the inferior and superior bone plates 20, 22 can be configured such that the bone-contacting surfaces 28, 30 thereof are oriented at a lordotic angle β when the implant 10 is in the collapsed configuration.


The tilting can be rendered possible at least because the inferior plate 20 is rotationally interlocked with the first wedge 51, the superior plate 22 is rotationally interlocked with the second wedge 52, the second wedge 52 is rotationally interlocked with the third wedge 53, the third wedge 53 is rotatable about the respective central shaft axis X1 relative to the fourth wedge 54 (as shown in FIG. 41), and the fourth wedge 54 is rotationally interlocked with the inferior plate 20 (either directly, as in the first phase of expansion, or via rotationally interlocking with the first wedge 51, which is rotationally interlocked with the inferior plate 20). It is to be appreciated that the fourth wedge 54 acts as a hinge of the implant 10 that facilitates lordotic tilting of at least one of the plates 20, 22. By utilizing the drive shaft 98 as the “through pin” of the hinge, the strength of the hinge is increased and the number of parts needed to complete the hinge is reduced. Additionally, the base surfaces 68 of the channels 56, 58, the base surfaces 142, 180, 262 of each wedge assembly 124, 126, and the ramp surfaces 148, 188, 190, 234, 268 of each wedge assembly 124, 126 collaboratively provide the implant 10 with added stability and strength to withstand inner body forces during and after implantation.


It is also to be appreciated that implant 10 provides the physician with enhanced freedom regarding the sequencing of achieving the desired expansion and/or lordosis of the implant 10. In particular, after predetermining the desired amount of expansion and/or lordosis of the implant 10 in the intervertebral space 5, the physician can insert the implant 10 in the collapsed configuration into the intervertebral space 5 along the medial-lateral direction, as shown in FIG. 1. If both expansion and lordosis are desired, the physician can expand the implant 10 uniformly to a partially expanded configuration, and then expand or retract the implant 10 in a non-uniform manner to achieve the desired lordotic angle β of the implant 10. The implant 10 can be expanded or retracted non-uniformly in various ways, including, for example: operating one of the actuation assemblies 94, 96 independently; operating both actuation assemblies 94, 96 simultaneously but at different rates; operating both actuation assemblies 94, 96 simultaneously but in different rotational directions; or any combination of the foregoing. The design of the implant 10, as disclosed herein allows the physician to utilize any of the foregoing modes of expansion, contraction and/or lordosis to achieve the final desired configuration, and to adjust the configuration of the implant 10 as necessary, including during subsequent physical procedures on the patient. The compact nature of the implant 10 in the collapsed configuration allows the implant 10 to fit within the standard lumbar disc space. Additionally, because the implant 10 can be adjusted to achieve up to 30 mm or more of expansion and up to 45 degrees or more of lordosis, the physician can use the implant 10 in many different locations within the spine and for many different purposes.


Referring now to FIG. 42, a second embodiment of the implant 10′ is shown. It is to be appreciated that the second embodiment can be similar to the first embodiment of the implant shown in FIGS. 1 through 41. Accordingly, the same reference numbers used above with reference to the first embodiment can be also used with a “prime” notation in reference to second embodiment. It is also to be appreciated that, unless otherwise set forth below, the components (and features thereof) of the implant 10′ of the second embodiment can be similar to those of the first embodiment.


The inferior and superior plates 20′, 22′ of the second embodiment can define a single vertical aperture 34′ extending through the implant 10′ along the vertical direction V. The anterior and posterior portions 36′, 38′ of the implant 10 can be located on opposite sides of the vertical aperture 34′. The distal portion 40′ of the implant 10′ can be spaced from the vertical aperture 34′ in the distal direction.


Referring now to FIG. 43, the anterior and posterior channels 56′, 58′ of each of the inferior and superior plate bodies 24′, 26′ can include a proximal channel portion 55′ that is contoured to match the outer contour of the nut socket 116′. At a distal end of each proximal channel portion 55′, each plate body 24′, 26′ can define a shoulder 57′. The shoulders 57′ of the inferior plate body 24′ can be configured to abut the external faces 138′ of the first wedges 51′ of the anterior and posterior actuation assemblies 94′, 96′. The shoulders 57′ of the superior plate body 22′ can be configured to abut, or at least be adjacent to, the external faces 178′ of the second wedges 52′ of the actuation assemblies 94′, 96′ when the actuation assemblies 94′, 96′ are in the fully expanded configuration.


Each of the channels 56′, 58′ of the inferior plate body 24′ can define a first pair of cutouts 59′ and a second pair of cutouts 61′ spaced from each other along the longitudinal direction L. In each channel 56′, 58′, the cutouts 59′ of the first pair can be opposed to each other along the transverse direction T, and the cutouts 61′ of the second pair can be opposed to each other along the transverse direction T. While the view of FIG. 43 only shows the anterior cutout 61′ of each pair, it is to be appreciated that the posterior cutout 61′ of each pair can be a mirror image of the associated anterior cutout 61′. The first and second pairs of cutouts 59′, 61′ can each be in communication with the plate guide slots 70′ of the inferior plate body 24′ and can be sized to allow the base protrusions 142′ of the first wedges 51′ to be inserted into the plate guide slots 70′ during assembly of the implant 10′.


Each of the channels 56′, 58′ of the superior plate body 26′ can define a pair of central cutouts 63′ generally centered with respect to the longitudinal direction L. In each channel 56′, 58′, the central cutouts 63′ of each pair can be opposed to each other along the transverse direction T. While the view of FIG. 43 only shows the posterior central cutout 63′ of each pair, it is to be appreciated that the anterior central cutout 63′ of each pair can be a mirror image of the associated posterior central cutout 63′. The central cutouts 63′ can each be in communication with the plate guide slots 70′ of the superior plate body 26′ and can be sized to allow the bottom protrusion 270′ (FIGS. 44 through 46) of the fourth wedges 54′ of each actuation assembly 94′, 96′ to be inserted into the plate guide slots 70′ during assembly of the implant 10′.


With continued reference to FIG. 43, each of the plate guide slots 70′ can define a proximal end 70a′ and a distal end 70b′. In the inferior plate body 24′, the proximal ends 70a′ of the plate guide slots 70′ can optionally be configured to abut the base protrusions of the first wedges 51″ of the proximal wedge assemblies 124′, and the distal ends 70b′ of the plate guide slots 70′ can optionally be configured to abut the base protrusions of the first wedges 51′″ of the distal wedge assemblies 126′. While the base protrusions of the first wedges 51″, 51′″ of the present embodiment are not visible in FIG. 43, it is to be appreciated that these base protrusions can be configured similarly to the base protrusions 144, 144′ shown in FIGS. 10 through 15. In the superior plate body 26′, the proximal ends 70a′ of the plate guide slots 70′ can optionally be configured to abut the base protrusions 184′ of the second wedges 52′ of the proximal wedge assemblies 124′ during operation of the implant, such as when each respective actuation assembly 94′, 96′ is in the fully expanded configuration. Similarly, the distal ends 70b′ of the plate guide slots 70′ can optionally be configured to abut the base protrusions 184′ of the second wedges 52′ of the distal wedge assemblies 126′ during operation of the implant 10′, such as when each respective actuation assembly 94′, 96′ is in the fully expanded configuration. It is to be appreciated that the proximal and distal ends 70a′, 70b′ of the guide slots 70′ of the superior plate 22 can impede motion of the second wedges 52′ in the external longitudinal direction LE during expansion of the implant 10.


At the distal portion 40′ of the inferior plate body 24′, the internal face 44′ can define a single transverse slot 73′ elongated along the transverse direction T. The distal portion 40′ of the superior plate body 26′ can define a single transverse protrusion 83′ protruding beyond the internal contact surface 46′ of the superior plate body 26′. When the implant 10′ is in the collapsed configuration, the transverse protrusion 83′ of the superior plate body 26′ can nest within the transverse slot 73′ of the inferior plate body 24′. The transverse protrusion 83′ can define a pair of opposed recesses 85′ extending into the protrusion 83′ along the transverse direction T. The recesses 85′ can be configured to receive therein portions of the heads 110′ of the drive shafts 98′ of the anterior and posterior actuation assemblies 94′, 96′, at least when the implant 10′ is in the collapsed configuration.


It is to be appreciated that the third and fourth wedges 53′, 54′ of each of the actuation assemblies 94′, 96′ of the second embodiment can be different than their counterparts in the first embodiment. Referring to FIGS. 44 through 46, the third wedge body 216′ can define an upper surface 231′ extending between the internal face 226′ and the fourth ramp 234′ along the longitudinal direction L. The third wedge body 216′ can define a vertical aperture 233′ extending through the fourth ramp 234′ and the guide protrusion 236′, and can also define a pair of arms 235′, 237′ extending from the internal face 226′ to the external face 228′. The vertical aperture 233′ can be in communication with the central bore 230′ of the third wedge 53′. A portion of the threading 232′ of the central bore 230′ can be defined on the inner sides of the arms 235′, 237′. Each of the pair of arms 235′, 237′ can define a lower surface 239′ (FIG. 46) that is canted toward the axis X2 of the central bore 230′ of the third wedge 53′. The rounded portion 244′ of the third wedge 53′ can extend downward from the lower surfaces 239′ of the arms 235′, 237′, and can have a substantially semicircular profile in a vertical-transverse plane. The rounded portion 244′ of the present embodiment can optionally not be inclined with respect to the longitudinal direction L. The rounded portion 244′ can surround at least a portion of the central bore 230′ of the third wedge body 216′.


The fourth wedge body 246′ can define a front basket 253′ extending from the external face 258′ along the external longitudinal direction LE. The front basket 253′ can provide the bottom base surface 262 of the fourth wedge body 246′ with increased length and thus increased stability as the bottom base surface 262 abuts and/or translates along the channel base surface 68. The external face 258′ of the fourth wedge body 246′ can be a first external face thereof, and the front basket 253′ can define a second external face 255′ that is spaced from the first external face 256′ along the external longitudinal direction LE. The second external face 255′ can be positioned at the external end 250′ of the fourth wedge body 246′. The bottom surface 262′ of the fourth wedge body 246′ can extend from the internal face 256′ to the sixth ramp 268′ along the longitudinal direction L and can extend along a portion of the basket 253′. The sixth ramp 268′ can extend from the bottom surface 262′ to the second external face 255′ of the fourth wedge body 246′. The guide protrusion 270′ of the fourth wedge body 246′ of the second embodiment can be configured similarly to the guide protrusion 270′ of the first embodiment.


The basket 253′ can define a central recess 257′ extending along the longitudinal direction L. The central recess 257′ can be characterized as an extension of the central bore 264′ of the fourth wedge body 246′ along the basket 253′. The central recess 257′ can separate an upper portion of the basket 253′ into a pair of arms 259′, 261′ that each extend generally along the longitudinal direction L and each have an upper surface 263′ that is canted towards the central bore axis X3 of the fourth wedge 54′. The basket 253′ can also define a trough 265′ configured to receive the rounded portion 244′ of the third wedge body 216′. The trough 265′ can have a rounded profile that corresponds to the profile of the rounded portion 244′ of the third wedge body 216′ and can allow the rounded portion 244′ of the third wedge body 216′ to rotate within the trough 265 about the central bore axis X3 of the third wedge body 216′. The central recess 257′ can also define a portion of the threading 266′ of the central bore 264′ of the fourth wedge body 246′. The fourth wedge body 216′ can define a vertical aperture 267′ extending through the basket 253′ at the external end 250′ thereof. The vertical apertures 233′, 267′ of the third and fourth wedge bodies 216′, 246′ can be aligned with one another along the vertical direction V.


As shown in FIGS. 44 and 45, the third wedge body 216′ can be coupled to the fourth wedge body 54′ such that: the rounded portion 244′ of the third wedge body 216′ is received within the trough 265′ of the fourth wedge body 246′; the internal face 226′ of the third wedge body 216′ abuts or is adjacent to the first external face 256′ of the fourth wedge body; and the external face 228′ of the third wedge body 216′ is substantially aligned with the second external face 255′ of the fourth wedge body 246′ along the vertical direction V. When the plates 20′, 22′ are at a neutral (i.e., non-lordotic) configuration, a gap 275′ is defined between the lower surfaces 239′ of the arms 235′, 237′ of the third wedge body 216′ and the upper surfaces 263′ of the arms 259′, 261′ of the fourth wedge body 246′. The gap 275′ and the canted arm surfaces 239′, 263′ can be configured to allow the third wedge body 216′ to rotate relative to the fourth wedge body 246′, as shown in FIG. 45. Additionally, the rounded portion 244′ of the third wedge body 216′ and the trough 265′ of the fourth wedge body 246′ can be cooperatively configured to translationally affix the third and fourth wedges 53′, 54′ together with respect to translation along the drive shaft 98′.


Referring now to FIG. 47, the second embodiment of the implant 10′ is shown with each wedge assembly 124′, 126′ in the fully expanded configuration (with the superior plate 22′ removed for visualization purposes). It is to be appreciated that the actuation assemblies 94′, 96′ and the wedge assemblies 124′, 126′ of the second embodiment can operate as set forth above with respect to those of the first embodiment.


Referring now to FIGS. 48 and 49, the actuation assemblies 94′, 96′ of the implant 10′ can be operated independently so that the superior plate 22′ is tilted relative to the inferior plate 20′ with respect to the transverse direction T so as to provide the implant 10′ with a lordotic profile, as set forth above. As shown in FIG. 48, the inferior and superior bone-contacting surfaces 28′, 30′ can be oriented at a lordotic angle β in the range of about 0 degrees and about 25 degrees. As set forth above, when at least one of the plates 20′, 22′ is tilted lordotically with respect to the other, a first vertical distance D1 between the inferior and superior bone-contacting surfaces 28′, 30′ that intersects the associated central shaft axis X1 can be shorter or longer than a second vertical distance D2 between the bone-contacting surfaces 28′, 30′ that intersects the associated central shaft axis X1. Additionally, when at least one of the plates 20′, 22′ is tilted lordotically with respect to the other, a vertical distance D3 between the inferior and superior plates 20′, 22′ at the anterior side 16′ of the implant 10′ can be shorter or longer than a vertical distance D4 between the plates 20′, 22′ at the posterior side 18′ of the implant 10, as set forth above.


As shown in the example lordotic configuration of FIG. 49, in the anterior actuation assembly 94′, the proximal and distal wedge assemblies 124′, 126′ thereof can be near the collapsed configuration while, in the posterior actuation assembly 96′, the wedge assemblies 124′, 126′ thereof can be expanded near or at the fully expanded configuration, thus causing the lordotic tilting of the superior plate 22′. It is to be appreciated that, while FIG. 49 illustrates the inferior and superior plates 20′, 22′ separated vertically to provide an unobstructed view of the actuation assemblies 94′, 96′, the plates 20′, 22′ are shown at the same lordotic angle β as in FIG. 48.


It is to be appreciated that, while the illustrated embodiments depict the implant 10 having a pair of actuation assemblies 94, 96, in other embodiments (not shown), the implant 10 can have a single actuation assembly 94 to expand the implant 10 along the vertical direction V. In one such embodiment, the plates 20, 22 can be configured to maintain contact with each other in a hinge-like manner at one of the anterior and posterior sides 16, 18 so that operation of the single actuation assembly 94 expands the implant 10 vertically and simultaneously provides lordosis.


Referring now to FIG. 50, a driving tool 300 can be configured to engage the anterior and posterior actuation assemblies 94, 96 of the implant 10. For example, the driving tool 300 can include a handle 302 coupled to a first driver 304 and a second driver 306 that are spaced from each other along the transverse direction T. The first driver 304 can carry a first bit 308 configured to engage the drive coupling of the anterior actuation assembly 94 while the second driver 306 can carry a second bit 310 configured to engage the drive coupling of the posterior actuation assembly 96. For example, in the illustrated embodiments, the first and second bits 308, 310 can each define a hex profile configured to engage a corresponding hex profile of the socket aperture 118 of the corresponding actuation assembly 94, 96.


The driving tool 300 can include a one or more selector switches that allows the physician to select between various modes of operation of the tool 300. For example, a first selector switch 312 can toggle between a first drive mode A, a second drive mode B, and a third drive mode C. In the first drive mode A, the tool 300 can be set to operate only the first driver 304. In the second drive mode B, the tool 300 can be set to operate the first and second drivers 304, 306 simultaneously. In the third mode C, the tool 300 can be set to operate only the second driver 306.


A second selector switch 314 can be in communication with the first driver 304. For example, the second selector switch 314 can toggle between a first position E, wherein the tool 300 is set to rotate the first driver 304 in the clockwise direction, and a second position F, wherein the tool 300 is set to rotate the first driver 304 in the counterclockwise direction. Similarly, a third selector switch 316 can be in communication with the second driver 306. For example, the third selector switch 316 can toggle between a first position G, wherein the tool 300 is set to rotate the second driver 306 in the clockwise direction, and a second position H, wherein the tool 300 is set to rotate the second driver 306 in the counterclockwise direction.


A fourth selector switch 318 can allow the physician to select a torque and/or speed setting of the first driver 304. A fifth selector switch 320 can allow the physician to select a torque and/or speed setting of the second driver 306. Accordingly, the first, second, third, fourth, and fifth selector switches 312, 314, 316, 318, 320 allow the physician to use the tool 300 to operate the anterior and posterior actuation assemblies 94, 96 uniformly or independently as desired. Additionally, the selector switches can also allow the physician to tailor the rotational direction, speed and/or torque of each of the actuation assemblies 94, 96 independently.


Although the disclosure has been described in detail, it should be understood that various changes, substitutions, and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Additionally, any of the embodiments disclosed herein can incorporate features disclosed with respect to any of the other embodiments disclosed herein. Moreover, the scope of the present disclosure is not intended to be limited to the particular embodiments described in the specification. As one of ordinary skill in the art will readily appreciate from that processes, machines, manufacture, composition of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure.

Claims
  • 1. An intervertebral implant configured to iterate between a collapsed configuration and an expanded configuration, the implant comprising: a first plate and a second plate spaced from one another along a first direction, the first plate defining a first bone-contacting surface, the second plate defining a second bone-contacting surface facing away from the first bone-contacting surface along the first direction; anda first expansion assembly and a second expansion assembly each disposed between the first and second plates with respect to the first direction, each of the first and second expansion assemblies including: a first ramp extending from the first plate toward the second plate;a second ramp and a third ramp each extending from the second plate toward the first plate;an expansion wedge defining a fourth ramp,wherein each of the first, second, third, and fourth ramps is inclined with respect to a second direction that is substantially perpendicular to the first direction; andan actuator configured to apply a drive force to the expansion wedge so as to cause 1) the fourth ramp to ride along the third ramp so as to increase a distance between the first and second bone-contacting surfaces along the first direction, and 2) the second ramp to ride along the first ramp, thereby further increasing the distance, thereby iterating the implant from the collapsed configuration to the expanded configuration,wherein at least a portion of the expansion wedge of each of the first and second expansion assemblies is rotatable with respect to at least one of the first and second plates, and the respective actuators of the first and second expansion assemblies are operable independent of one another so as to cause one of the first and second bone-contacting surfaces to tilt relative to the other of the first and second bone-contacting surfaces.
  • 2. The implant of claim 1, wherein the one of the first and second bone-contacting surfaces is configured to tilt relative to the other of the first and second bone-contacting surfaces at an angle up to and including about 25 degrees.
  • 3. The implant of claim 1, wherein: the expansion wedge and the first, second, and third ramps of each of the first and second expansion assemblies are configured to iterate between the collapsed configuration and the expanded configuration with respect to the first direction, andthe one of the first and second bone-contacting surfaces is configured to tilt relative to the other of the first and second bone-contacting surfaces such that one of the first and second expansion assemblies is in the expanded configuration while the other of the first and second expansion assemblies is in the collapsed configuration.
  • 4. The implant of claim 1, wherein each actuator is configured to apply the drive force along a respective axis, and each expansion wedge comprises: a first member that defines the at least the portion of the expansion wedge, the first member defining the fourth ramp; anda second member,wherein the first member is rotatable with respect to the second member about the respective axis, thereby allowing the one of the first and second bone-contacting surfaces to tilt relative to the other of the first and second bone-contacting surfaces.
  • 5. The implant of claim 4, wherein the first member is configured to ride along the third ramp responsive to the drive force, and the second member is configured to ride along the first ramp responsive to the drive force.
  • 6. The implant of claim 5, wherein: the first member, the second and third ramps, and the second plate are rotationally locked with respect to each other, andthe second member, the first ramp, and the first plate are rotationally locked with respect to each other.
  • 7. The implant of claim 4, wherein the respective axes of the actuators of the first and second expansion assemblies are oriented along the second direction.
  • 8. The implant of claim 7, wherein the respective axes are spaced from each other along a third direction that is substantially perpendicular to the first and second directions.
  • 9. The implant of claim 4, wherein each actuator is threadedly coupled to the first and second members of the respective expansion wedge, such that rotation of the actuator about the respective axis imparts the drive force, thereby causing the first and second members to threadedly translate along the actuator.
  • 10. The implant of claim 9, wherein the first and second members of each expansion wedge abut one another.
  • 11. An implant, comprising: an actuation assembly extending between first and second endplates, the actuation assembly arranged along an axis that is oriented along an axial direction, wherein the actuation assembly comprises: a support wedge that supports one of the first and second endplates;a first expansion wedge that is slidable with respect to the support wedge; anda second expansion wedge that is slidable with respect to the first endplate; andan actuator that is movable with respect to the axis so as to drive the first and second expansion wedges along the axial direction so as to cause the first expansion wedge to ride along the support wedge, thereby increasing a distance between the first and second endplates;wherein the first and second expansion wedges are rotatable relative to each other about the axis, thereby allowing one of the first and second endplates to tilt relative to the other of the first and second endplates as the distance increases.
  • 12. The implant of claim 11, wherein: the support wedge supports the second endplate;the implant further comprises another support wedge that supports the first endplate; andthe second expansion wedge is configured to ride along the another support wedge to further increase the distance between the first and second endplates.
  • 13. The implant of claim 12, wherein: the support wedge includes a guide feature having a geometry;the first expansion wedge includes a guide element having a geometry that is complimentary to the geometry of the guide feature, such that the guide element is configured to ride along the guide feature; andthe guide feature and the guide element are configured to rotationally lock the first expansion wedge to the support wedge.
  • 14. The implant of claim 13, wherein: the second endplate defines a guide feature having a geometry and extending along the axial direction; andthe geometry of the guide element of the first expansion wedge is complimentary with the geometry of the guide feature of the second endplate, such that the guide element of the first expansion wedge is further configured to ride along the guide feature of the second endplate.
  • 15. The implant of claim 12, wherein: the another support wedge includes a guide feature having a geometry;the second expansion wedge includes a guide element having a geometry that is complimentary to the geometry of the guide feature of the another support wedge, such that the guide element of the second expansion wedge is configured to ride along the guide feature of the another support wedge; andthe guide feature of the another support wedge and the guide element of the second expansion wedge are configured to rotationally lock the second expansion member to the another support wedge.
  • 16. The implant of claim 15, wherein: the first endplate defines a guide feature having a geometry and extending along the axial direction, andthe guide element of the second expansion wedge is further configured to ride along the guide feature of the first endplate.
  • 17. The implant of claim 16, wherein the implant is configured to iterate between a fully collapsed configuration, in which the distance between the first and second endplates is at a minimum, and a fully expanded configuration, in which the distance is at a maximum, such that: when the implant is in the fully collapsed configuration, the guide element of the second expansion wedge is engaged with the guide feature of the first endplate and is remote from the guide feature of the another support wedge; andwhen the implant is in the fully expanded configuration, the guide element of the second expansion wedge is engaged with the guide feature of the another support wedge and is remote from the guide feature of the first endplate.
  • 18. The implant of claim 11, wherein the one of the first and second endplates is configured to tilt relative to the other of the first and second endplates at an angle up to and including about 25 degrees.
  • 19. The implant of claim 11, wherein the axial direction is substantially perpendicular to a first direction, and the distance between the first and second endplates increases along the first direction.
  • 20. The implant of claim 19, wherein the actuator is a drive shaft configured to rotate about the axis to drive the first and second expansion wedges along the axial direction.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. application Ser. No. 15/589,209, filed May 8, 2017, the entire contents of which are hereby incorporated by reference.

US Referenced Citations (2806)
Number Name Date Kind
1802560 Kerwin Apr 1931 A
1924695 Olson Aug 1933 A
1965653 Kennedy Jul 1934 A
2077804 Morrison Apr 1937 A
2115250 Bruson Apr 1938 A
2121193 Hanicke Jun 1938 A
2170111 Bruson Aug 1939 A
2173655 Neracher et al. Sep 1939 A
2229024 Bruson Jan 1941 A
2243717 Moreira May 1941 A
2381050 Hardinge Aug 1945 A
2388056 Hendricks Oct 1945 A
2485531 William et al. Oct 1949 A
2489870 Dzus Nov 1949 A
2570465 Lundholm Oct 1951 A
2677369 Knowles May 1954 A
2706701 Hans et al. Apr 1955 A
2710277 Shelanski et al. Jun 1955 A
2826532 Hosmer Mar 1958 A
2900305 Siggia Aug 1959 A
2977315 Scheib et al. Mar 1961 A
3091237 Skinner May 1963 A
3112743 Cochran et al. Dec 1963 A
3115804 Johnson Dec 1963 A
3228828 Romano Jan 1966 A
3312139 Di Cristina Apr 1967 A
3486505 Morrison Dec 1969 A
3489143 Halloran Jan 1970 A
3648294 Shahrestani Mar 1972 A
3698391 Mahony Oct 1972 A
3717655 Godefroi et al. Feb 1973 A
3760802 Fischer et al. Sep 1973 A
3800788 White Apr 1974 A
3805775 Fischer et al. Apr 1974 A
3811449 Gravlee et al. May 1974 A
3842825 Wagner Oct 1974 A
3848601 Ma et al. Nov 1974 A
3855638 Pilliar Dec 1974 A
3867728 Stubstad et al. Feb 1975 A
3875595 Froning Apr 1975 A
3889665 Ling et al. Jun 1975 A
3964480 Froning Jun 1976 A
3986504 Avila Oct 1976 A
4013071 Rosenberg Mar 1977 A
4052988 Doddi et al. Oct 1977 A
4091806 Aginsky May 1978 A
4105034 Shalaby et al. Aug 1978 A
4130639 Shalaby et al. Dec 1978 A
4140678 Shalaby et al. Feb 1979 A
4141087 Shalaby et al. Feb 1979 A
4175555 Herbert Nov 1979 A
4205399 Jamiolkowski et al. Jun 1980 A
4236512 Aginsky Dec 1980 A
4249435 Smith et al. Feb 1981 A
4262665 Roalstad et al. Apr 1981 A
4262676 Jamshidi Apr 1981 A
4274163 Malcom et al. Jun 1981 A
4275717 Bolesky Jun 1981 A
4312337 Donohue Jan 1982 A
4312353 Shahbabian Jan 1982 A
4313434 Segal Feb 1982 A
4341206 Perrett et al. Jul 1982 A
4349921 Kuntz Sep 1982 A
4350151 Scott Sep 1982 A
4351069 Ballintyn et al. Sep 1982 A
4352883 Lim Oct 1982 A
4369790 Mccarthy Jan 1983 A
4399814 Pratt et al. Aug 1983 A
4401112 Rezaian Aug 1983 A
4401433 Luther Aug 1983 A
4409974 Freedland Oct 1983 A
4440921 Allcock et al. Apr 1984 A
4449532 Storz May 1984 A
4451256 Weikl et al. May 1984 A
4456005 Lichty Jun 1984 A
4462394 Jacobs Jul 1984 A
4463753 Gustilo Aug 1984 A
4466435 Murray Aug 1984 A
4467479 Brody Aug 1984 A
4488543 Tornier Dec 1984 A
4488549 Lee et al. Dec 1984 A
4494535 Haig Jan 1985 A
4495174 Allcock et al. Jan 1985 A
4532660 Field Aug 1985 A
4537185 Stednitz Aug 1985 A
4538612 Patrick, Jr. Sep 1985 A
4542539 Rowe et al. Sep 1985 A
4545374 Jacobson Oct 1985 A
4562598 Kranz Jan 1986 A
4573448 Kambin Mar 1986 A
4595006 Burke et al. Jun 1986 A
4601710 Moll Jul 1986 A
4625722 Murray Dec 1986 A
4625725 Davison et al. Dec 1986 A
4627434 Murray Dec 1986 A
4628945 Johnson, Jr. Dec 1986 A
4629450 Suzuki et al. Dec 1986 A
4630616 Tretinyak Dec 1986 A
4632101 Freedland Dec 1986 A
4640271 Lower Feb 1987 A
4641640 Griggs Feb 1987 A
4645503 Lin et al. Feb 1987 A
4646741 Smith Mar 1987 A
4651717 Jakubczak Mar 1987 A
4653489 Tronzo Mar 1987 A
4665906 Jervis May 1987 A
4667663 Miyata May 1987 A
4686973 Frisch Aug 1987 A
4686984 Bonnet Aug 1987 A
4688561 Reese Aug 1987 A
4697584 Haynes Oct 1987 A
4706670 Andersen et al. Nov 1987 A
4714469 Kenna Dec 1987 A
4714478 Fischer Dec 1987 A
4721103 Freedland Jan 1988 A
4723544 Moore et al. Feb 1988 A
4743256 Brantigan May 1988 A
4743257 Toermaelae et al. May 1988 A
4759766 Buettner-Janz et al. Jul 1988 A
4760843 Fischer et al. Aug 1988 A
4772287 Ray et al. Sep 1988 A
4790304 Rosenberg Dec 1988 A
4790817 Luther Dec 1988 A
4796612 Reese Jan 1989 A
4802479 Haber et al. Feb 1989 A
4815909 Simons Mar 1989 A
4827917 Brumfield May 1989 A
4834069 Umeda May 1989 A
4834757 Brantigan May 1989 A
4838282 Strasser et al. Jun 1989 A
4858601 Glisson Aug 1989 A
4862891 Smith Sep 1989 A
4863476 Shepperd Sep 1989 A
4870153 Matzner et al. Sep 1989 A
4871366 Von et al. Oct 1989 A
4873976 Schreiber Oct 1989 A
4878915 Brantigan Nov 1989 A
4880622 Allcock et al. Nov 1989 A
4888022 Huebsch Dec 1989 A
4888024 Powlan Dec 1989 A
4889119 Jamiolkowski et al. Dec 1989 A
4892550 Huebsch Jan 1990 A
4896662 Noble Jan 1990 A
4898186 Ikada et al. Feb 1990 A
4898577 Badger et al. Feb 1990 A
4903692 Reese Feb 1990 A
4904261 Dove et al. Feb 1990 A
4911718 Lee et al. Mar 1990 A
4917554 Bronn Apr 1990 A
4932969 Frey et al. Jun 1990 A
4940467 Tronzo Jul 1990 A
4941466 Romano Jul 1990 A
4946378 Hirayama et al. Aug 1990 A
4959064 Engelhardt Sep 1990 A
4961740 Ray et al. Oct 1990 A
4963144 Huene Oct 1990 A
4966587 Rainer Oct 1990 A
4968317 Toermaelae et al. Nov 1990 A
4969888 Scholten et al. Nov 1990 A
4978334 Toye et al. Dec 1990 A
4978349 Robert Dec 1990 A
4981482 Ichikawa Jan 1991 A
4988351 Paulos et al. Jan 1991 A
4994027 Farrell Feb 1991 A
4995200 Eberhart Feb 1991 A
5002557 Hasson Mar 1991 A
5006121 Hafeli Apr 1991 A
5011484 Breard Apr 1991 A
5013315 Barrows May 1991 A
5013316 Goble et al. May 1991 A
5015247 Michelson May 1991 A
5015255 Kuslich May 1991 A
5019082 Frey et al. May 1991 A
5030233 Ducheyne Jul 1991 A
5051189 Farrah Sep 1991 A
5053035 Mclaren Oct 1991 A
5055104 Ray Oct 1991 A
5059193 Kuslich Oct 1991 A
5062849 Schelhas Nov 1991 A
5071435 Fuchs et al. Dec 1991 A
5071437 Steffee Dec 1991 A
5080662 Paul Jan 1992 A
5084043 Hertzmann et al. Jan 1992 A
5092891 Kummer et al. Mar 1992 A
5098241 Aldridge et al. Mar 1992 A
5098433 Freedland Mar 1992 A
5098435 Stednitz et al. Mar 1992 A
5102413 Poddar Apr 1992 A
5108404 Scholten et al. Apr 1992 A
5114407 Burbank May 1992 A
5116336 Frigg May 1992 A
5120171 Lasner Jun 1992 A
5122130 Keller Jun 1992 A
5122133 Evans Jun 1992 A
5122141 Simpson et al. Jun 1992 A
5123926 Pisharodi Jun 1992 A
5133719 Winston Jul 1992 A
5133755 Brekke Jul 1992 A
5134477 Knauer et al. Jul 1992 A
5139486 Moss Aug 1992 A
5147366 Arroyo et al. Sep 1992 A
5158543 Lazarus Oct 1992 A
5163939 Winston Nov 1992 A
5163989 Campbell et al. Nov 1992 A
5167663 Brumfield Dec 1992 A
5167664 Hodorek Dec 1992 A
5169400 Muehling et al. Dec 1992 A
5169402 Elloy Dec 1992 A
5171278 Pisharodi Dec 1992 A
5171279 Mathews Dec 1992 A
5171280 Baumgartner Dec 1992 A
5176651 Allgood et al. Jan 1993 A
5176683 Kimsey et al. Jan 1993 A
5176692 Wilk et al. Jan 1993 A
5176697 Hasson et al. Jan 1993 A
5178501 Carstairs Jan 1993 A
5183052 Terwilliger Feb 1993 A
5183464 Dubrul et al. Feb 1993 A
5188118 Terwilliger Feb 1993 A
5192327 Brantigan Mar 1993 A
5195506 Hulfish Mar 1993 A
5201742 Hasson Apr 1993 A
5217462 Asnis et al. Jun 1993 A
5217475 Kuber Jun 1993 A
5217486 Rice et al. Jun 1993 A
5224952 Deniega et al. Jul 1993 A
5228441 Lundquist Jul 1993 A
5234431 Keller Aug 1993 A
5241972 Bonati Sep 1993 A
5242410 Melker Sep 1993 A
5242447 Borzone Sep 1993 A
5242448 Pettine et al. Sep 1993 A
5242879 Abe et al. Sep 1993 A
5246441 Ross et al. Sep 1993 A
5250049 Michael Oct 1993 A
5250061 Michelson Oct 1993 A
5257632 Turkel et al. Nov 1993 A
5263953 Bagby Nov 1993 A
5269797 Bonati et al. Dec 1993 A
5280782 Wilk Jan 1994 A
5285795 Ryan et al. Feb 1994 A
5286001 Rafeld Feb 1994 A
5290243 Chodorow et al. Mar 1994 A
5290312 Kojimoto et al. Mar 1994 A
5300074 Frigg Apr 1994 A
5303718 Krajicek Apr 1994 A
5304142 Liebl et al. Apr 1994 A
5306307 Senter et al. Apr 1994 A
5306308 Gross et al. Apr 1994 A
5306309 Wagner et al. Apr 1994 A
5306310 Siebels Apr 1994 A
5308327 Heaven et al. May 1994 A
5308352 Koutrouvelis May 1994 A
5312410 Miller et al. May 1994 A
5312417 Wilk May 1994 A
5314477 Marnay May 1994 A
5320644 Baumgartner Jun 1994 A
5322505 Krause et al. Jun 1994 A
5324261 Amundson et al. Jun 1994 A
5330429 Noguchi et al. Jul 1994 A
5331975 Bonutti Jul 1994 A
5334184 Bimman Aug 1994 A
5334204 Clewett et al. Aug 1994 A
5342365 Waldman Aug 1994 A
5342382 Brinkerhoff et al. Aug 1994 A
5344252 Kakimoto Sep 1994 A
5361752 Moll et al. Nov 1994 A
5364398 Chapman et al. Nov 1994 A
5370646 Reese et al. Dec 1994 A
5370647 Graber et al. Dec 1994 A
5370661 Branch Dec 1994 A
5370697 Baumgartner Dec 1994 A
5372660 Davidson et al. Dec 1994 A
5374267 Siegal Dec 1994 A
5382248 Jacobson et al. Jan 1995 A
5383932 Wilson et al. Jan 1995 A
5385151 Scarfone et al. Jan 1995 A
5387213 Breard et al. Feb 1995 A
5387215 Fisher Feb 1995 A
5390683 Pisharodi Feb 1995 A
5395317 Kambin Mar 1995 A
5395371 Miller et al. Mar 1995 A
5397364 Kozak et al. Mar 1995 A
5401269 Buettner-Janz et al. Mar 1995 A
5407430 Peters Apr 1995 A
5410016 Hubbell et al. Apr 1995 A
5415661 Holmes May 1995 A
5423816 Lin Jun 1995 A
5423817 Lin Jun 1995 A
5423850 Berger Jun 1995 A
5424773 Saito Jun 1995 A
5425773 Boyd et al. Jun 1995 A
5431658 Moskovich Jul 1995 A
5441538 Bonutti Aug 1995 A
5443514 Steffee Aug 1995 A
5449359 Groiso Sep 1995 A
5449361 Preissman Sep 1995 A
5452748 Simmons et al. Sep 1995 A
5454365 Bonutti Oct 1995 A
5454790 Dubrul Oct 1995 A
5454815 Geisser et al. Oct 1995 A
5454827 Aust et al. Oct 1995 A
5456686 Klapper et al. Oct 1995 A
5458641 Ramirez Jimenez Oct 1995 A
5458643 Oka et al. Oct 1995 A
5462563 Shearer et al. Oct 1995 A
5464427 Curtis et al. Nov 1995 A
5464929 Bezwada et al. Nov 1995 A
5468245 Vargas, III Nov 1995 A
5470333 Ray Nov 1995 A
5472426 Bonati et al. Dec 1995 A
5474539 Costa et al. Dec 1995 A
5480400 Berger Jan 1996 A
5484437 Michelson Jan 1996 A
5486190 Green Jan 1996 A
5496318 Howland et al. Mar 1996 A
5498265 Asnis et al. Mar 1996 A
5501695 Anspach et al. Mar 1996 A
5505710 Dorsey, III Apr 1996 A
5507816 Bullivant Apr 1996 A
5509923 Middleman et al. Apr 1996 A
5512037 Russell et al. Apr 1996 A
5514143 Bonutti et al. May 1996 A
5514153 Bonutti May 1996 A
5514180 Heggeness et al. May 1996 A
5520690 Errico et al. May 1996 A
5520896 De et al. May 1996 A
5522398 Goldenberg et al. Jun 1996 A
5522790 Moll et al. Jun 1996 A
5522846 Bonutti Jun 1996 A
5522895 Mikos Jun 1996 A
5522899 Michelson Jun 1996 A
5527312 Ray Jun 1996 A
5527343 Bonutti Jun 1996 A
5527624 Higgins et al. Jun 1996 A
5531856 Moll et al. Jul 1996 A
5534023 Henley Jul 1996 A
5534029 Shima Jul 1996 A
5534030 Navarro et al. Jul 1996 A
5536127 Pennig Jul 1996 A
5538009 Byrne et al. Jul 1996 A
5540688 Navas Jul 1996 A
5540693 Fisher Jul 1996 A
5540711 Kieturakis et al. Jul 1996 A
5545164 Howland Aug 1996 A
5545222 Bonutti Aug 1996 A
5549610 Russell et al. Aug 1996 A
5549679 Kuslich Aug 1996 A
5554191 Lahille et al. Sep 1996 A
5556431 Buettner-Janz Sep 1996 A
5558674 Heggeness et al. Sep 1996 A
D374287 Goble et al. Oct 1996 S
5562736 Ray et al. Oct 1996 A
5562738 Boyd et al. Oct 1996 A
5564926 Braanemark Oct 1996 A
5569248 Mathews Oct 1996 A
5569251 Baker et al. Oct 1996 A
5569290 Mcafee Oct 1996 A
5569548 Koike et al. Oct 1996 A
5571109 Bertagnoli Nov 1996 A
5571189 Kuslich Nov 1996 A
5571190 Ulrich et al. Nov 1996 A
5575790 Chen et al. Nov 1996 A
5591168 Judet et al. Jan 1997 A
5593409 Michelson Jan 1997 A
5595751 Bezwada et al. Jan 1997 A
5597579 Bezwada et al. Jan 1997 A
5601556 Pisharodi Feb 1997 A
5601561 Terry et al. Feb 1997 A
5601572 Middleman et al. Feb 1997 A
5607687 Bezwada et al. Mar 1997 A
5609634 Voydeville Mar 1997 A
5609635 Michelson Mar 1997 A
5613950 Yoon Mar 1997 A
5618142 Sonden et al. Apr 1997 A
5618314 Harwin et al. Apr 1997 A
5618552 Bezwada et al. Apr 1997 A
5620698 Bezwada et al. Apr 1997 A
5624447 Myers Apr 1997 A
5626613 Schmieding May 1997 A
5628751 Sander et al. May 1997 A
5628752 Asnis et al. May 1997 A
5632746 Middleman et al. May 1997 A
5639276 Weinstock et al. Jun 1997 A
5643320 Lower et al. Jul 1997 A
5645589 Li Jul 1997 A
5645596 Kim et al. Jul 1997 A
5645597 Krapiva Jul 1997 A
5645599 Samani Jul 1997 A
5645850 Bezwada et al. Jul 1997 A
5647857 Anderson et al. Jul 1997 A
5648088 Bezwada et al. Jul 1997 A
5649931 Bryant et al. Jul 1997 A
5653763 Errico et al. Aug 1997 A
5658335 Allen Aug 1997 A
5662683 Kay Sep 1997 A
5665095 Jacobson et al. Sep 1997 A
5665122 Kambin Sep 1997 A
5667508 Errico et al. Sep 1997 A
5669915 Caspar et al. Sep 1997 A
5669926 Aust et al. Sep 1997 A
5674294 Bainville et al. Oct 1997 A
5674295 Ray et al. Oct 1997 A
5674296 Bryan et al. Oct 1997 A
5676701 Yuan et al. Oct 1997 A
5679723 Cooper et al. Oct 1997 A
5681263 Flesch Oct 1997 A
5683465 Shinn et al. Nov 1997 A
5693100 Pisharodi Dec 1997 A
5695513 Johnson et al. Dec 1997 A
5697977 Pisharodi Dec 1997 A
5698213 Jamiolkowski et al. Dec 1997 A
5700239 Yoon Dec 1997 A
5700583 Jamiolkowski et al. Dec 1997 A
5702391 Lin Dec 1997 A
5702449 Mckay Dec 1997 A
5702450 Bisserie Dec 1997 A
5702453 Rabbe et al. Dec 1997 A
5702454 Baumgartner Dec 1997 A
5707359 Bufalini Jan 1998 A
5713870 Yoon Feb 1998 A
5713903 Sander et al. Feb 1998 A
5716415 Steffee Feb 1998 A
5716416 Lin Feb 1998 A
5720753 Sander et al. Feb 1998 A
5725531 Shapiro Mar 1998 A
5725541 Anspach et al. Mar 1998 A
5725588 Errico et al. Mar 1998 A
5728097 Mathews Mar 1998 A
5728116 Rosenman Mar 1998 A
5735853 Olerud Apr 1998 A
5741253 Michelson Apr 1998 A
5741282 Anspach et al. Apr 1998 A
5743881 Demco Apr 1998 A
5743912 Lahille et al. Apr 1998 A
5743914 Skiba Apr 1998 A
5749879 Middleman et al. May 1998 A
5749889 Bacich et al. May 1998 A
5752969 Cunci et al. May 1998 A
5755797 Baumgartner May 1998 A
5755798 Papavero et al. May 1998 A
5756127 Grisoni et al. May 1998 A
5762500 Lazarof Jun 1998 A
5762629 Kambin Jun 1998 A
5766252 Henry et al. Jun 1998 A
5772661 Michelson Jun 1998 A
5772662 Chapman et al. Jun 1998 A
5772678 Thomason et al. Jun 1998 A
5776156 Shikhman Jul 1998 A
5782800 Yoon Jul 1998 A
5782832 Larsen et al. Jul 1998 A
5782865 Grotz Jul 1998 A
5788703 Mittelmeier et al. Aug 1998 A
5792044 Foley et al. Aug 1998 A
5797909 Michelson Aug 1998 A
5800549 Bao et al. Sep 1998 A
5807275 Jamshidi Sep 1998 A
5807327 Green et al. Sep 1998 A
5810721 Mueller et al. Sep 1998 A
5810821 Vandewalle Sep 1998 A
5810866 Yoon Sep 1998 A
5814084 Grivas et al. Sep 1998 A
5820628 Middleman et al. Oct 1998 A
5823979 Mezo Oct 1998 A
5824084 Muschler Oct 1998 A
5824093 Ray et al. Oct 1998 A
5824094 Serhan et al. Oct 1998 A
5827289 Reiley et al. Oct 1998 A
5833657 Reinhardt et al. Nov 1998 A
5836948 Zucherman et al. Nov 1998 A
5837752 Shastri et al. Nov 1998 A
5846259 Berthiaume Dec 1998 A
5848986 Lundquist et al. Dec 1998 A
5849004 Bramlet Dec 1998 A
5851212 Zirps et al. Dec 1998 A
5851216 Allen Dec 1998 A
5857995 Thomas et al. Jan 1999 A
5859150 Jamiolkowski et al. Jan 1999 A
5860973 Michelson Jan 1999 A
5860977 Zucherman et al. Jan 1999 A
5865846 Bryan et al. Feb 1999 A
5865848 Baker Feb 1999 A
5871485 Rao et al. Feb 1999 A
5873854 Wolvek Feb 1999 A
5876404 Zucherman et al. Mar 1999 A
5888220 Felt et al. Mar 1999 A
5888223 Bray, Jr. Mar 1999 A
5888224 Beckers et al. Mar 1999 A
5888226 Rogozinski Mar 1999 A
5888227 Cottle Mar 1999 A
5888228 Knothe et al. Mar 1999 A
5893850 Cachia Apr 1999 A
5893889 Harrington Apr 1999 A
5893890 Pisharodi Apr 1999 A
5895428 Berry Apr 1999 A
5902231 Foley et al. May 1999 A
5904690 Middleman et al. May 1999 A
5904696 Rosenman May 1999 A
5908422 Bresina Jun 1999 A
5916228 Ripich et al. Jun 1999 A
5916267 Prakit Jun 1999 A
5919235 Husson et al. Jul 1999 A
5925056 Thomas et al. Jul 1999 A
5925074 Gingras et al. Jul 1999 A
5928235 Friedl Jul 1999 A
5928244 Tovey et al. Jul 1999 A
5931870 Cuckler et al. Aug 1999 A
5935129 Mcdevitt et al. Aug 1999 A
5947999 Groiso Sep 1999 A
5948000 Larsen et al. Sep 1999 A
5954722 Bono Sep 1999 A
5954747 Clark Sep 1999 A
5957902 Teves Sep 1999 A
5957924 Toermaelae et al. Sep 1999 A
5961554 Janson et al. Oct 1999 A
5964730 Williams et al. Oct 1999 A
5964761 Kambin Oct 1999 A
5967783 Ura Oct 1999 A
5967970 Cowan et al. Oct 1999 A
5968044 Nicholson et al. Oct 1999 A
5968098 Winslow Oct 1999 A
5972015 Scribner et al. Oct 1999 A
5972385 Liu et al. Oct 1999 A
5976139 Bramlet Nov 1999 A
5976146 Ogawa et al. Nov 1999 A
5976186 Bao et al. Nov 1999 A
5976187 Richelsoph Nov 1999 A
5980522 Koros et al. Nov 1999 A
5984927 Wenstrom et al. Nov 1999 A
5984966 Kiema et al. Nov 1999 A
5985307 Hanson et al. Nov 1999 A
5989255 Pepper et al. Nov 1999 A
5989291 Ralph et al. Nov 1999 A
5993459 Larsen et al. Nov 1999 A
5997510 Schwemberger Dec 1999 A
5997538 Asnis et al. Dec 1999 A
5997541 Schenk Dec 1999 A
6001100 Sherman et al. Dec 1999 A
6001101 Augagneur et al. Dec 1999 A
6004327 Asnis et al. Dec 1999 A
6005161 Brekke Dec 1999 A
6007519 Rosselli Dec 1999 A
6007566 Wenstrom, Jr. Dec 1999 A
6007580 Lehto et al. Dec 1999 A
6010508 Bradley Jan 2000 A
6010513 Toermaelae et al. Jan 2000 A
6012494 Balazs Jan 2000 A
6015410 Toermaelae et al. Jan 2000 A
6015436 Schonhoffer Jan 2000 A
6019762 Cole Feb 2000 A
6019792 Cauthen Feb 2000 A
6019793 Perren et al. Feb 2000 A
6022350 Ganem Feb 2000 A
6022352 Vandewalle Feb 2000 A
6030162 Huebner Feb 2000 A
6030364 Durgin et al. Feb 2000 A
6030401 Marino Feb 2000 A
6033406 Mathews Mar 2000 A
6033412 Losken et al. Mar 2000 A
6036701 Rosenman Mar 2000 A
6039740 Olerud Mar 2000 A
6039761 Li et al. Mar 2000 A
6039763 Shelokov Mar 2000 A
6045552 Zucherman et al. Apr 2000 A
6045579 Hochschuler et al. Apr 2000 A
6048309 Flom et al. Apr 2000 A
6048342 Zuckerman et al. Apr 2000 A
6048346 Reiley et al. Apr 2000 A
6048360 Khosravi et al. Apr 2000 A
6053922 Krause et al. Apr 2000 A
6053935 Brenneman et al. Apr 2000 A
6056763 Parsons May 2000 A
6063121 Xavier et al. May 2000 A
6066142 Serbousek et al. May 2000 A
6066154 Reiley et al. May 2000 A
6066175 Henderson et al. May 2000 A
6068630 Zuckerman et al. May 2000 A
6068648 Cole et al. May 2000 A
6071982 Wise et al. Jun 2000 A
6073051 Sharkey et al. Jun 2000 A
6074390 Zuckerman et al. Jun 2000 A
6080155 Michelson Jun 2000 A
6080158 Lin Jun 2000 A
6080193 Hochschuler et al. Jun 2000 A
6083225 Winslow et al. Jul 2000 A
6083244 Lubbers et al. Jul 2000 A
6090112 Zuckerman et al. Jul 2000 A
6090143 Meriwether et al. Jul 2000 A
6096038 Michelson Aug 2000 A
6096080 Nicholson et al. Aug 2000 A
6099531 Bonutti Aug 2000 A
6102914 Bulstra et al. Aug 2000 A
6102950 Vaccaro Aug 2000 A
6106557 Robioneck et al. Aug 2000 A
6110210 Norton et al. Aug 2000 A
6113624 Bezwada et al. Sep 2000 A
6113637 Gill et al. Sep 2000 A
6113638 Williams et al. Sep 2000 A
6113640 Toermaelae et al. Sep 2000 A
6117174 Nolan Sep 2000 A
6119044 Kuzma Sep 2000 A
6120508 Gruenig et al. Sep 2000 A
6123705 Michelson Sep 2000 A
6123711 Winters Sep 2000 A
6126660 Dietz Oct 2000 A
6126661 Faccioli et al. Oct 2000 A
6126663 Hair Oct 2000 A
6126686 Badylak et al. Oct 2000 A
6126689 Brett Oct 2000 A
6127597 Beyar et al. Oct 2000 A
6129762 Li Oct 2000 A
6129763 Chauvin et al. Oct 2000 A
6132435 Young Oct 2000 A
6136031 Middleton Oct 2000 A
6139558 Wagner Oct 2000 A
6139579 Steffee et al. Oct 2000 A
6146384 Lee et al. Nov 2000 A
6146387 Trott et al. Nov 2000 A
6146420 Mckay Nov 2000 A
6146421 Gordon et al. Nov 2000 A
6147135 Yuan et al. Nov 2000 A
6149652 Zucherman et al. Nov 2000 A
6152926 Zucherman et al. Nov 2000 A
6156038 Zucherman et al. Dec 2000 A
6159179 Simonson Dec 2000 A
6159211 Boriani et al. Dec 2000 A
6159244 Suddaby Dec 2000 A
6161350 Espinosa Dec 2000 A
6162234 Freedland et al. Dec 2000 A
6162236 Osada Dec 2000 A
6162252 Kuras et al. Dec 2000 A
6165218 Husson et al. Dec 2000 A
6165486 Marra et al. Dec 2000 A
6168595 Durham et al. Jan 2001 B1
6168597 Biedermann et al. Jan 2001 B1
6171610 Vacanti et al. Jan 2001 B1
6174337 Keenan Jan 2001 B1
6175758 Kambin Jan 2001 B1
6176882 Biedermann et al. Jan 2001 B1
6179794 Burras Jan 2001 B1
6179873 Zientek Jan 2001 B1
6183471 Zucherman et al. Feb 2001 B1
6183472 Lutz Feb 2001 B1
6183474 Bramlet et al. Feb 2001 B1
6183517 Suddaby Feb 2001 B1
6187043 Ledergerber Feb 2001 B1
6187048 Milner et al. Feb 2001 B1
6190387 Zucherman et al. Feb 2001 B1
6190414 Young et al. Feb 2001 B1
6193757 Foley et al. Feb 2001 B1
6197033 Haid et al. Mar 2001 B1
6197041 Shichman et al. Mar 2001 B1
6197065 Martin et al. Mar 2001 B1
6197325 Macphee et al. Mar 2001 B1
6200322 Branch et al. Mar 2001 B1
6203565 Bonutti et al. Mar 2001 B1
6206826 Mathews et al. Mar 2001 B1
6206922 Zdeblick et al. Mar 2001 B1
D439980 Reiley et al. Apr 2001 S
6213957 Milliman et al. Apr 2001 B1
6214368 Lee et al. Apr 2001 B1
6217509 Foley et al. Apr 2001 B1
6217579 Koros Apr 2001 B1
6221082 Marino et al. Apr 2001 B1
6224603 Marino May 2001 B1
6224631 Kohrs May 2001 B1
6224894 Jamiolkowski et al. May 2001 B1
6228058 Dennis et al. May 2001 B1
6231606 Graf et al. May 2001 B1
6235030 Zuckerman et al. May 2001 B1
6235043 Reiley et al. May 2001 B1
6238397 Zuckerman et al. May 2001 B1
6238491 Davidson et al. May 2001 B1
6241733 Nicholson et al. Jun 2001 B1
6241734 Scribner et al. Jun 2001 B1
6241769 Nicholson et al. Jun 2001 B1
6245107 Ferree Jun 2001 B1
6248108 Toermaelae et al. Jun 2001 B1
6248110 Reiley et al. Jun 2001 B1
6248131 Felt et al. Jun 2001 B1
6251111 Barker et al. Jun 2001 B1
6251140 Marino et al. Jun 2001 B1
6258093 Edwards et al. Jul 2001 B1
6261289 Levy Jul 2001 B1
6264676 Gellman et al. Jul 2001 B1
6264695 Stoy Jul 2001 B1
6267763 Castro Jul 2001 B1
6267765 Taylor et al. Jul 2001 B1
6267767 Strobel et al. Jul 2001 B1
6277149 Boyle et al. Aug 2001 B1
6280444 Zuckerman et al. Aug 2001 B1
6280456 Scribner et al. Aug 2001 B1
6280474 Cassidy et al. Aug 2001 B1
6280475 Bao et al. Aug 2001 B1
6287313 Sasso Sep 2001 B1
6290724 Marino Sep 2001 B1
6293909 Chu et al. Sep 2001 B1
6293952 Brosens et al. Sep 2001 B1
D449691 Reiley et al. Oct 2001 S
6296644 Saurat et al. Oct 2001 B1
6296647 Robioneck et al. Oct 2001 B1
6302914 Michelson Oct 2001 B1
6306136 Baccelli Oct 2001 B1
6306177 Felt et al. Oct 2001 B1
D450676 Huttner Nov 2001 S
6312443 Stone Nov 2001 B1
6319254 Giet et al. Nov 2001 B1
6319272 Brenneman et al. Nov 2001 B1
6331312 Lee et al. Dec 2001 B1
6332882 Zucherman et al. Dec 2001 B1
6332883 Zucherman et al. Dec 2001 B1
6332894 Stalcup et al. Dec 2001 B1
6332895 Suddaby Dec 2001 B1
6342074 Simpson Jan 2002 B1
6346092 Leschinsky Feb 2002 B1
6348053 Cachia Feb 2002 B1
6355043 Adam Mar 2002 B1
6361537 Anderson Mar 2002 B1
6361538 Fenaroli et al. Mar 2002 B1
6361557 Gittings et al. Mar 2002 B1
6364828 Yeung et al. Apr 2002 B1
6364897 Bonutti Apr 2002 B1
6368325 Mckinley et al. Apr 2002 B1
6368350 Erickson et al. Apr 2002 B1
6368351 Glenn et al. Apr 2002 B1
6371971 Tsugita et al. Apr 2002 B1
6371989 Chauvin et al. Apr 2002 B1
6375681 Truscott Apr 2002 B1
6375682 Fleischmann et al. Apr 2002 B1
6375683 Crozet et al. Apr 2002 B1
6379355 Zucherman et al. Apr 2002 B1
6379363 Herrington et al. Apr 2002 B1
6387130 Stone et al. May 2002 B1
6398793 McGuire Jun 2002 B1
6402750 Atkinson et al. Jun 2002 B1
6409766 Brett Jun 2002 B1
6409767 Perice et al. Jun 2002 B1
6413278 Marchosky Jul 2002 B1
6416551 Keller Jul 2002 B1
6419641 Mark et al. Jul 2002 B1
6419676 Zucherman et al. Jul 2002 B1
6419677 Zucherman et al. Jul 2002 B2
6419704 Bret Jul 2002 B1
6419705 Erickson Jul 2002 B1
6419706 Graf Jul 2002 B1
6423061 Bryant Jul 2002 B1
6423067 Eisermann Jul 2002 B1
6423071 Lawson Jul 2002 B1
6423083 Reiley et al. Jul 2002 B2
6423089 Gingras et al. Jul 2002 B1
6425887 Mcguckin et al. Jul 2002 B1
6425919 Lambrecht Jul 2002 B1
6425920 Hamada Jul 2002 B1
6428541 Boyd et al. Aug 2002 B1
6428556 Chin Aug 2002 B1
6436101 Hamada Aug 2002 B1
6436140 Liu et al. Aug 2002 B1
6436143 Ross et al. Aug 2002 B1
6440138 Reiley et al. Aug 2002 B1
6440154 Gellman et al. Aug 2002 B2
6440169 Elberg et al. Aug 2002 B1
6443989 Jackson Sep 2002 B1
6447518 Krause et al. Sep 2002 B1
6447527 Thompson et al. Sep 2002 B1
6447540 Fontaine et al. Sep 2002 B1
6450989 Dubrul et al. Sep 2002 B2
6451019 Zucherman et al. Sep 2002 B1
6451020 Zucherman et al. Sep 2002 B1
6454806 Cohen et al. Sep 2002 B1
6454807 Jackson Sep 2002 B1
6458134 Songer et al. Oct 2002 B1
6461359 Tribus et al. Oct 2002 B1
6468277 Justin et al. Oct 2002 B1
6468279 Reo Oct 2002 B1
6468309 Lieberman Oct 2002 B1
6468310 Ralph et al. Oct 2002 B1
6471724 Zdeblick et al. Oct 2002 B2
6475226 Belef et al. Nov 2002 B1
6478029 Boyd et al. Nov 2002 B1
6478796 Zucherman et al. Nov 2002 B2
6478805 Marino et al. Nov 2002 B1
6482235 Lambrecht et al. Nov 2002 B1
6485491 Farris et al. Nov 2002 B1
6485518 Cornwall et al. Nov 2002 B1
D467657 Scribner Dec 2002 S
6488693 Gannoe et al. Dec 2002 B2
6488710 Besselink Dec 2002 B2
6489309 Singh et al. Dec 2002 B1
6491626 Stone et al. Dec 2002 B1
6491695 Roggenbuck Dec 2002 B1
6491714 Bennett Dec 2002 B1
6491724 Ferree Dec 2002 B1
6494860 Rocamora et al. Dec 2002 B2
6494883 Ferree Dec 2002 B1
6494893 Dubrul et al. Dec 2002 B2
6498421 Oh et al. Dec 2002 B1
6500178 Zucherman et al. Dec 2002 B2
6500205 Michelson Dec 2002 B1
6506192 Gertzman et al. Jan 2003 B1
6508839 Lambrecht et al. Jan 2003 B1
6511471 Rosenman et al. Jan 2003 B2
6511481 Von et al. Jan 2003 B2
6512958 Swoyer et al. Jan 2003 B1
D469871 Sand Feb 2003 S
6514256 Zuckerman et al. Feb 2003 B2
6517543 Berrevoets et al. Feb 2003 B1
6517580 Ramadan et al. Feb 2003 B1
6520907 Foley et al. Feb 2003 B1
6520991 Huene Feb 2003 B2
D472323 Sand Mar 2003 S
6527774 Lieberman Mar 2003 B2
6527803 Crozet et al. Mar 2003 B1
6527804 Gauchet et al. Mar 2003 B1
6530930 Marino et al. Mar 2003 B1
6533791 Betz et al. Mar 2003 B1
6533797 Stone et al. Mar 2003 B1
6533818 Weber et al. Mar 2003 B1
6540747 Marino Apr 2003 B1
6544265 Lieberman Apr 2003 B2
6547793 Mcguire Apr 2003 B1
6547795 Schneiderman Apr 2003 B2
6547823 Scarborough et al. Apr 2003 B2
6551319 Lieberman Apr 2003 B2
6551322 Lieberman Apr 2003 B1
6554831 Rivard et al. Apr 2003 B1
6554833 Levy et al. Apr 2003 B2
6554852 Oberlander Apr 2003 B1
6558389 Clark et al. May 2003 B2
6558390 Cragg May 2003 B2
6558424 Thalgott May 2003 B2
6562046 Sasso May 2003 B2
6562049 Norlander et al. May 2003 B1
6562072 Fuss et al. May 2003 B1
6562074 Gerbec et al. May 2003 B2
6575919 Reiley et al. Jun 2003 B1
6575979 Cragg Jun 2003 B1
6576016 Hochshuler et al. Jun 2003 B1
6579291 Keith et al. Jun 2003 B1
6579293 Chandran Jun 2003 B1
6579320 Gauchet et al. Jun 2003 B1
6579321 Gordon et al. Jun 2003 B1
6582390 Sanderson Jun 2003 B1
6582431 Ray Jun 2003 B1
6582433 Yun Jun 2003 B2
6582437 Dorchak et al. Jun 2003 B2
6582441 He et al. Jun 2003 B1
6582453 Tran et al. Jun 2003 B1
6582466 Gauchet Jun 2003 B1
6582467 Teitelbaum et al. Jun 2003 B1
6582468 Gauchet Jun 2003 B1
6585730 Foerster Jul 2003 B1
6585740 Schlapfer et al. Jul 2003 B2
6589240 Hinchliffe Jul 2003 B2
6589249 Sater et al. Jul 2003 B2
6592553 Zhang et al. Jul 2003 B2
6592624 Fraser et al. Jul 2003 B1
6592625 Cauthen Jul 2003 B2
6595998 Johnson et al. Jul 2003 B2
6596008 Kambin Jul 2003 B1
6599294 Fuss et al. Jul 2003 B2
6599297 Carlsson et al. Jul 2003 B1
6602293 Biermann et al. Aug 2003 B1
6607530 Carl et al. Aug 2003 B1
6607544 Boucher et al. Aug 2003 B1
6607558 Kuras Aug 2003 B2
6610066 Dinger et al. Aug 2003 B2
6610091 Reiley Aug 2003 B1
6610094 Husson Aug 2003 B2
6613050 Wagner et al. Sep 2003 B1
6613054 Scribner et al. Sep 2003 B2
6616678 Nishtala et al. Sep 2003 B2
6620196 Trieu Sep 2003 B1
6623505 Scribner et al. Sep 2003 B2
6626943 Eberlein et al. Sep 2003 B2
6626944 Taylor Sep 2003 B1
6629998 Lin Oct 2003 B1
6632224 Cachia et al. Oct 2003 B2
6632235 Weikel et al. Oct 2003 B2
6635059 Randall et al. Oct 2003 B2
6635060 Hanson et al. Oct 2003 B2
6635362 Zheng Oct 2003 B2
RE38335 Aust et al. Nov 2003 E
D482787 Reiss Nov 2003 S
6641564 Kraus Nov 2003 B1
6641582 Hanson et al. Nov 2003 B1
6641587 Scribner et al. Nov 2003 B2
6641614 Wagner et al. Nov 2003 B1
6645213 Sand et al. Nov 2003 B2
6645248 Casutt Nov 2003 B2
6648890 Culbert et al. Nov 2003 B2
6648893 Dudasik Nov 2003 B2
6648917 Gerbec et al. Nov 2003 B2
6652527 Zucherman et al. Nov 2003 B2
6652592 Grooms et al. Nov 2003 B1
D483495 Sand Dec 2003 S
6655962 Kennard Dec 2003 B1
6656178 Veldhuizen et al. Dec 2003 B1
6656180 Stahurski Dec 2003 B2
6660004 Barker et al. Dec 2003 B2
6660037 Husson et al. Dec 2003 B1
6663647 Reiley et al. Dec 2003 B2
6666890 Michelson Dec 2003 B2
6666891 Boehm et al. Dec 2003 B2
6669698 Tromanhauser et al. Dec 2003 B1
6669729 Chin Dec 2003 B2
6669732 Serhan et al. Dec 2003 B2
6673074 Shluzas Jan 2004 B2
6676663 Higueras et al. Jan 2004 B2
6676664 Al-Assir Jan 2004 B1
6676665 Foley et al. Jan 2004 B2
6679833 Smith et al. Jan 2004 B2
6679915 Cauthen Jan 2004 B1
6682535 Hoogland Jan 2004 B2
6682561 Songer et al. Jan 2004 B2
6682562 Viart et al. Jan 2004 B2
6685706 Padget et al. Feb 2004 B2
6685742 Jackson Feb 2004 B1
6689125 Keith et al. Feb 2004 B1
6689152 Balceta et al. Feb 2004 B2
6689168 Lieberman Feb 2004 B2
6692499 Toermaelae et al. Feb 2004 B2
6692563 Zimmermann Feb 2004 B2
6695842 Zucherman et al. Feb 2004 B2
6695851 Zdeblick et al. Feb 2004 B2
6699246 Zucherman et al. Mar 2004 B2
6699247 Zucherman et al. Mar 2004 B2
6706070 Wagner et al. Mar 2004 B1
6709458 Michelson Mar 2004 B2
6712819 Zucherman et al. Mar 2004 B2
6716216 Boucher et al. Apr 2004 B1
6716247 Michelson Apr 2004 B2
6716957 Tunc Apr 2004 B2
6719760 Dorchak et al. Apr 2004 B2
6719761 Reiley et al. Apr 2004 B1
6719773 Boucher et al. Apr 2004 B1
6719796 Cohen et al. Apr 2004 B2
6723096 Dorchak et al. Apr 2004 B1
6723126 Berry Apr 2004 B1
6723127 Ralph et al. Apr 2004 B2
6723128 Uk Apr 2004 B2
6726691 Osorio et al. Apr 2004 B2
D490159 Sand May 2004 S
6730126 Boehm et al. May 2004 B2
6733093 Deland et al. May 2004 B2
6733460 Ogura May 2004 B2
6733532 Gauchet et al. May 2004 B1
6733534 Sherman May 2004 B2
6733535 Michelson May 2004 B2
6733635 Ozawa et al. May 2004 B1
6740090 Cragg et al. May 2004 B1
6740093 Hochschuler et al. May 2004 B2
6740117 Ralph et al. May 2004 B2
D492032 Muller et al. Jun 2004 S
6743166 Berci et al. Jun 2004 B2
6743255 Ferree Jun 2004 B2
6746451 Middleton et al. Jun 2004 B2
6749560 Konstorum et al. Jun 2004 B1
6752831 Sybert et al. Jun 2004 B2
6755837 Ebner Jun 2004 B2
6755841 Fraser et al. Jun 2004 B2
D492775 Doelling et al. Jul 2004 S
D493533 Blain Jul 2004 S
6758673 Fromovich et al. Jul 2004 B2
6758847 Maguire Jul 2004 B2
6758861 Ralph et al. Jul 2004 B2
6758862 Berry et al. Jul 2004 B2
6761720 Senegas Jul 2004 B1
6764491 Frey et al. Jul 2004 B2
6764514 Li et al. Jul 2004 B1
D495417 Doelling et al. Aug 2004 S
6770075 Howland Aug 2004 B2
6773460 Jackson Aug 2004 B2
6780151 Grabover et al. Aug 2004 B2
6783530 Levy Aug 2004 B1
6790210 Cragg et al. Sep 2004 B1
6793656 Mathews Sep 2004 B1
6793678 Hawkins Sep 2004 B2
6793679 Michelson Sep 2004 B2
6796983 Zucherman et al. Sep 2004 B1
6805685 Taylor Oct 2004 B2
6805695 Keith et al. Oct 2004 B2
6805697 Helm et al. Oct 2004 B1
6805714 Sutcliffe Oct 2004 B2
6808526 Magerl et al. Oct 2004 B1
6808537 Michelson Oct 2004 B2
6814736 Reiley et al. Nov 2004 B2
6814756 Michelson Nov 2004 B1
6821298 Jackson Nov 2004 B1
6830589 Erickson Dec 2004 B2
6835205 Atkinson et al. Dec 2004 B2
6835206 Jackson Dec 2004 B2
6835208 Marchosky Dec 2004 B2
6840941 Rogers et al. Jan 2005 B2
6840944 Suddaby Jan 2005 B2
6852126 Ahlgren Feb 2005 B2
6852127 Varga et al. Feb 2005 B2
6852129 Gerbec et al. Feb 2005 B2
6855167 Shimp et al. Feb 2005 B2
6863668 Gillespie et al. Mar 2005 B2
6863672 Reiley et al. Mar 2005 B2
6863673 Gerbec et al. Mar 2005 B2
6866682 An et al. Mar 2005 B1
6875215 Taras et al. Apr 2005 B2
6878167 Ferree Apr 2005 B2
6881228 Zdeblick et al. Apr 2005 B2
6881229 Khandkar et al. Apr 2005 B2
6883520 Lambrecht et al. Apr 2005 B2
6887243 Culbert May 2005 B2
6887248 Mckinley et al. May 2005 B2
6890333 Von et al. May 2005 B2
6893464 Kiester May 2005 B2
6893466 Trieu May 2005 B2
6899716 Cragg May 2005 B2
6899719 Reiley et al. May 2005 B2
6899735 Coates et al. May 2005 B2
D506828 Layne et al. Jun 2005 S
6902566 Zucherman et al. Jun 2005 B2
6905512 Paes et al. Jun 2005 B2
6908465 Von et al. Jun 2005 B2
6908506 Zimmermann Jun 2005 B2
6916323 Kitchens Jul 2005 B2
6921403 Cragg et al. Jul 2005 B2
6923810 Michelson Aug 2005 B1
6923811 Carl et al. Aug 2005 B1
6923813 Phillips et al. Aug 2005 B2
6923814 Hildebrand et al. Aug 2005 B1
6929606 Ritland Aug 2005 B2
6929647 Cohen Aug 2005 B2
6936071 Marnay et al. Aug 2005 B1
6936072 Lambrecht et al. Aug 2005 B2
6942668 Padget et al. Sep 2005 B2
6945973 Bray Sep 2005 B2
6945975 Dalton Sep 2005 B2
6946000 Senegas et al. Sep 2005 B2
6949100 Venturini Sep 2005 B1
6949108 Holmes Sep 2005 B2
6951561 Warren et al. Oct 2005 B2
6952129 Lin et al. Oct 2005 B2
6953477 Berry Oct 2005 B2
6955691 Chae et al. Oct 2005 B2
6962606 Michelson Nov 2005 B2
6964674 Matsuura et al. Nov 2005 B1
6964686 Gordon Nov 2005 B2
6966910 Ritland Nov 2005 B2
6966912 Michelson Nov 2005 B2
6969404 Ferree Nov 2005 B2
6969405 Suddaby Nov 2005 B2
D512506 Layne et al. Dec 2005 S
6972035 Michelson Dec 2005 B2
6974479 Trieu Dec 2005 B2
6979341 Scribner et al. Dec 2005 B2
6979352 Reynolds Dec 2005 B2
6979353 Bresina Dec 2005 B2
6981981 Reiley et al. Jan 2006 B2
6997929 Manzi et al. Feb 2006 B2
7004945 Boyd et al. Feb 2006 B2
7004971 Serhan et al. Feb 2006 B2
7008431 Simonson Mar 2006 B2
7008453 Michelson Mar 2006 B1
7014633 Cragg Mar 2006 B2
7018089 Wenz et al. Mar 2006 B2
7018412 Ferreira et al. Mar 2006 B2
7018415 Mckay Mar 2006 B1
7018416 Hanson et al. Mar 2006 B2
7018453 Klein et al. Mar 2006 B2
7022138 Mashburn Apr 2006 B2
7025746 Tal Apr 2006 B2
7025787 Bryan et al. Apr 2006 B2
7029473 Zucherman et al. Apr 2006 B2
7029498 Boehm et al. Apr 2006 B2
7037339 Houfburg May 2006 B2
7041107 Pohjonen et al. May 2006 B2
7044954 Reiley et al. May 2006 B2
7048694 Mark et al. May 2006 B2
7048736 Robinson et al. May 2006 B2
7060068 Tromanhauser et al. Jun 2006 B2
7060073 Frey et al. Jun 2006 B2
7063701 Michelson Jun 2006 B2
7063702 Michelson Jun 2006 B2
7063703 Reo Jun 2006 B2
7063725 Foley Jun 2006 B2
7066960 Dickman Jun 2006 B1
7066961 Michelson Jun 2006 B2
7069087 Sharkey et al. Jun 2006 B2
7070598 Lim et al. Jul 2006 B2
7070601 Culbert et al. Jul 2006 B2
7074203 Johanson et al. Jul 2006 B1
7074226 Roehm et al. Jul 2006 B2
7081120 Li et al. Jul 2006 B2
7081122 Reiley et al. Jul 2006 B1
7083650 Moskowitz et al. Aug 2006 B2
7087053 Vanney Aug 2006 B2
7087055 Lim et al. Aug 2006 B2
7087083 Pasquet et al. Aug 2006 B2
7089063 Lesh et al. Aug 2006 B2
7094239 Michelson Aug 2006 B1
7094257 Mujwid et al. Aug 2006 B2
7094258 Lambrecht et al. Aug 2006 B2
7101375 Zucherman et al. Sep 2006 B2
7114501 Johnson et al. Oct 2006 B2
7115128 Michelson Oct 2006 B2
7115163 Zimmermann Oct 2006 B2
7118572 Bramlet et al. Oct 2006 B2
7118579 Michelson Oct 2006 B2
7118580 Beyersdorff et al. Oct 2006 B1
7118598 Michelson Oct 2006 B2
7124761 Lambrecht et al. Oct 2006 B2
7125424 Banick et al. Oct 2006 B2
7128760 Michelson Oct 2006 B2
7135424 Worley et al. Nov 2006 B2
7153304 Robie et al. Dec 2006 B2
7153305 Johnson et al. Dec 2006 B2
7153306 Ralph et al. Dec 2006 B2
7153307 Scribner et al. Dec 2006 B2
D536096 Hoogland et al. Jan 2007 S
7156874 Paponneau et al. Jan 2007 B2
7156875 Michelson Jan 2007 B2
7156876 Moumene et al. Jan 2007 B2
7156877 Lotz et al. Jan 2007 B2
7163558 Senegas et al. Jan 2007 B2
7166107 Anderson Jan 2007 B2
7172612 Ishikawa Feb 2007 B2
7179293 Mckay Feb 2007 B2
7179294 Eisermann et al. Feb 2007 B2
7189242 Boyd et al. Mar 2007 B2
7201751 Zucherman et al. Apr 2007 B2
7204851 Trieu et al. Apr 2007 B2
7207991 Michelson Apr 2007 B2
7211112 Baynham et al. May 2007 B2
7214227 Colleran et al. May 2007 B2
7217291 Zucherman et al. May 2007 B2
7217293 Branch, Jr. May 2007 B2
7220280 Kast et al. May 2007 B2
7220281 Lambrecht et al. May 2007 B2
7223227 Pflueger May 2007 B2
7223292 Messerli et al. May 2007 B2
7226481 Kuslich Jun 2007 B2
7226482 Messerli et al. Jun 2007 B2
7226483 Gerber et al. Jun 2007 B2
7235101 Berry et al. Jun 2007 B2
7238204 Le et al. Jul 2007 B2
7241297 Shaolian et al. Jul 2007 B2
7244273 Pedersen et al. Jul 2007 B2
7250060 Trieu Jul 2007 B2
7252671 Scribner et al. Aug 2007 B2
7267683 Sharkey et al. Sep 2007 B2
7267687 Mcguckin, Jr. Sep 2007 B2
7270679 Istephanous et al. Sep 2007 B2
7276062 Mcdaniel et al. Oct 2007 B2
7282061 Sharkey et al. Oct 2007 B2
7291173 Richelsoph et al. Nov 2007 B2
7300440 Zdeblick et al. Nov 2007 B2
7306628 Zucherman et al. Dec 2007 B2
7309357 Kim Dec 2007 B2
7311713 Johnson et al. Dec 2007 B2
7316714 Gordon et al. Jan 2008 B2
7318840 Mckay Jan 2008 B2
7320689 Keller Jan 2008 B2
7320708 Bernstein Jan 2008 B1
7322962 Forrest Jan 2008 B2
7326211 Padget et al. Feb 2008 B2
7326248 Michelson Feb 2008 B2
7335203 Winslow et al. Feb 2008 B2
7351262 Bindseil et al. Apr 2008 B2
7361140 Ries et al. Apr 2008 B2
7371238 Soboleski et al. May 2008 B2
7377942 Berry May 2008 B2
7383639 Malandain Jun 2008 B2
7400930 Sharkey et al. Jul 2008 B2
7406775 Funk et al. Aug 2008 B2
7410501 Michelson Aug 2008 B2
7413576 Sybert et al. Aug 2008 B2
7422594 Zander Sep 2008 B2
7434325 Foley et al. Oct 2008 B2
7442211 De et al. Oct 2008 B2
7445636 Michelson Nov 2008 B2
7445637 Taylor Nov 2008 B2
7470273 Dougherty-Shah Dec 2008 B2
D584812 Ries Jan 2009 S
7473256 Assell et al. Jan 2009 B2
7473268 Zucherman et al. Jan 2009 B2
7476251 Zucherman et al. Jan 2009 B2
7485134 Simonson Feb 2009 B2
7488326 Elliott Feb 2009 B2
7491237 Randall et al. Feb 2009 B2
7500991 Bartish et al. Mar 2009 B2
7503920 Siegal Mar 2009 B2
7503933 Michelson Mar 2009 B2
7507241 Levy et al. Mar 2009 B2
7517363 Rogers et al. Apr 2009 B2
7520888 Trieu Apr 2009 B2
7547317 Cragg Jun 2009 B2
7556629 Von et al. Jul 2009 B2
7556651 Humphreys et al. Jul 2009 B2
7569054 Michelson Aug 2009 B2
7569074 Eisermann et al. Aug 2009 B2
7572279 Jackson Aug 2009 B2
7575580 Lim et al. Aug 2009 B2
7575599 Villiers et al. Aug 2009 B2
7578820 Moore et al. Aug 2009 B2
7588574 Assell et al. Sep 2009 B2
7601173 Messerli et al. Oct 2009 B2
7608083 Lee et al. Oct 2009 B2
7618458 Biedermann et al. Nov 2009 B2
7621950 Globerman et al. Nov 2009 B1
7621960 Boyd et al. Nov 2009 B2
7625377 Veldhuizen et al. Dec 2009 B2
7625378 Foley Dec 2009 B2
7625394 Molz et al. Dec 2009 B2
7637905 Saadat et al. Dec 2009 B2
7641657 Cragg Jan 2010 B2
7641670 Davison et al. Jan 2010 B2
7641692 Bryan et al. Jan 2010 B2
7647123 Sharkey et al. Jan 2010 B2
7648523 Mirkovic et al. Jan 2010 B2
7655010 Serhan et al. Feb 2010 B2
7666186 Harp Feb 2010 B2
7666266 Izawa et al. Feb 2010 B2
7670354 Davison et al. Mar 2010 B2
7670374 Schaller Mar 2010 B2
7674265 Smith et al. Mar 2010 B2
7674273 Davison et al. Mar 2010 B2
7682370 Pagliuca et al. Mar 2010 B2
7682400 Zwirkoski Mar 2010 B2
7691120 Shluzas et al. Apr 2010 B2
7691147 Guetlin et al. Apr 2010 B2
7699878 Pavlov et al. Apr 2010 B2
7703727 Selness Apr 2010 B2
7704280 Lechmann et al. Apr 2010 B2
7717944 Foley et al. May 2010 B2
7722530 Davison May 2010 B2
7722612 Sala et al. May 2010 B2
7722674 Grotz May 2010 B1
7727263 Cragg Jun 2010 B2
7731751 Butler et al. Jun 2010 B2
7740633 Assell et al. Jun 2010 B2
7744599 Cragg Jun 2010 B2
7744650 Lindner et al. Jun 2010 B2
7749270 Peterman Jul 2010 B2
7762995 Eversull et al. Jul 2010 B2
7763025 Ainsworth Jul 2010 B2
7763028 Lim et al. Jul 2010 B2
7763038 O'Brien Jul 2010 B2
7763055 Foley Jul 2010 B2
7766930 Dipoto et al. Aug 2010 B2
7771473 Thramann Aug 2010 B2
7771479 Humphreys et al. Aug 2010 B2
7785368 Schaller Aug 2010 B2
7789914 Michelson Sep 2010 B2
7794463 Cragg Sep 2010 B2
7799032 Assell et al. Sep 2010 B2
7799033 Assell et al. Sep 2010 B2
7799036 Davison et al. Sep 2010 B2
7799080 Doty Sep 2010 B2
7799081 Mckinley Sep 2010 B2
7799083 Smith et al. Sep 2010 B2
7803161 Foley et al. Sep 2010 B2
D626233 Cipoletti et al. Oct 2010 S
7814429 Buffet et al. Oct 2010 B2
7819921 Grotz Oct 2010 B2
7824410 Simonson et al. Nov 2010 B2
7824429 Culbert et al. Nov 2010 B2
7824445 Biro et al. Nov 2010 B2
7828807 Lehuec et al. Nov 2010 B2
7837734 Zuckerman et al. Nov 2010 B2
7846183 Blain Dec 2010 B2
7846206 Oglaza et al. Dec 2010 B2
7850695 Pagliuca et al. Dec 2010 B2
7850733 Baynham et al. Dec 2010 B2
7854766 Moskowitz et al. Dec 2010 B2
7857832 Culbert et al. Dec 2010 B2
7857840 Krebs et al. Dec 2010 B2
7862590 Lim et al. Jan 2011 B2
7862595 Foley et al. Jan 2011 B2
7867259 Foley et al. Jan 2011 B2
7874980 Sonnenschein et al. Jan 2011 B2
7875077 Humphreys et al. Jan 2011 B2
7879098 Simmons, Jr. Feb 2011 B1
7887589 Glenn et al. Feb 2011 B2
7892171 Davison et al. Feb 2011 B2
7892249 Davison et al. Feb 2011 B2
7901438 Culbert et al. Mar 2011 B2
7901459 Hodges et al. Mar 2011 B2
7909870 Kraus Mar 2011 B2
7909874 Zielinski Mar 2011 B2
7918874 Siegal Apr 2011 B2
7922719 Ralph et al. Apr 2011 B2
7922729 Michelson Apr 2011 B2
7931674 Zucherman et al. Apr 2011 B2
7931689 Hochschuler et al. Apr 2011 B2
7935051 Miles et al. May 2011 B2
7938832 Culbert et al. May 2011 B2
7942903 Moskowitz et al. May 2011 B2
7947078 Siegal May 2011 B2
7951199 Miller May 2011 B2
7955391 Schaller Jun 2011 B2
7959675 Gately Jun 2011 B2
7963967 Woods Jun 2011 B1
7963993 Schaller Jun 2011 B2
7967864 Schaller Jun 2011 B2
7967865 Schaller Jun 2011 B2
7985231 Sankaran Jul 2011 B2
7993403 Foley et al. Aug 2011 B2
7998176 Culbert Aug 2011 B2
8007535 Hudgins et al. Aug 2011 B2
8012212 Link et al. Sep 2011 B2
8021424 Beger et al. Sep 2011 B2
8021426 Segal et al. Sep 2011 B2
8025697 Mcclellan et al. Sep 2011 B2
8034109 Zwirkoski Oct 2011 B2
8034110 Garner et al. Oct 2011 B2
8038703 Dobak et al. Oct 2011 B2
8043293 Warnick Oct 2011 B2
8043381 Hestad et al. Oct 2011 B2
8052754 Froehlich Nov 2011 B2
8057544 Schaller Nov 2011 B2
8057545 Hughes et al. Nov 2011 B2
8062375 Glerum et al. Nov 2011 B2
8075621 Michelson Dec 2011 B2
8097036 Cordaro et al. Jan 2012 B2
8100978 Bass Jan 2012 B2
8105382 Olmos et al. Jan 2012 B2
8109972 Zucherman et al. Feb 2012 B2
8109977 Culbert et al. Feb 2012 B2
8114088 Miller Feb 2012 B2
8118871 Gordon Feb 2012 B2
8128700 Delurio et al. Mar 2012 B2
8128702 Zucherman et al. Mar 2012 B2
8133232 Levy et al. Mar 2012 B2
8147549 Metcalf et al. Apr 2012 B2
8177812 Sankaran May 2012 B2
8187327 Edidin et al. May 2012 B2
8192495 Simpson et al. Jun 2012 B2
8202322 Doty Jun 2012 B2
8206423 Siegal Jun 2012 B2
8216312 Gray Jul 2012 B2
8216314 Richelsoph Jul 2012 B2
8216317 Thibodeau Jul 2012 B2
8221501 Eisermann et al. Jul 2012 B2
8221502 Branch, Jr. Jul 2012 B2
8221503 Garcia et al. Jul 2012 B2
8231675 Rhoda Jul 2012 B2
8231681 Castleman et al. Jul 2012 B2
8236029 Siegal Aug 2012 B2
8236058 Fabian et al. Aug 2012 B2
8241328 Siegal Aug 2012 B2
8241358 Butler et al. Aug 2012 B2
8241361 Link Aug 2012 B2
8241364 Hansell et al. Aug 2012 B2
8246622 Siegal et al. Aug 2012 B2
8257440 Gordon et al. Sep 2012 B2
8257442 Edie et al. Sep 2012 B2
8262666 Baynham et al. Sep 2012 B2
8262736 Michelson Sep 2012 B2
8267939 Cipoletti et al. Sep 2012 B2
8267965 Gimbel et al. Sep 2012 B2
8273128 Oh et al. Sep 2012 B2
8273129 Baynham et al. Sep 2012 B2
8287599 Mcguckin, Jr. Oct 2012 B2
8292959 Webb et al. Oct 2012 B2
8303663 Jimenez et al. Nov 2012 B2
8317866 Palmatier et al. Nov 2012 B2
8323345 Sledge Dec 2012 B2
8328812 Siegal et al. Dec 2012 B2
8328852 Zehavi et al. Dec 2012 B2
8337559 Hansell et al. Dec 2012 B2
8343193 Johnson et al. Jan 2013 B2
8343222 Cope Jan 2013 B2
8353961 Mcclintock et al. Jan 2013 B2
8361154 Reo Jan 2013 B2
8366777 Matthis et al. Feb 2013 B2
8377098 Landry et al. Feb 2013 B2
8377133 Yuan et al. Feb 2013 B2
8382842 Greenhalgh et al. Feb 2013 B2
8394129 Morgenstern et al. Mar 2013 B2
8398712 De et al. Mar 2013 B2
8398713 Weiman Mar 2013 B2
8403990 Dryer et al. Mar 2013 B2
8409282 Kim Apr 2013 B2
8409290 Zamani et al. Apr 2013 B2
8409291 Blackwell et al. Apr 2013 B2
8414650 Bertele et al. Apr 2013 B2
8425559 Tebbe et al. Apr 2013 B2
8435298 Weiman May 2013 B2
8454617 Schaller et al. Jun 2013 B2
8454698 De et al. Jun 2013 B2
8465524 Siegal Jun 2013 B2
8480715 Gray Jul 2013 B2
8480742 Pisharodi Jul 2013 B2
8480748 Poulos Jul 2013 B2
8486109 Siegal Jul 2013 B2
8486148 Butler et al. Jul 2013 B2
8491591 Fuerderer Jul 2013 B2
8491653 Zucherman et al. Jul 2013 B2
8491657 Attia et al. Jul 2013 B2
8491659 Weiman Jul 2013 B2
8506635 Palmatier et al. Aug 2013 B2
8518087 Lopez et al. Aug 2013 B2
8518120 Glerum et al. Aug 2013 B2
8523909 Hess Sep 2013 B2
8523944 Jimenez et al. Sep 2013 B2
8535380 Greenhalgh et al. Sep 2013 B2
8545567 Krueger Oct 2013 B1
8551092 Morgan et al. Oct 2013 B2
8551173 Lechmann et al. Oct 2013 B2
8556978 Schaller Oct 2013 B2
8556979 Glerum et al. Oct 2013 B2
8568481 Olmos et al. Oct 2013 B2
8579977 Fabian Nov 2013 B2
8579981 Lim et al. Nov 2013 B2
8591583 Schaller et al. Nov 2013 B2
8591585 Mclaughlin et al. Nov 2013 B2
8597330 Siegal Dec 2013 B2
8597333 Morgenstern et al. Dec 2013 B2
8597360 Mcluen et al. Dec 2013 B2
8603168 Gordon et al. Dec 2013 B2
8603170 Cipoletti et al. Dec 2013 B2
8603177 Gray Dec 2013 B2
8623091 Suedkamp et al. Jan 2014 B2
8628576 Triplett et al. Jan 2014 B2
8628577 Jimenez Jan 2014 B1
8628578 Miller et al. Jan 2014 B2
8632595 Weiman Jan 2014 B2
8636746 Jimenez et al. Jan 2014 B2
8641764 Gately Feb 2014 B2
8663329 Ernst Mar 2014 B2
8663331 McClellan et al. Mar 2014 B2
8668740 Rhoda et al. Mar 2014 B2
8672977 Siegal et al. Mar 2014 B2
8679161 Malandain et al. Mar 2014 B2
8679183 Glerum et al. Mar 2014 B2
8685095 Miller et al. Apr 2014 B2
8685098 Glerum et al. Apr 2014 B2
8696751 Ashley et al. Apr 2014 B2
8702757 Thommen et al. Apr 2014 B2
8702798 Matthis et al. Apr 2014 B2
8709086 Glerum Apr 2014 B2
8709088 Kleiner et al. Apr 2014 B2
8715351 Pinto May 2014 B1
8721723 Hansell et al. May 2014 B2
8728160 Globerman et al. May 2014 B2
8728166 Schwab May 2014 B2
8740954 Ghobrial et al. Jun 2014 B2
8753398 Gordon et al. Jun 2014 B2
8758349 Germain et al. Jun 2014 B2
8758441 Hovda et al. Jun 2014 B2
8764806 Abdou Jul 2014 B2
8771360 Jimenez et al. Jul 2014 B2
8777993 Siegal et al. Jul 2014 B2
8778025 Ragab et al. Jul 2014 B2
8795366 Varela Aug 2014 B2
8795374 Chee Aug 2014 B2
8801787 Schaller Aug 2014 B2
8801792 De et al. Aug 2014 B2
8808376 Schaller Aug 2014 B2
8828085 Jensen Sep 2014 B1
8845638 Siegal et al. Sep 2014 B2
8845728 Abdou Sep 2014 B1
8845731 Weiman Sep 2014 B2
8845732 Weiman Sep 2014 B2
8845733 O'Neil et al. Sep 2014 B2
8845734 Weiman Sep 2014 B2
8852242 Morgenstern et al. Oct 2014 B2
8852243 Morgenstern et al. Oct 2014 B2
8852279 Weiman Oct 2014 B2
8864833 Glerum et al. Oct 2014 B2
8888853 Glerum et al. Nov 2014 B2
8888854 Glerum et al. Nov 2014 B2
8900235 Siegal Dec 2014 B2
8900307 Hawkins et al. Dec 2014 B2
8906098 Siegal Dec 2014 B2
8920506 McGuckin, Jr. Dec 2014 B2
8926704 Glerum et al. Jan 2015 B2
8936641 Cain Jan 2015 B2
8940049 Jimenez Jan 2015 B1
8940050 Laurence et al. Jan 2015 B2
8940052 Lechmann et al. Jan 2015 B2
8961609 Schaller Feb 2015 B2
8968408 Schaller et al. Mar 2015 B2
8979860 Voellmicke et al. Mar 2015 B2
8979929 Schaller Mar 2015 B2
8986387 To et al. Mar 2015 B1
8986388 Siegal et al. Mar 2015 B2
8986389 Lim et al. Mar 2015 B2
9005291 Loebl et al. Apr 2015 B2
9017408 Siegal et al. Apr 2015 B2
9017413 Siegal et al. Apr 2015 B2
9039767 Raymond et al. May 2015 B2
9039771 Glerum et al. May 2015 B2
9044334 Siegal et al. Jun 2015 B2
9044338 Schaller Jun 2015 B2
9060876 To et al. Jun 2015 B1
9066808 Schaller Jun 2015 B2
9078767 Mclean Jul 2015 B1
9089428 Bertele et al. Jul 2015 B2
9095446 Landry et al. Aug 2015 B2
9095447 Barreiro et al. Aug 2015 B2
9101488 Malandain Aug 2015 B2
9101489 Protopsaltis et al. Aug 2015 B2
9101491 Rodgers et al. Aug 2015 B2
9101492 Mangione et al. Aug 2015 B2
9107766 Mclean et al. Aug 2015 B1
9119730 Glerum Sep 2015 B2
9237956 Jensen Jan 2016 B1
9254138 Siegal et al. Feb 2016 B2
9259326 Schaller Feb 2016 B2
9271846 Lim et al. Mar 2016 B2
9277928 Morgenstern Lopez Mar 2016 B2
9282979 O'Neil et al. Mar 2016 B2
9283092 Siegal et al. Mar 2016 B2
9295562 Lechmann et al. Mar 2016 B2
9314348 Emstad Apr 2016 B2
9326866 Schaller et al. May 2016 B2
9333091 Dimauro May 2016 B2
9387087 Tyber Jul 2016 B2
9402732 Gabelberger Aug 2016 B2
9402739 Weiman et al. Aug 2016 B2
9408712 Siegal et al. Aug 2016 B2
9414923 Studer et al. Aug 2016 B2
9414934 Cain Aug 2016 B2
9414936 Miller et al. Aug 2016 B2
9433510 Lechmann et al. Sep 2016 B2
9439776 Dimauro et al. Sep 2016 B2
9439777 Dimauro Sep 2016 B2
9445825 Belaney et al. Sep 2016 B2
9445918 Lin et al. Sep 2016 B1
9463099 Levy et al. Oct 2016 B2
9474623 Cain Oct 2016 B2
9510954 Glerum et al. Dec 2016 B2
9532884 Siegal et al. Jan 2017 B2
9566167 Barrus et al. Feb 2017 B2
9579215 Suedkamp et al. Feb 2017 B2
9592129 Slivka et al. Mar 2017 B2
9597197 Lechmann et al. Mar 2017 B2
9662223 Matthis et al. May 2017 B2
9662224 Weiman et al. May 2017 B2
9675470 Packer et al. Jun 2017 B2
9724207 Dimauro et al. Aug 2017 B2
9730803 Dimauro et al. Aug 2017 B2
9750552 Stephan et al. Sep 2017 B2
9750618 Daffinson Sep 2017 B1
9788962 Gabelberger Oct 2017 B2
9788963 Aquino et al. Oct 2017 B2
9788971 Stein Oct 2017 B1
9801639 O'Neil et al. Oct 2017 B2
9801640 O'Neil et al. Oct 2017 B2
9801729 Dimauro et al. Oct 2017 B2
9801734 Stein et al. Oct 2017 B1
9808351 Kelly et al. Nov 2017 B2
9808353 Suddaby et al. Nov 2017 B2
9814589 Dimauro Nov 2017 B2
9814590 Serhan et al. Nov 2017 B2
9839528 Weiman et al. Dec 2017 B2
9839530 Hawkins et al. Dec 2017 B2
9848991 Boehm et al. Dec 2017 B2
9872779 Miller et al. Jan 2018 B2
9907670 Deridder et al. Mar 2018 B2
9924978 Thommen et al. Mar 2018 B2
9925060 Dimauro et al. Mar 2018 B2
9931223 Cain Apr 2018 B2
9931226 Kurtaliaj et al. Apr 2018 B2
9937053 Melkent et al. Apr 2018 B2
9949769 Serhan et al. Apr 2018 B2
9974664 Emerick et al. May 2018 B2
9980823 Matthis et al. May 2018 B2
9993350 Cain Jun 2018 B2
10004607 Weiman et al. Jun 2018 B2
10058433 Lechmann et al. Aug 2018 B2
10085843 Dimauro Oct 2018 B2
10092417 Weiman et al. Oct 2018 B2
10137009 Weiman et al. Nov 2018 B2
10143569 Weiman et al. Dec 2018 B2
10219915 Stein Mar 2019 B1
10238500 Rogers et al. Mar 2019 B2
10265191 Lim et al. Apr 2019 B2
10307254 Levy et al. Jun 2019 B2
10363142 McClintock et al. Jul 2019 B2
10376372 Serhan et al. Aug 2019 B2
10398563 Engstrom Sep 2019 B2
10398566 Olmos et al. Sep 2019 B2
10405986 Kelly et al. Sep 2019 B2
10405989 O'Neil et al. Sep 2019 B2
10420651 Serhan et al. Sep 2019 B2
10426632 Butler et al. Oct 2019 B2
10433971 Dimauro et al. Oct 2019 B2
10433974 O'Neil Oct 2019 B2
10433977 Lechmann et al. Oct 2019 B2
10449056 Cain Oct 2019 B2
10449058 Lechmann et al. Oct 2019 B2
10470894 Foley et al. Nov 2019 B2
10492918 Dimauro Dec 2019 B2
10492924 Stein et al. Dec 2019 B2
10512489 Serhan et al. Dec 2019 B2
10537436 Maguire et al. Jan 2020 B2
10548741 Suedkamp et al. Feb 2020 B2
10555817 Dimauro et al. Feb 2020 B2
10575959 Dimauro et al. Mar 2020 B2
10583013 Dimauro et al. Mar 2020 B2
10583015 Olmos et al. Mar 2020 B2
10639164 Dimauro et al. May 2020 B2
10639166 Weiman et al. May 2020 B2
10682241 Glerum et al. Jun 2020 B2
10743914 Lopez et al. Aug 2020 B2
10758371 Hessler et al. Sep 2020 B2
10842644 Weiman Nov 2020 B2
10966840 Voellmicke et al. Apr 2021 B2
10973652 Hawkins et al. Apr 2021 B2
11051954 Greenhalgh et al. Jul 2021 B2
11103362 Butler et al. Aug 2021 B2
20010011174 Reiley et al. Aug 2001 A1
20010012950 Nishtala et al. Aug 2001 A1
20010016741 Burkus et al. Aug 2001 A1
20010016775 Scarborough et al. Aug 2001 A1
20010027320 Sasso Oct 2001 A1
20010037126 Stack et al. Nov 2001 A1
20010039452 Zuckerman et al. Nov 2001 A1
20010039453 Gresser et al. Nov 2001 A1
20010049529 Cachia et al. Dec 2001 A1
20010049530 Culbert et al. Dec 2001 A1
20010049531 Reiley et al. Dec 2001 A1
20010056302 Boyer et al. Dec 2001 A1
20020001476 Nagamine et al. Jan 2002 A1
20020010070 Cales et al. Jan 2002 A1
20020016583 Cragg Feb 2002 A1
20020026195 Layne et al. Feb 2002 A1
20020026244 Trieu Feb 2002 A1
20020029084 Paul et al. Mar 2002 A1
20020032462 Houser et al. Mar 2002 A1
20020032483 Nicholson et al. Mar 2002 A1
20020035400 Bryan et al. Mar 2002 A1
20020037799 Li et al. Mar 2002 A1
20020045904 Fuss et al. Apr 2002 A1
20020045942 Ham Apr 2002 A1
20020055740 Lieberman May 2002 A1
20020055781 Sazy May 2002 A1
20020058947 Hochschuler et al. May 2002 A1
20020068974 Kuslich et al. Jun 2002 A1
20020068976 Jackson Jun 2002 A1
20020068977 Jackson Jun 2002 A1
20020072801 Michelson Jun 2002 A1
20020077700 Varga et al. Jun 2002 A1
20020077701 Kuslich Jun 2002 A1
20020082584 Rosenman et al. Jun 2002 A1
20020082608 Reiley et al. Jun 2002 A1
20020087152 Mikus et al. Jul 2002 A1
20020087163 Dixon et al. Jul 2002 A1
20020091387 Hoogland Jul 2002 A1
20020091390 Michelson Jul 2002 A1
20020099385 Ralph et al. Jul 2002 A1
20020107519 Dixon et al. Aug 2002 A1
20020107573 Steinberg Aug 2002 A1
20020120335 Angelucci et al. Aug 2002 A1
20020128713 Ferree Sep 2002 A1
20020128715 Bryan et al. Sep 2002 A1
20020128716 Cohen et al. Sep 2002 A1
20020138078 Chappuis Sep 2002 A1
20020138146 Jackson Sep 2002 A1
20020143331 Zucherman et al. Oct 2002 A1
20020143334 Hoffmann et al. Oct 2002 A1
20020143335 Von et al. Oct 2002 A1
20020151895 Soboleski et al. Oct 2002 A1
20020151976 Foley et al. Oct 2002 A1
20020156482 Scribner et al. Oct 2002 A1
20020161444 Choi Oct 2002 A1
20020165612 Gerber et al. Nov 2002 A1
20020169471 Ferdinand Nov 2002 A1
20020172851 Corey et al. Nov 2002 A1
20020173796 Cragg Nov 2002 A1
20020173841 Ortiz et al. Nov 2002 A1
20020173851 Mckay Nov 2002 A1
20020183761 Johnson et al. Dec 2002 A1
20020183778 Reiley et al. Dec 2002 A1
20020183848 Ray et al. Dec 2002 A1
20020191487 Sand Dec 2002 A1
20020193883 Wironen Dec 2002 A1
20020198526 Shaolian et al. Dec 2002 A1
20030004575 Erickson Jan 2003 A1
20030004576 Thalgott Jan 2003 A1
20030006942 Searls et al. Jan 2003 A1
20030014112 Ralph et al. Jan 2003 A1
20030014113 Ralph et al. Jan 2003 A1
20030014116 Ralph et al. Jan 2003 A1
20030018390 Husson Jan 2003 A1
20030023305 Mckay Jan 2003 A1
20030028250 Reiley et al. Feb 2003 A1
20030028251 Mathews Feb 2003 A1
20030032963 Reiss et al. Feb 2003 A1
20030040796 Ferree Feb 2003 A1
20030040799 Boyd et al. Feb 2003 A1
20030045937 Ginn Mar 2003 A1
20030045939 Casutt Mar 2003 A1
20030050644 Boucher et al. Mar 2003 A1
20030063582 Mizell et al. Apr 2003 A1
20030065330 Zucherman et al. Apr 2003 A1
20030065396 Michelson Apr 2003 A1
20030069582 Culbert Apr 2003 A1
20030069593 Tremulis et al. Apr 2003 A1
20030069642 Ralph et al. Apr 2003 A1
20030073998 Pagliuca et al. Apr 2003 A1
20030074075 Thomas et al. Apr 2003 A1
20030078667 Manasas et al. Apr 2003 A1
20030083642 Boyd et al. May 2003 A1
20030083688 Simonson May 2003 A1
20030108588 Chen et al. Jun 2003 A1
20030130664 Boucher et al. Jul 2003 A1
20030130739 Gerbec et al. Jul 2003 A1
20030135275 Garcia et al. Jul 2003 A1
20030139648 Foley et al. Jul 2003 A1
20030139812 Garcia et al. Jul 2003 A1
20030139813 Messerli et al. Jul 2003 A1
20030153874 Tal Aug 2003 A1
20030171812 Grunberg et al. Sep 2003 A1
20030187431 Simonson Oct 2003 A1
20030187445 Keith et al. Oct 2003 A1
20030187506 Ross et al. Oct 2003 A1
20030191414 Reiley et al. Oct 2003 A1
20030191489 Reiley et al. Oct 2003 A1
20030191531 Berry et al. Oct 2003 A1
20030195518 Cragg Oct 2003 A1
20030195547 Scribner et al. Oct 2003 A1
20030195630 Ferree Oct 2003 A1
20030199979 McGuckin Oct 2003 A1
20030204261 Eisermann et al. Oct 2003 A1
20030208122 Melkent et al. Nov 2003 A1
20030208136 Mark et al. Nov 2003 A1
20030208220 Worley et al. Nov 2003 A1
20030208270 Michelson Nov 2003 A9
20030220643 Ferree Nov 2003 A1
20030220648 Osorio et al. Nov 2003 A1
20030220695 Sevrain Nov 2003 A1
20030229350 Kay Dec 2003 A1
20030229372 Reiley et al. Dec 2003 A1
20030233096 Osorio et al. Dec 2003 A1
20030233102 Nakamura et al. Dec 2003 A1
20030233145 Landry et al. Dec 2003 A1
20030233146 Grinberg et al. Dec 2003 A1
20040002761 Rogers et al. Jan 2004 A1
20040006391 Reiley Jan 2004 A1
20040008949 Liu et al. Jan 2004 A1
20040010251 Pitaru et al. Jan 2004 A1
20040010260 Scribner et al. Jan 2004 A1
20040010263 Boucher et al. Jan 2004 A1
20040010318 Ferree Jan 2004 A1
20040019354 Johnson et al. Jan 2004 A1
20040019359 Worley et al. Jan 2004 A1
20040024408 Burkus et al. Feb 2004 A1
20040024409 Sand et al. Feb 2004 A1
20040024410 Olson et al. Feb 2004 A1
20040024463 Thomas et al. Feb 2004 A1
20040024465 Lambrecht et al. Feb 2004 A1
20040030387 Landry et al. Feb 2004 A1
20040034343 Gillespie et al. Feb 2004 A1
20040034429 Lambrecht et al. Feb 2004 A1
20040049190 Biedermann et al. Mar 2004 A1
20040049203 Scribner et al. Mar 2004 A1
20040049223 Nishtala et al. Mar 2004 A1
20040049270 Gewirtz Mar 2004 A1
20040054412 Gerbec et al. Mar 2004 A1
20040059333 Carl et al. Mar 2004 A1
20040059337 Hanson et al. Mar 2004 A1
20040059339 Roehm et al. Mar 2004 A1
20040059350 Gordon et al. Mar 2004 A1
20040059418 McKay et al. Mar 2004 A1
20040064144 Johnson et al. Apr 2004 A1
20040068269 Bonati et al. Apr 2004 A1
20040068318 Coates et al. Apr 2004 A1
20040073308 Kuslich et al. Apr 2004 A1
20040073310 Moumene et al. Apr 2004 A1
20040082953 Petit Apr 2004 A1
20040083000 Keller et al. Apr 2004 A1
20040087947 Lim et al. May 2004 A1
20040088055 Hanson et al. May 2004 A1
20040092933 Shaolian et al. May 2004 A1
20040092948 Stevens et al. May 2004 A1
20040092988 Shaolian et al. May 2004 A1
20040093083 Branch et al. May 2004 A1
20040097924 Lambrecht et al. May 2004 A1
20040097930 Justis et al. May 2004 A1
20040097932 Ray et al. May 2004 A1
20040097941 Weiner et al. May 2004 A1
20040097973 Loshakove et al. May 2004 A1
20040098131 Bryan et al. May 2004 A1
20040102774 Trieu May 2004 A1
20040102784 Pasquet et al. May 2004 A1
20040102846 Keller et al. May 2004 A1
20040106925 Culbert Jun 2004 A1
20040106940 Shaolian et al. Jun 2004 A1
20040111161 Trieu Jun 2004 A1
20040116997 Taylor et al. Jun 2004 A1
20040117019 Trieu et al. Jun 2004 A1
20040117022 Marnay et al. Jun 2004 A1
20040127906 Culbert et al. Jul 2004 A1
20040127990 Bartish et al. Jul 2004 A1
20040127991 Ferree Jul 2004 A1
20040133124 Bates et al. Jul 2004 A1
20040133229 Lambrecht et al. Jul 2004 A1
20040133279 Krueger et al. Jul 2004 A1
20040133280 Trieu Jul 2004 A1
20040138748 Boyer et al. Jul 2004 A1
20040143284 Chin Jul 2004 A1
20040143332 Krueger et al. Jul 2004 A1
20040143734 Buer et al. Jul 2004 A1
20040147129 Rolfson Jul 2004 A1
20040147877 Heuser Jul 2004 A1
20040147950 Mueller et al. Jul 2004 A1
20040148027 Errico et al. Jul 2004 A1
20040153064 Foley et al. Aug 2004 A1
20040153065 Lim Aug 2004 A1
20040153115 Reiley et al. Aug 2004 A1
20040153156 Cohen et al. Aug 2004 A1
20040153160 Carrasco Aug 2004 A1
20040158206 Aboul-Hosn et al. Aug 2004 A1
20040158258 Bonati et al. Aug 2004 A1
20040162617 Zucherman et al. Aug 2004 A1
20040162618 Mujwid et al. Aug 2004 A1
20040167561 Boucher et al. Aug 2004 A1
20040167562 Osorio et al. Aug 2004 A1
20040167625 Beyar et al. Aug 2004 A1
20040172133 Gerber et al. Sep 2004 A1
20040172134 Berry Sep 2004 A1
20040176775 Burkus et al. Sep 2004 A1
20040186052 Iyer et al. Sep 2004 A1
20040186471 Trieu Sep 2004 A1
20040186482 Kolb et al. Sep 2004 A1
20040186528 Ries et al. Sep 2004 A1
20040186570 Rapp Sep 2004 A1
20040186573 Ferree Sep 2004 A1
20040186577 Ferree Sep 2004 A1
20040193271 Fraser et al. Sep 2004 A1
20040193277 Long et al. Sep 2004 A1
20040199162 Von et al. Oct 2004 A1
20040210231 Boucher et al. Oct 2004 A1
20040210310 Trieu Oct 2004 A1
20040215343 Hochschuler et al. Oct 2004 A1
20040215344 Hochschuler et al. Oct 2004 A1
20040220580 Johnson et al. Nov 2004 A1
20040220668 Eisermann et al. Nov 2004 A1
20040220669 Studer Nov 2004 A1
20040220672 Shadduck Nov 2004 A1
20040225292 Sasso et al. Nov 2004 A1
20040225296 Reiss et al. Nov 2004 A1
20040225361 Glenn et al. Nov 2004 A1
20040230191 Frey et al. Nov 2004 A1
20040230309 Dimauro et al. Nov 2004 A1
20040243229 Vidlund et al. Dec 2004 A1
20040243239 Taylor Dec 2004 A1
20040243241 Istephanous et al. Dec 2004 A1
20040249377 Kaes et al. Dec 2004 A1
20040249461 Ferree Dec 2004 A1
20040249466 Liu et al. Dec 2004 A1
20040254520 Porteous et al. Dec 2004 A1
20040254575 Obenchain et al. Dec 2004 A1
20040254643 Jackson Dec 2004 A1
20040254644 Taylor Dec 2004 A1
20040260297 Padget et al. Dec 2004 A1
20040260300 Gorensek et al. Dec 2004 A1
20040260397 Lambrecht et al. Dec 2004 A1
20040266257 Ries et al. Dec 2004 A1
20040267271 Scribner et al. Dec 2004 A9
20040267367 O'Neil Dec 2004 A1
20050004578 Lambrecht et al. Jan 2005 A1
20050010292 Carrasco Jan 2005 A1
20050010293 Zucherman et al. Jan 2005 A1
20050010298 Zucherman et al. Jan 2005 A1
20050015148 Jansen et al. Jan 2005 A1
20050015152 Sweeney Jan 2005 A1
20050019365 Frauchiger et al. Jan 2005 A1
20050021041 Michelson Jan 2005 A1
20050033289 Warren et al. Feb 2005 A1
20050033295 Wisnewski Feb 2005 A1
20050033434 Berry Feb 2005 A1
20050033440 Lambrecht et al. Feb 2005 A1
20050038431 Bartish et al. Feb 2005 A1
20050038515 Kunzler Feb 2005 A1
20050038517 Carrison et al. Feb 2005 A1
20050043737 Reiley et al. Feb 2005 A1
20050043796 Grant et al. Feb 2005 A1
20050054948 Goldenberg Mar 2005 A1
20050055097 Grunberg et al. Mar 2005 A1
20050060036 Schultz et al. Mar 2005 A1
20050060038 Lambrecht et al. Mar 2005 A1
20050065519 Michelson Mar 2005 A1
20050065609 Wardlaw Mar 2005 A1
20050065610 Pisharodi Mar 2005 A1
20050069571 Slivka et al. Mar 2005 A1
20050070908 Cragg Mar 2005 A1
20050070911 Carrison et al. Mar 2005 A1
20050070913 Milbocker et al. Mar 2005 A1
20050071011 Ralph et al. Mar 2005 A1
20050080443 Fallin et al. Apr 2005 A1
20050080488 Schultz Apr 2005 A1
20050085912 Arnin et al. Apr 2005 A1
20050090443 Michael John Apr 2005 A1
20050090833 DiPoto Apr 2005 A1
20050090852 Layne et al. Apr 2005 A1
20050090899 DiPoto Apr 2005 A1
20050096745 Andre et al. May 2005 A1
20050102202 Linden et al. May 2005 A1
20050107880 Shimp et al. May 2005 A1
20050113916 Branch, Jr. May 2005 A1
20050113917 Chae et al. May 2005 A1
20050113918 Messerli et al. May 2005 A1
20050113919 Cragg et al. May 2005 A1
20050113927 Malek May 2005 A1
20050113928 Cragg et al. May 2005 A1
20050118228 Trieu Jun 2005 A1
20050118550 Turri Jun 2005 A1
20050119657 Goldsmith Jun 2005 A1
20050119662 Reiley et al. Jun 2005 A1
20050119750 Studer Jun 2005 A1
20050119751 Lawson Jun 2005 A1
20050119752 Williams et al. Jun 2005 A1
20050119754 Trieu et al. Jun 2005 A1
20050124989 Suddaby Jun 2005 A1
20050124992 Ferree Jun 2005 A1
20050124999 Teitelbaum et al. Jun 2005 A1
20050125062 Biedermann et al. Jun 2005 A1
20050125066 McAfee Jun 2005 A1
20050130929 Boyd Jun 2005 A1
20050131267 Talmadge Jun 2005 A1
20050131268 Talmadge Jun 2005 A1
20050131269 Talmadge Jun 2005 A1
20050131406 Reiley et al. Jun 2005 A1
20050131409 Chervitz et al. Jun 2005 A1
20050131411 Culbert Jun 2005 A1
20050131536 Eisermann et al. Jun 2005 A1
20050131538 Chervitz et al. Jun 2005 A1
20050131540 Trieu Jun 2005 A1
20050131541 Trieu Jun 2005 A1
20050137595 Hoffmann et al. Jun 2005 A1
20050137602 Assell et al. Jun 2005 A1
20050142211 Wenz Jun 2005 A1
20050143734 Cachia et al. Jun 2005 A1
20050143763 Ortiz et al. Jun 2005 A1
20050143827 Globerman et al. Jun 2005 A1
20050149022 Shaolian et al. Jul 2005 A1
20050149030 Serhan et al. Jul 2005 A1
20050149034 Assell et al. Jul 2005 A1
20050149191 Cragg et al. Jul 2005 A1
20050149194 Ahlgren Jul 2005 A1
20050149197 Cauthen Jul 2005 A1
20050154396 Foley et al. Jul 2005 A1
20050154463 Trieu Jul 2005 A1
20050154467 Peterman et al. Jul 2005 A1
20050165398 Reiley Jul 2005 A1
20050165406 Assell et al. Jul 2005 A1
20050165420 Cha Jul 2005 A1
20050165484 Ferree Jul 2005 A1
20050165485 Trieu Jul 2005 A1
20050171539 Braun et al. Aug 2005 A1
20050171541 Boehm et al. Aug 2005 A1
20050171552 Johnson et al. Aug 2005 A1
20050171608 Peterman et al. Aug 2005 A1
20050171610 Humphreys et al. Aug 2005 A1
20050177173 Aebi et al. Aug 2005 A1
20050177235 Baynham et al. Aug 2005 A1
20050177240 Blain Aug 2005 A1
20050182412 Johnson et al. Aug 2005 A1
20050182413 Johnson et al. Aug 2005 A1
20050182414 Manzi et al. Aug 2005 A1
20050182418 Boyd et al. Aug 2005 A1
20050187556 Stack et al. Aug 2005 A1
20050187558 Johnson et al. Aug 2005 A1
20050187559 Raymond et al. Aug 2005 A1
20050187564 Jayaraman Aug 2005 A1
20050197702 Coppes et al. Sep 2005 A1
20050197707 Trieu et al. Sep 2005 A1
20050203512 Hawkins et al. Sep 2005 A1
20050216018 Sennett Sep 2005 A1
20050216026 Culbert Sep 2005 A1
20050216081 Taylor Sep 2005 A1
20050216087 Zucherman et al. Sep 2005 A1
20050222681 Richley et al. Oct 2005 A1
20050222684 Ferree Oct 2005 A1
20050228383 Zucherman et al. Oct 2005 A1
20050228391 Levy et al. Oct 2005 A1
20050228397 Malandain et al. Oct 2005 A1
20050234425 Miller et al. Oct 2005 A1
20050234451 Markworth Oct 2005 A1
20050234452 Malandain Oct 2005 A1
20050234456 Malandain Oct 2005 A1
20050240182 Zucherman et al. Oct 2005 A1
20050240189 Rousseau et al. Oct 2005 A1
20050240193 Layne et al. Oct 2005 A1
20050240269 Lambrecht et al. Oct 2005 A1
20050251142 Hoffmann et al. Nov 2005 A1
20050251149 Wenz Nov 2005 A1
20050251260 Gerber et al. Nov 2005 A1
20050256525 Culbert et al. Nov 2005 A1
20050256576 Moskowitz et al. Nov 2005 A1
20050261682 Ferree Nov 2005 A1
20050261684 Shaolian et al. Nov 2005 A1
20050261695 Cragg et al. Nov 2005 A1
20050261769 Moskowitz et al. Nov 2005 A1
20050261781 Sennett et al. Nov 2005 A1
20050267471 Biedermann et al. Dec 2005 A1
20050273166 Sweeney Dec 2005 A1
20050273173 Gordon et al. Dec 2005 A1
20050277938 Parsons Dec 2005 A1
20050278023 Zwirkoski Dec 2005 A1
20050278026 Gordon et al. Dec 2005 A1
20050278027 Hyde, Jr. Dec 2005 A1
20050278029 Trieu Dec 2005 A1
20050283238 Reiley Dec 2005 A1
20050283244 Gordon et al. Dec 2005 A1
20050287071 Wenz Dec 2005 A1
20060004326 Collins et al. Jan 2006 A1
20060004456 McKay Jan 2006 A1
20060004457 Collins et al. Jan 2006 A1
20060004458 Collins et al. Jan 2006 A1
20060009778 Collins et al. Jan 2006 A1
20060009779 Collins et al. Jan 2006 A1
20060009851 Collins et al. Jan 2006 A1
20060015105 Warren et al. Jan 2006 A1
20060015119 Plassky et al. Jan 2006 A1
20060020284 Foley et al. Jan 2006 A1
20060022180 Selness Feb 2006 A1
20060030850 Keegan et al. Feb 2006 A1
20060030872 Culbert et al. Feb 2006 A1
20060030933 Delegge et al. Feb 2006 A1
20060030943 Peterman Feb 2006 A1
20060032621 Martin et al. Feb 2006 A1
20060036241 Siegal Feb 2006 A1
20060036244 Spitler et al. Feb 2006 A1
20060036246 Carl et al. Feb 2006 A1
20060036256 Carl et al. Feb 2006 A1
20060036259 Carl et al. Feb 2006 A1
20060036261 McDonnell Feb 2006 A1
20060036273 Siegal Feb 2006 A1
20060036323 Carl et al. Feb 2006 A1
20060036324 Sachs et al. Feb 2006 A1
20060041258 Galea Feb 2006 A1
20060041314 Millard Feb 2006 A1
20060045904 Aronson Mar 2006 A1
20060058790 Carl et al. Mar 2006 A1
20060058807 Landry et al. Mar 2006 A1
20060058876 McKinley Mar 2006 A1
20060058880 Wysocki et al. Mar 2006 A1
20060064101 Arramon Mar 2006 A1
20060064102 Ebner Mar 2006 A1
20060064171 Trieu Mar 2006 A1
20060064172 Trieu Mar 2006 A1
20060069436 Sutton et al. Mar 2006 A1
20060069439 Zucherman et al. Mar 2006 A1
20060069440 Zucherman et al. Mar 2006 A1
20060074429 Ralph et al. Apr 2006 A1
20060079908 Lieberman Apr 2006 A1
20060084867 Tremblay et al. Apr 2006 A1
20060084977 Lieberman Apr 2006 A1
20060084988 Kim Apr 2006 A1
20060085002 Trieu et al. Apr 2006 A1
20060085009 Truckai et al. Apr 2006 A1
20060085010 Lieberman Apr 2006 A1
20060089642 Diaz et al. Apr 2006 A1
20060089646 Bonutti Apr 2006 A1
20060089654 Lins et al. Apr 2006 A1
20060089715 Truckai et al. Apr 2006 A1
20060089718 Zucherman et al. Apr 2006 A1
20060089719 Trieu Apr 2006 A1
20060095045 Trieu May 2006 A1
20060095046 Trieu et al. May 2006 A1
20060095134 Trieu et al. May 2006 A1
20060095138 Truckai et al. May 2006 A1
20060100622 Jackson May 2006 A1
20060100706 Shadduck et al. May 2006 A1
20060100707 Stinson et al. May 2006 A1
20060106381 Ferree et al. May 2006 A1
20060106397 Lins May 2006 A1
20060106459 Truckai et al. May 2006 A1
20060111715 Jackson May 2006 A1
20060111728 Abdou May 2006 A1
20060111785 O'Neil May 2006 A1
20060119629 An et al. Jun 2006 A1
20060122609 Mirkovic et al. Jun 2006 A1
20060122610 Culbert et al. Jun 2006 A1
20060122701 Kiester Jun 2006 A1
20060122703 Aebi et al. Jun 2006 A1
20060122704 Vresilovic et al. Jun 2006 A1
20060129244 Ensign Jun 2006 A1
20060136062 Dinello et al. Jun 2006 A1
20060136064 Sherman Jun 2006 A1
20060142759 Arnin et al. Jun 2006 A1
20060142765 Dixon et al. Jun 2006 A9
20060142776 Iwanari Jun 2006 A1
20060142858 Colleran et al. Jun 2006 A1
20060142864 Cauthen Jun 2006 A1
20060149136 Seto et al. Jul 2006 A1
20060149229 Kwak et al. Jul 2006 A1
20060149237 Markworth et al. Jul 2006 A1
20060149252 Markworth et al. Jul 2006 A1
20060149379 Kuslich et al. Jul 2006 A1
20060149380 Lotz et al. Jul 2006 A1
20060149385 McKay Jul 2006 A1
20060155379 Heneveld et al. Jul 2006 A1
20060161162 Lambrecht et al. Jul 2006 A1
20060161166 Johnson et al. Jul 2006 A1
20060167547 Suddaby Jul 2006 A1
20060167553 Cauthen et al. Jul 2006 A1
20060173545 Cauthen et al. Aug 2006 A1
20060178743 Carter Aug 2006 A1
20060178745 Bartish et al. Aug 2006 A1
20060178746 Bartish et al. Aug 2006 A1
20060184192 Markworth et al. Aug 2006 A1
20060184247 Edidin et al. Aug 2006 A1
20060184248 Edidin et al. Aug 2006 A1
20060189999 Zwirkoski Aug 2006 A1
20060190083 Arnin et al. Aug 2006 A1
20060190085 Cauthen Aug 2006 A1
20060195102 Malandain Aug 2006 A1
20060195103 Padget et al. Aug 2006 A1
20060195191 Sweeney et al. Aug 2006 A1
20060200139 Michelson Sep 2006 A1
20060200164 Michelson Sep 2006 A1
20060200239 Rothman et al. Sep 2006 A1
20060200240 Rothman et al. Sep 2006 A1
20060200241 Rothman et al. Sep 2006 A1
20060200242 Rothman et al. Sep 2006 A1
20060200243 Rothman et al. Sep 2006 A1
20060206116 Yeung Sep 2006 A1
20060206207 Dryer et al. Sep 2006 A1
20060212118 Abernathie Sep 2006 A1
20060217711 Stevens et al. Sep 2006 A1
20060229627 Hunt et al. Oct 2006 A1
20060229629 Manzi et al. Oct 2006 A1
20060235403 Blain Oct 2006 A1
20060235412 Blain Oct 2006 A1
20060235423 Cantu Oct 2006 A1
20060235521 Zucherman et al. Oct 2006 A1
20060235531 Buettner-Janz Oct 2006 A1
20060241643 Lim et al. Oct 2006 A1
20060241663 Rice et al. Oct 2006 A1
20060241770 Rhoda et al. Oct 2006 A1
20060247634 Warner et al. Nov 2006 A1
20060247770 Peterman Nov 2006 A1
20060247771 Peterman et al. Nov 2006 A1
20060247781 Francis Nov 2006 A1
20060253120 Anderson et al. Nov 2006 A1
20060253201 McLuen Nov 2006 A1
20060254784 Hartmann et al. Nov 2006 A1
20060264896 Palmer Nov 2006 A1
20060264939 Zucherman et al. Nov 2006 A1
20060264945 Edidin et al. Nov 2006 A1
20060265067 Zucherman et al. Nov 2006 A1
20060265075 Baumgartner et al. Nov 2006 A1
20060265077 Zwirkoski Nov 2006 A1
20060271049 Zucherman et al. Nov 2006 A1
20060271061 Beyar et al. Nov 2006 A1
20060276897 Winslow et al. Dec 2006 A1
20060276899 Zipnick et al. Dec 2006 A1
20060276901 Zipnick et al. Dec 2006 A1
20060276902 Zipnick et al. Dec 2006 A1
20060282167 Lambrecht et al. Dec 2006 A1
20060287726 Segal et al. Dec 2006 A1
20060287727 Segal et al. Dec 2006 A1
20060293662 Boyer et al. Dec 2006 A1
20060293663 Walkenhorst et al. Dec 2006 A1
20060293753 Thramann Dec 2006 A1
20070006692 Phan Jan 2007 A1
20070010716 Malandain et al. Jan 2007 A1
20070010717 Cragg Jan 2007 A1
20070010824 Malandain et al. Jan 2007 A1
20070010826 Rhoda et al. Jan 2007 A1
20070010844 Gong et al. Jan 2007 A1
20070010845 Gong et al. Jan 2007 A1
20070010846 Leung et al. Jan 2007 A1
20070010848 Leung et al. Jan 2007 A1
20070010886 Banick et al. Jan 2007 A1
20070010889 Francis Jan 2007 A1
20070016191 Culbert et al. Jan 2007 A1
20070032703 Sankaran et al. Feb 2007 A1
20070032790 Aschmann et al. Feb 2007 A1
20070032791 Greenhalgh Feb 2007 A1
20070043361 Malandain et al. Feb 2007 A1
20070043362 Malandain et al. Feb 2007 A1
20070043363 Malandain et al. Feb 2007 A1
20070043440 William et al. Feb 2007 A1
20070048382 Meyer et al. Mar 2007 A1
20070049849 Schwardt et al. Mar 2007 A1
20070049934 Edidin et al. Mar 2007 A1
20070049935 Edidin et al. Mar 2007 A1
20070050034 Schwardt et al. Mar 2007 A1
20070050035 Schwardt et al. Mar 2007 A1
20070055201 Seto et al. Mar 2007 A1
20070055236 Hudgins et al. Mar 2007 A1
20070055237 Edidin et al. Mar 2007 A1
20070055246 Zucherman et al. Mar 2007 A1
20070055264 Parmigiani Mar 2007 A1
20070055265 Schaller Mar 2007 A1
20070055266 Osorio et al. Mar 2007 A1
20070055267 Osorio et al. Mar 2007 A1
20070055271 Schaller Mar 2007 A1
20070055272 Schaller Mar 2007 A1
20070055273 Schaller Mar 2007 A1
20070055274 Appenzeller et al. Mar 2007 A1
20070055275 Schaller Mar 2007 A1
20070055276 Edidin Mar 2007 A1
20070055277 Osorio et al. Mar 2007 A1
20070055278 Osorio et al. Mar 2007 A1
20070055281 Osorio et al. Mar 2007 A1
20070055284 Osorio et al. Mar 2007 A1
20070055300 Osorio et al. Mar 2007 A1
20070055377 Hanson et al. Mar 2007 A1
20070060933 Sankaran et al. Mar 2007 A1
20070060935 Schwardt et al. Mar 2007 A1
20070067034 Chirico et al. Mar 2007 A1
20070067035 Falahee Mar 2007 A1
20070068329 Phan et al. Mar 2007 A1
20070073292 Kohm et al. Mar 2007 A1
20070073399 Zipnick et al. Mar 2007 A1
20070078436 Leung et al. Apr 2007 A1
20070078463 Malandain Apr 2007 A1
20070093689 Steinberg Apr 2007 A1
20070093897 Gerbec et al. Apr 2007 A1
20070093899 Dutoit et al. Apr 2007 A1
20070093901 Grotz et al. Apr 2007 A1
20070093906 Hudgins et al. Apr 2007 A1
20070118132 Culbert et al. May 2007 A1
20070118222 Lang May 2007 A1
20070118223 Allard et al. May 2007 A1
20070123868 Culbert et al. May 2007 A1
20070123891 Ries et al. May 2007 A1
20070123892 Ries et al. May 2007 A1
20070123986 Schaller May 2007 A1
20070129730 Woods et al. Jun 2007 A1
20070135922 Trieu Jun 2007 A1
20070142843 Dye Jun 2007 A1
20070149978 Shezifi et al. Jun 2007 A1
20070150059 Ruberte et al. Jun 2007 A1
20070150060 Trieu Jun 2007 A1
20070150061 Trieu Jun 2007 A1
20070150063 Ruberte et al. Jun 2007 A1
20070150064 Ruberte et al. Jun 2007 A1
20070161992 Kwak et al. Jul 2007 A1
20070162005 Peterson et al. Jul 2007 A1
20070162127 Peterman et al. Jul 2007 A1
20070162132 Messerli Jul 2007 A1
20070162138 Heinz Jul 2007 A1
20070167945 Lange et al. Jul 2007 A1
20070168036 Ainsworth et al. Jul 2007 A1
20070168038 Trieu Jul 2007 A1
20070173939 Kim et al. Jul 2007 A1
20070173940 Hestad et al. Jul 2007 A1
20070178222 Storey et al. Aug 2007 A1
20070179612 Johnson et al. Aug 2007 A1
20070179615 Heinz et al. Aug 2007 A1
20070179616 Braddock et al. Aug 2007 A1
20070179618 Trieu et al. Aug 2007 A1
20070185578 O'Neil et al. Aug 2007 A1
20070191953 Trieu Aug 2007 A1
20070191954 Hansell et al. Aug 2007 A1
20070191959 Hartmann et al. Aug 2007 A1
20070197935 Reiley et al. Aug 2007 A1
20070198023 Sand et al. Aug 2007 A1
20070198025 Trieu et al. Aug 2007 A1
20070198089 Moskowitz et al. Aug 2007 A1
20070203491 Pasquet et al. Aug 2007 A1
20070208423 Messerli et al. Sep 2007 A1
20070208426 Trieu Sep 2007 A1
20070213717 Trieu et al. Sep 2007 A1
20070213737 Schermerhorn et al. Sep 2007 A1
20070213826 Smith et al. Sep 2007 A1
20070219634 Greenhalgh et al. Sep 2007 A1
20070225706 Clark et al. Sep 2007 A1
20070225726 Dye et al. Sep 2007 A1
20070225807 Phan et al. Sep 2007 A1
20070225815 Keith et al. Sep 2007 A1
20070233074 Anderson et al. Oct 2007 A1
20070233076 Trieu Oct 2007 A1
20070233083 Abdou Oct 2007 A1
20070233089 Dipoto et al. Oct 2007 A1
20070233130 Suddaby Oct 2007 A1
20070233244 Lopez et al. Oct 2007 A1
20070233254 Grotz et al. Oct 2007 A1
20070250167 Bray et al. Oct 2007 A1
20070260245 Malandain et al. Nov 2007 A1
20070260255 Haddock et al. Nov 2007 A1
20070260314 Biyani Nov 2007 A1
20070270823 Trieu et al. Nov 2007 A1
20070270954 Wu Nov 2007 A1
20070270957 Heinz Nov 2007 A1
20070270968 Baynham et al. Nov 2007 A1
20070276373 Malandain Nov 2007 A1
20070276375 Rapp Nov 2007 A1
20070276497 Anderson Nov 2007 A1
20070282443 Globerman et al. Dec 2007 A1
20070282449 De et al. Dec 2007 A1
20070288091 Braddock et al. Dec 2007 A1
20070299521 Glenn et al. Dec 2007 A1
20080009877 Sankaran et al. Jan 2008 A1
20080015694 Tribus Jan 2008 A1
20080015701 Garcia et al. Jan 2008 A1
20080021556 Edie Jan 2008 A1
20080021557 Trieu Jan 2008 A1
20080021558 Thramann Jan 2008 A1
20080021559 Thramann Jan 2008 A1
20080027437 Johnson et al. Jan 2008 A1
20080027438 Abdou Jan 2008 A1
20080027453 Johnson et al. Jan 2008 A1
20080027454 Johnson et al. Jan 2008 A1
20080027544 Melkent Jan 2008 A1
20080027550 Link et al. Jan 2008 A1
20080033440 Moskowitz et al. Feb 2008 A1
20080045966 Buttermann et al. Feb 2008 A1
20080051890 Waugh et al. Feb 2008 A1
20080051897 Lopez et al. Feb 2008 A1
20080051902 Dwyer Feb 2008 A1
20080058598 Ries et al. Mar 2008 A1
20080058937 Malandain et al. Mar 2008 A1
20080058944 Duplessis et al. Mar 2008 A1
20080065082 Chang et al. Mar 2008 A1
20080065219 Dye Mar 2008 A1
20080071356 Greenhalgh et al. Mar 2008 A1
20080071380 Sweeney Mar 2008 A1
20080077148 Ries et al. Mar 2008 A1
20080077150 Nguyen Mar 2008 A1
20080077241 Nguyen Mar 2008 A1
20080082172 Jackson Apr 2008 A1
20080082173 Delurio et al. Apr 2008 A1
20080097436 Culbert et al. Apr 2008 A1
20080097454 Deridder et al. Apr 2008 A1
20080097611 Mastrorio et al. Apr 2008 A1
20080103601 Biro et al. May 2008 A1
20080108990 Mitchell et al. May 2008 A1
20080108996 Padget et al. May 2008 A1
20080119935 Alvarez May 2008 A1
20080125865 Abdelgany May 2008 A1
20080132934 Reiley et al. Jun 2008 A1
20080133012 McGuckin Jun 2008 A1
20080133017 Beyar et al. Jun 2008 A1
20080140085 Gately et al. Jun 2008 A1
20080140207 Olmos et al. Jun 2008 A1
20080147129 Biedermann et al. Jun 2008 A1
20080147193 Matthis et al. Jun 2008 A1
20080154377 Voellmicke Jun 2008 A1
20080154379 Steiner et al. Jun 2008 A1
20080161927 Savage et al. Jul 2008 A1
20080167657 Greenhalgh Jul 2008 A1
20080172128 Perez-Cruet et al. Jul 2008 A1
20080177306 Lamborne et al. Jul 2008 A1
20080177312 Perez-Cruet et al. Jul 2008 A1
20080177388 Patterson et al. Jul 2008 A1
20080183204 Greenhalgh et al. Jul 2008 A1
20080188945 Boyce et al. Aug 2008 A1
20080195096 Frei Aug 2008 A1
20080195209 Garcia et al. Aug 2008 A1
20080195210 Milijasevic et al. Aug 2008 A1
20080208255 Siegal Aug 2008 A1
20080208344 Kilpela et al. Aug 2008 A1
20080221586 Garcia-Bengochea et al. Sep 2008 A1
20080221687 Viker Sep 2008 A1
20080228225 Trautwein et al. Sep 2008 A1
20080229597 Malandain Sep 2008 A1
20080234732 Landry et al. Sep 2008 A1
20080234733 Scrantz et al. Sep 2008 A1
20080243126 Gutierrez et al. Oct 2008 A1
20080243251 Stad et al. Oct 2008 A1
20080243254 Butler Oct 2008 A1
20080249622 Gray Oct 2008 A1
20080249628 Altarac et al. Oct 2008 A1
20080255563 Farr et al. Oct 2008 A1
20080255574 Dye Oct 2008 A1
20080255618 Fisher et al. Oct 2008 A1
20080262619 Ray Oct 2008 A1
20080269904 Voorhies Oct 2008 A1
20080281346 Greenhalgh et al. Nov 2008 A1
20080281364 Chirico et al. Nov 2008 A1
20080281425 Thalgott et al. Nov 2008 A1
20080287981 Culbert et al. Nov 2008 A1
20080287997 Altarac et al. Nov 2008 A1
20080300685 Carls et al. Dec 2008 A1
20080306537 Culbert Dec 2008 A1
20080312743 Vila et al. Dec 2008 A1
20080319477 Justis et al. Dec 2008 A1
20090005870 Hawkins et al. Jan 2009 A1
20090005873 Slivka et al. Jan 2009 A1
20090018524 Greenhalgh et al. Jan 2009 A1
20090030423 Puno Jan 2009 A1
20090048631 Bhatnagar et al. Feb 2009 A1
20090048678 Saal et al. Feb 2009 A1
20090054898 Gleason Feb 2009 A1
20090054911 Mueller et al. Feb 2009 A1
20090054988 Hess Feb 2009 A1
20090054991 Biyani et al. Feb 2009 A1
20090062807 Song Mar 2009 A1
20090069813 Von et al. Mar 2009 A1
20090069895 Gittings et al. Mar 2009 A1
20090076607 Aalsma et al. Mar 2009 A1
20090076610 Afzal Mar 2009 A1
20090088789 O'Neil et al. Apr 2009 A1
20090099568 Lowry et al. Apr 2009 A1
20090105712 Dauster et al. Apr 2009 A1
20090105745 Culbert Apr 2009 A1
20090112217 Hester Apr 2009 A1
20090112320 Kraus Apr 2009 A1
20090112324 Refai et al. Apr 2009 A1
20090131986 Lee et al. May 2009 A1
20090143859 McClellan et al. Jun 2009 A1
20090149857 Culbert et al. Jun 2009 A1
20090164020 Janowski et al. Jun 2009 A1
20090177281 Swanson et al. Jul 2009 A1
20090177284 Rogers et al. Jul 2009 A1
20090182429 Humphreys et al. Jul 2009 A1
20090192613 Wing et al. Jul 2009 A1
20090192614 Beger et al. Jul 2009 A1
20090216234 Farr et al. Aug 2009 A1
20090221967 Thommen et al. Sep 2009 A1
20090222043 Altarac et al. Sep 2009 A1
20090222096 Trieu Sep 2009 A1
20090222099 Liu et al. Sep 2009 A1
20090222100 Cipoletti et al. Sep 2009 A1
20090234364 Crook Sep 2009 A1
20090234389 Chuang et al. Sep 2009 A1
20090234398 Chirico et al. Sep 2009 A1
20090240333 Trudeau et al. Sep 2009 A1
20090240334 Richelsoph Sep 2009 A1
20090240335 Arcenio et al. Sep 2009 A1
20090248159 Aflatoon Oct 2009 A1
20090248163 King et al. Oct 2009 A1
20090275890 Leibowitz et al. Nov 2009 A1
20090276049 Weiland Nov 2009 A1
20090276051 Arramon et al. Nov 2009 A1
20090292361 Lopez Nov 2009 A1
20090299479 Jones et al. Dec 2009 A1
20100016905 Greenhalgh et al. Jan 2010 A1
20100016968 Moore Jan 2010 A1
20100030217 Mitusina Feb 2010 A1
20100040332 Van et al. Feb 2010 A1
20100042218 Nebosky et al. Feb 2010 A1
20100049324 Valdevit et al. Feb 2010 A1
20100070036 Implicito Mar 2010 A1
20100076492 Warner et al. Mar 2010 A1
20100076502 Guyer et al. Mar 2010 A1
20100076559 Bagga et al. Mar 2010 A1
20100082109 Greenhalgh et al. Apr 2010 A1
20100094422 Hansell et al. Apr 2010 A1
20100094424 Woodburn et al. Apr 2010 A1
20100094426 Grohowski et al. Apr 2010 A1
20100100098 Norton et al. Apr 2010 A1
20100100183 Prewett et al. Apr 2010 A1
20100106191 Yue et al. Apr 2010 A1
20100114105 Butters et al. May 2010 A1
20100114147 Biyani May 2010 A1
20100125334 Krueger May 2010 A1
20100161060 Schaller et al. Jun 2010 A1
20100174314 Mirkovic et al. Jul 2010 A1
20100179594 Theofilos et al. Jul 2010 A1
20100185290 Compton et al. Jul 2010 A1
20100185292 Hochschuler et al. Jul 2010 A1
20100191241 McCormack et al. Jul 2010 A1
20100191334 Keller Jul 2010 A1
20100191336 Greenhalgh Jul 2010 A1
20100204795 Greenhalgh Aug 2010 A1
20100204796 Bae et al. Aug 2010 A1
20100211107 Muhanna Aug 2010 A1
20100211176 Greenhalgh Aug 2010 A1
20100211182 Zimmermann Aug 2010 A1
20100217269 Landes Aug 2010 A1
20100222884 Greenhalgh Sep 2010 A1
20100234849 Bouadi Sep 2010 A1
20100234956 Attia et al. Sep 2010 A1
20100241231 Marino et al. Sep 2010 A1
20100249935 Slivka et al. Sep 2010 A1
20100256768 Lim et al. Oct 2010 A1
20100262240 Chavatte et al. Oct 2010 A1
20100268231 Kuslich et al. Oct 2010 A1
20100268338 Melkent et al. Oct 2010 A1
20100274358 Mueller et al. Oct 2010 A1
20100286777 Errico et al. Nov 2010 A1
20100286783 Lechmann et al. Nov 2010 A1
20100292700 Ries Nov 2010 A1
20100298938 Humphreys et al. Nov 2010 A1
20100305700 Ben-Arye et al. Dec 2010 A1
20100305704 Messerli et al. Dec 2010 A1
20100324607 Davis Dec 2010 A1
20100324683 Reichen et al. Dec 2010 A1
20100331845 Foley et al. Dec 2010 A1
20100331891 Culbert et al. Dec 2010 A1
20110004216 Amendola et al. Jan 2011 A1
20110004308 Marino et al. Jan 2011 A1
20110004310 Michelson Jan 2011 A1
20110009970 Puno Jan 2011 A1
20110015747 Mcmanus et al. Jan 2011 A1
20110029082 Hall Feb 2011 A1
20110029083 Hynes et al. Feb 2011 A1
20110029085 Hynes et al. Feb 2011 A1
20110029086 Glazer et al. Feb 2011 A1
20110035011 Cain Feb 2011 A1
20110040332 Culbert et al. Feb 2011 A1
20110046674 Calvosa et al. Feb 2011 A1
20110054538 Zehavi et al. Mar 2011 A1
20110066186 Boyer et al. Mar 2011 A1
20110071527 Nelson et al. Mar 2011 A1
20110082552 Wistrom et al. Apr 2011 A1
20110093074 Glerum et al. Apr 2011 A1
20110093076 Reo et al. Apr 2011 A1
20110098531 To Apr 2011 A1
20110098628 Yeung et al. Apr 2011 A1
20110098818 Brodke et al. Apr 2011 A1
20110112586 Guyer et al. May 2011 A1
20110130835 Ashley et al. Jun 2011 A1
20110130838 Morgenstern Lopez Jun 2011 A1
20110144692 Saladin et al. Jun 2011 A1
20110144753 Marchek et al. Jun 2011 A1
20110153020 Abdelgany et al. Jun 2011 A1
20110159070 Jin et al. Jun 2011 A1
20110160773 Aschmann et al. Jun 2011 A1
20110160866 Laurence et al. Jun 2011 A1
20110172716 Glerum Jul 2011 A1
20110172774 Varela Jul 2011 A1
20110190816 Sheffer et al. Aug 2011 A1
20110190891 Suh et al. Aug 2011 A1
20110230971 Donner et al. Sep 2011 A1
20110238072 Tyndall Sep 2011 A1
20110251690 Berger et al. Oct 2011 A1
20110270261 Mast et al. Nov 2011 A1
20110270401 Mckay Nov 2011 A1
20110276142 Niemiec et al. Nov 2011 A1
20110282453 Greenhalgh et al. Nov 2011 A1
20110282459 McClellan et al. Nov 2011 A1
20110301711 Palmatier et al. Dec 2011 A1
20110301712 Palmatier et al. Dec 2011 A1
20110307010 Pradhan Dec 2011 A1
20110313465 Warren et al. Dec 2011 A1
20110319899 O'Neil et al. Dec 2011 A1
20110319998 O'Neil et al. Dec 2011 A1
20110320000 O'Neil Dec 2011 A1
20120004726 Greenhalgh et al. Jan 2012 A1
20120004732 Goel et al. Jan 2012 A1
20120006361 Miyagi et al. Jan 2012 A1
20120010715 Spann Jan 2012 A1
20120022654 Farris et al. Jan 2012 A1
20120029636 Ragab et al. Feb 2012 A1
20120029639 Blackwell et al. Feb 2012 A1
20120035730 Spann Feb 2012 A1
20120059474 Weiman Mar 2012 A1
20120059475 Weiman Mar 2012 A1
20120071977 Oglaza et al. Mar 2012 A1
20120071980 Purcell et al. Mar 2012 A1
20120083887 Purcell et al. Apr 2012 A1
20120083889 Purcell et al. Apr 2012 A1
20120109319 Perisic May 2012 A1
20120123546 Medina May 2012 A1
20120136443 Wenzel May 2012 A1
20120150304 Glerum et al. Jun 2012 A1
20120150305 Glerum et al. Jun 2012 A1
20120158146 Glerum et al. Jun 2012 A1
20120158147 Glerum et al. Jun 2012 A1
20120158148 Glerum et al. Jun 2012 A1
20120185049 Varela Jul 2012 A1
20120191204 Bae et al. Jul 2012 A1
20120197299 Fabian, Jr. Aug 2012 A1
20120197403 Merves Aug 2012 A1
20120197405 Cuevas et al. Aug 2012 A1
20120203290 Warren et al. Aug 2012 A1
20120203347 Glerum et al. Aug 2012 A1
20120209383 Tsuang et al. Aug 2012 A1
20120215262 Culbert et al. Aug 2012 A1
20120215315 Hochschuler et al. Aug 2012 A1
20120215316 Mohr et al. Aug 2012 A1
20120226357 Varela Sep 2012 A1
20120232552 Morgenstern et al. Sep 2012 A1
20120232658 Morgenstern et al. Sep 2012 A1
20120253395 Linares Oct 2012 A1
20120253406 Bae et al. Oct 2012 A1
20120265309 Glerum et al. Oct 2012 A1
20120277795 Von et al. Nov 2012 A1
20120277869 Siccardi et al. Nov 2012 A1
20120277877 Smith et al. Nov 2012 A1
20120290090 Glerum et al. Nov 2012 A1
20120290097 Cipoletti et al. Nov 2012 A1
20120310350 Farris et al. Dec 2012 A1
20120310352 Dimauro et al. Dec 2012 A1
20120323327 Mcafee Dec 2012 A1
20120323328 Weiman Dec 2012 A1
20120330421 Weiman Dec 2012 A1
20120330422 Weiman Dec 2012 A1
20130006361 Glerum et al. Jan 2013 A1
20130006362 Biedermann et al. Jan 2013 A1
20130023937 Biedermann et al. Jan 2013 A1
20130023993 Weiman Jan 2013 A1
20130023994 Glerum Jan 2013 A1
20130030536 Rhoda et al. Jan 2013 A1
20130030544 Studer Jan 2013 A1
20130053966 Jimenez et al. Feb 2013 A1
20130060337 Peiersheim et al. Mar 2013 A1
20130073044 Gamache Mar 2013 A1
20130079790 Stein et al. Mar 2013 A1
20130085572 Glerum et al. Apr 2013 A1
20130085574 Sledge Apr 2013 A1
20130109925 Horton et al. May 2013 A1
20130110240 Hansell et al. May 2013 A1
20130116791 Theofilos May 2013 A1
20130123924 Butler et al. May 2013 A1
20130123927 Malandain May 2013 A1
20130138214 Greenhalgh et al. May 2013 A1
20130144387 Walker et al. Jun 2013 A1
20130144388 Emery et al. Jun 2013 A1
20130144391 Siegal et al. Jun 2013 A1
20130150906 Kerboul et al. Jun 2013 A1
20130158663 Miller et al. Jun 2013 A1
20130158664 Palmatier Jun 2013 A1
20130158667 Tabor et al. Jun 2013 A1
20130158668 Nichols et al. Jun 2013 A1
20130158669 Sungarian et al. Jun 2013 A1
20130173004 Greenhalgh et al. Jul 2013 A1
20130190875 Shulock et al. Jul 2013 A1
20130190876 Drochner et al. Jul 2013 A1
20130190877 Medina Jul 2013 A1
20130197647 Wolters et al. Aug 2013 A1
20130204371 Mcluen et al. Aug 2013 A1
20130211525 Mcluen et al. Aug 2013 A1
20130211526 Alheidt et al. Aug 2013 A1
20130218276 Fiechter et al. Aug 2013 A1
20130231747 Olmos et al. Sep 2013 A1
20130238006 O'Neil et al. Sep 2013 A1
20130253585 Garcia et al. Sep 2013 A1
20130261746 Linares et al. Oct 2013 A1
20130261747 Geisert Oct 2013 A1
20130268077 You et al. Oct 2013 A1
20130274883 McLuen et al. Oct 2013 A1
20130310937 Luiz Nov 2013 A1
20130310939 Fabian et al. Nov 2013 A1
20130325128 Perloff et al. Dec 2013 A1
20140018816 Fenn et al. Jan 2014 A1
20140025169 Lechmann et al. Jan 2014 A1
20140039622 Glerum et al. Feb 2014 A1
20140039626 Mitchell Feb 2014 A1
20140046333 Johnson et al. Feb 2014 A1
20140046446 Robinson Feb 2014 A1
20140052259 Garner et al. Feb 2014 A1
20140058512 Petersheim Feb 2014 A1
20140058513 Gahman et al. Feb 2014 A1
20140067073 Hauck Mar 2014 A1
20140081267 Orsak et al. Mar 2014 A1
20140086962 Jin et al. Mar 2014 A1
20140094916 Glerum et al. Apr 2014 A1
20140094917 Salerni Apr 2014 A1
20140100662 Patterson Apr 2014 A1
20140107790 Combrowski Apr 2014 A1
20140114414 Abdou et al. Apr 2014 A1
20140114423 Suedkamp et al. Apr 2014 A1
20140121774 Glerum et al. May 2014 A1
20140128977 Glerum et al. May 2014 A1
20140128980 Louis May 2014 A1
20140135934 Hansell et al. May 2014 A1
20140142706 Hansell et al. May 2014 A1
20140148904 Robinson May 2014 A1
20140163682 Lott Jun 2014 A1
20140163683 Seifert et al. Jun 2014 A1
20140172103 O'Neil et al. Jun 2014 A1
20140172105 Frasier et al. Jun 2014 A1
20140172106 To et al. Jun 2014 A1
20140180421 Glerum et al. Jun 2014 A1
20140188225 Klaus Jul 2014 A1
20140228959 Niemiec et al. Aug 2014 A1
20140236296 Wagner et al. Aug 2014 A1
20140243892 Choinski Aug 2014 A1
20140243981 Davenport et al. Aug 2014 A1
20140243982 Miller Aug 2014 A1
20140249629 Moskowitz et al. Sep 2014 A1
20140249630 Weiman Sep 2014 A1
20140257484 Flower et al. Sep 2014 A1
20140257486 Alheidt Sep 2014 A1
20140257494 Thorwarth et al. Sep 2014 A1
20140277139 Vrionis et al. Sep 2014 A1
20140277204 Sandhu Sep 2014 A1
20140277464 Richter et al. Sep 2014 A1
20140277473 Perrow Sep 2014 A1
20140277474 Robinson et al. Sep 2014 A1
20140277476 Mclean et al. Sep 2014 A1
20140277481 Lee et al. Sep 2014 A1
20140277507 Baynham Sep 2014 A1
20140296983 Fauth et al. Oct 2014 A1
20140303731 Glerum Oct 2014 A1
20140303732 Rhoda et al. Oct 2014 A1
20140324171 Glerum et al. Oct 2014 A1
20140336764 Masson et al. Nov 2014 A1
20140343678 Suddaby et al. Nov 2014 A1
20150012097 Ibarra et al. Jan 2015 A1
20150012098 Eastlack et al. Jan 2015 A1
20150045894 Hawkins et al. Feb 2015 A1
20150057755 Suddaby et al. Feb 2015 A1
20150066145 Rogers et al. Mar 2015 A1
20150088256 Ballard Mar 2015 A1
20150094610 Morgenstern et al. Apr 2015 A1
20150094812 Cain Apr 2015 A1
20150094813 Lechmann et al. Apr 2015 A1
20150094814 Emerick et al. Apr 2015 A1
20150100128 Glerum et al. Apr 2015 A1
20150112398 Morgenstern et al. Apr 2015 A1
20150112437 Davis et al. Apr 2015 A1
20150112438 Mclean Apr 2015 A1
20150157470 Voellmicke et al. Jun 2015 A1
20150164655 Dimauro Jun 2015 A1
20150173914 Dimauro et al. Jun 2015 A1
20150173916 Cain Jun 2015 A1
20150182347 Robinson Jul 2015 A1
20150190242 Blain et al. Jul 2015 A1
20150196400 Dace Jul 2015 A1
20150196401 Dimauro et al. Jul 2015 A1
20150202052 Dimauro Jul 2015 A1
20150216671 Cain Aug 2015 A1
20150216672 Cain Aug 2015 A1
20150216673 Dimauro Aug 2015 A1
20150230929 Lorio Aug 2015 A1
20150230932 Schaller Aug 2015 A1
20150238324 Nebosky et al. Aug 2015 A1
20150250606 Mclean Sep 2015 A1
20150272743 Jimenez et al. Oct 2015 A1
20150305881 Bal et al. Oct 2015 A1
20150320571 Lechmann et al. Nov 2015 A1
20160000577 Dimauro Jan 2016 A1
20160016309 Swift et al. Jan 2016 A1
20160022437 Kelly et al. Jan 2016 A1
20160022438 Lamborne et al. Jan 2016 A1
20160038301 Wickham Feb 2016 A1
20160038304 Aquino et al. Feb 2016 A1
20160045333 Baynham Feb 2016 A1
20160051373 Faulhaber Feb 2016 A1
20160051374 Faulhaber Feb 2016 A1
20160051376 Serhan et al. Feb 2016 A1
20160058573 Dimauro et al. Mar 2016 A1
20160067055 Hawkins et al. Mar 2016 A1
20160074170 Rogers et al. Mar 2016 A1
20160074175 O'Neil Mar 2016 A1
20160081814 Baynham Mar 2016 A1
20160089247 Nichols et al. Mar 2016 A1
20160100954 Rumi et al. Apr 2016 A1
20160106551 Grimberg et al. Apr 2016 A1
20160113776 Capote Apr 2016 A1
20160120662 Schaller May 2016 A1
20160128843 Tsau et al. May 2016 A1
20160199195 Hauck et al. Jul 2016 A1
20160199196 Serhan et al. Jul 2016 A1
20160228258 Schaller et al. Aug 2016 A1
20160235455 Wahl Aug 2016 A1
20160242929 Voellmicke et al. Aug 2016 A1
20160256291 Miller Sep 2016 A1
20160296342 Woods Oct 2016 A1
20160310296 Dimauro et al. Oct 2016 A1
20160317313 Dimauro Nov 2016 A1
20160317317 Marchek et al. Nov 2016 A1
20160317714 Dimauro et al. Nov 2016 A1
20160331541 Dimauro et al. Nov 2016 A1
20160331546 Lechmann et al. Nov 2016 A1
20160331548 Dimauro et al. Nov 2016 A1
20160338854 Serhan et al. Nov 2016 A1
20160367265 Morgenstern Lopez Dec 2016 A1
20160367380 Dimauro Dec 2016 A1
20160374821 Dimauro et al. Dec 2016 A1
20170000622 Thommen et al. Jan 2017 A1
20170035578 Dimauro et al. Feb 2017 A1
20170056179 Lorio Mar 2017 A1
20170065427 Songer Mar 2017 A1
20170071756 Slivka et al. Mar 2017 A1
20170100177 Kim Apr 2017 A1
20170100255 Hleihil et al. Apr 2017 A1
20170100260 Duffield et al. Apr 2017 A1
20170119542 Logan et al. May 2017 A1
20170128226 Faulhaber May 2017 A1
20170209284 Overes et al. Jul 2017 A1
20170216045 Dewey et al. Aug 2017 A1
20170266015 Overes et al. Sep 2017 A1
20170290674 Olmos et al. Oct 2017 A1
20170290675 Olmos et al. Oct 2017 A1
20170290677 Olmos et al. Oct 2017 A1
20170296352 Richerme et al. Oct 2017 A1
20170304074 Dimauro et al. Oct 2017 A1
20170367843 Eisen et al. Dec 2017 A1
20170367844 Eisen et al. Dec 2017 A1
20170367845 Eisen et al. Dec 2017 A1
20180028200 O'Neil et al. Feb 2018 A1
20180036141 Oneil et al. Feb 2018 A1
20180055649 Kelly et al. Mar 2018 A1
20180071111 Sharifi-Mehr et al. Mar 2018 A1
20180078379 Serhan et al. Mar 2018 A1
20180116811 Bernard et al. May 2018 A1
20180161171 Frasier et al. Jun 2018 A1
20180161175 Frasier et al. Jun 2018 A1
20180193164 Shoshtaev Jul 2018 A1
20180256360 Cain Sep 2018 A1
20180256362 Slivka et al. Sep 2018 A1
20190008654 Thommen Jan 2019 A1
20190083276 Dimauro Mar 2019 A1
20190105171 Rogers et al. Apr 2019 A1
20190117409 Shoshtaev Apr 2019 A1
20190133785 Georges May 2019 A1
20190142602 Olmos et al. May 2019 A1
20190269522 Pavento et al. Sep 2019 A1
20190388238 Lechmann et al. Dec 2019 A1
20200008950 Serhan et al. Jan 2020 A1
20200015982 O'Neil Jan 2020 A1
20200030114 Cain Jan 2020 A1
20200060843 Evans et al. Feb 2020 A1
20200078192 Marchek et al. Mar 2020 A1
20200121473 Gamache et al. Apr 2020 A1
20200129308 Suedkamp et al. Apr 2020 A1
20200297506 Olmos et al. Sep 2020 A1
20200375754 Cain Dec 2020 A1
20200375755 Cain Dec 2020 A1
20200383799 Cain Dec 2020 A1
20200405497 Olmos et al. Dec 2020 A1
20200405500 Cain Dec 2020 A1
20210000160 Olmos et al. Jan 2021 A1
20210177619 Voellmicke et al. Jun 2021 A1
20210353427 Butler et al. Nov 2021 A1
Foreign Referenced Citations (300)
Number Date Country
2006279558 Feb 2007 AU
2005314079 Jul 2012 AU
2617872 Feb 2007 CA
1177918 Apr 1998 CN
1383790 Dec 2002 CN
1819805 Aug 2006 CN
101031260 Sep 2007 CN
101087566 Dec 2007 CN
101185594 May 2008 CN
101631516 Jan 2010 CN
101909548 Dec 2010 CN
101951847 Jan 2011 CN
102164552 Aug 2011 CN
103620249 Mar 2014 CN
104023674 Sep 2014 CN
104023675 Sep 2014 CN
104042366 Sep 2014 CN
104822332 Aug 2015 CN
104921848 Sep 2015 CN
104939876 Sep 2015 CN
105025846 Nov 2015 CN
105188582 Dec 2015 CN
204971722 Jan 2016 CN
105769391 Jul 2016 CN
105769392 Jul 2016 CN
107205829 Sep 2017 CN
2804936 Aug 1979 DE
3023353 Apr 1981 DE
3801459 Aug 1989 DE
3911610 Oct 1990 DE
4012622 Jul 1991 DE
9407806 Jul 1994 DE
19710392 Jul 1999 DE
19832798 Nov 1999 DE
20101793 May 2001 DE
202006005868 Jun 2006 DE
202008001079 Mar 2008 DE
10357960 Sep 2015 DE
0077159 Apr 1983 EP
0260044 Mar 1988 EP
0270704 Jun 1988 EP
0282161 Sep 1988 EP
0433717 Jun 1991 EP
0509084 Oct 1992 EP
0525352 Feb 1993 EP
0529275 Mar 1993 EP
0609084 Aug 1994 EP
0611557 Aug 1994 EP
0621020 Oct 1994 EP
0625336 Nov 1994 EP
0678489 Oct 1995 EP
0743045 Nov 1996 EP
0853929 Jul 1998 EP
1046376 Oct 2000 EP
1157676 Nov 2001 EP
1283026 Feb 2003 EP
1290985 Mar 2003 EP
1308132 May 2003 EP
1374784 Jan 2004 EP
1378205 Jan 2004 EP
1405602 Apr 2004 EP
1532949 May 2005 EP
1541096 Jun 2005 EP
1605836 Dec 2005 EP
1385449 Jul 2006 EP
1683593 Jul 2006 EP
1698305 Sep 2006 EP
1829486 Sep 2007 EP
1843723 Oct 2007 EP
1845874 Oct 2007 EP
1924227 May 2008 EP
1925272 May 2008 EP
2331023 Jun 2011 EP
2368529 Sep 2011 EP
2237748 Sep 2012 EP
2641571 Sep 2013 EP
2705809 Mar 2014 EP
2764851 Aug 2014 EP
2777633 Sep 2014 EP
2645965 Aug 2016 EP
3263072 Jan 2018 EP
3366263 Aug 2018 EP
2649311 Jan 1991 FR
2699065 Jun 1994 FR
2712486 May 1995 FR
2718635 Oct 1995 FR
2728778 Jul 1996 FR
2730159 Aug 1996 FR
2745709 Sep 1997 FR
2800601 May 2001 FR
2801189 May 2001 FR
2808182 Nov 2001 FR
2874814 Mar 2006 FR
2913331 Sep 2008 FR
2948277 Jan 2011 FR
3026294 Apr 2016 FR
2157788 Oct 1985 GB
2173565 Oct 1986 GB
64-052439 Feb 1989 JP
06-500039 Jan 1994 JP
06-319742 Nov 1994 JP
07-502419 Mar 1995 JP
07-184922 Jul 1995 JP
07-213533 Aug 1995 JP
10-085232 Apr 1998 JP
11-089854 Apr 1999 JP
2003-010197 Jan 2003 JP
2003-126266 May 2003 JP
2003-526457 Sep 2003 JP
2006-501901 Jan 2006 JP
2006-516456 Jul 2006 JP
2007-054666 Mar 2007 JP
2007-530243 Nov 2007 JP
2008-507363 Mar 2008 JP
2008-126085 Jun 2008 JP
2011-509766 Mar 2011 JP
2011-520580 Jul 2011 JP
2012-020153 Feb 2012 JP
2012-508048 Apr 2012 JP
4988203 Aug 2012 JP
2013-508031 Mar 2013 JP
5164571 Mar 2013 JP
2013-516206 May 2013 JP
2014-502867 Feb 2014 JP
2015-500707 Jan 2015 JP
2015-525652 Sep 2015 JP
2017-505196 Feb 2017 JP
9109572 Jul 1991 WO
9204423 Mar 1992 WO
9207594 May 1992 WO
9214423 Sep 1992 WO
9304634 Mar 1993 WO
9304652 Mar 1993 WO
9317669 Sep 1993 WO
9404100 Mar 1994 WO
9531158 Nov 1995 WO
9628100 Sep 1996 WO
9700054 Jan 1997 WO
9726847 Jul 1997 WO
9834552 Aug 1998 WO
9834568 Aug 1998 WO
9902214 Jan 1999 WO
9926562 Jun 1999 WO
9942062 Aug 1999 WO
9952478 Oct 1999 WO
9953871 Oct 1999 WO
9960956 Dec 1999 WO
9962417 Dec 1999 WO
9963914 Dec 1999 WO
0012033 Mar 2000 WO
0013620 Mar 2000 WO
0024343 May 2000 WO
0067652 May 2000 WO
0044288 Aug 2000 WO
0053127 Sep 2000 WO
0067650 Nov 2000 WO
0067651 Nov 2000 WO
0074605 Dec 2000 WO
0076409 Dec 2000 WO
0101893 Jan 2001 WO
0101895 Jan 2001 WO
0110316 Feb 2001 WO
0112054 Feb 2001 WO
0117464 Mar 2001 WO
0168004 Sep 2001 WO
0180751 Nov 2001 WO
0195838 Dec 2001 WO
0203870 Jan 2002 WO
0217824 Mar 2002 WO
0217825 Mar 2002 WO
0230338 Apr 2002 WO
0243601 Jun 2002 WO
0243628 Jun 2002 WO
0245627 Jun 2002 WO
0247563 Jun 2002 WO
0271921 Sep 2002 WO
0285250 Oct 2002 WO
0302021 Jan 2003 WO
0305937 Jan 2003 WO
0307854 Jan 2003 WO
0320169 Mar 2003 WO
0321308 Mar 2003 WO
0322165 Mar 2003 WO
0328587 Apr 2003 WO
0343488 May 2003 WO
0303951 Jun 2003 WO
2003101308 Dec 2003 WO
2004008949 Jan 2004 WO
0359180 Mar 2004 WO
2004030582 Apr 2004 WO
2004034924 Apr 2004 WO
2004062505 Jul 2004 WO
2004064603 Aug 2004 WO
2004069033 Aug 2004 WO
2004073563 Sep 2004 WO
2004078220 Sep 2004 WO
2004078221 Sep 2004 WO
2004080316 Sep 2004 WO
2004082526 Sep 2004 WO
2004098420 Nov 2004 WO
2004098453 Nov 2004 WO
2004108022 Dec 2004 WO
2005027734 Mar 2005 WO
2005032433 Apr 2005 WO
2005039455 May 2005 WO
2005051246 Jun 2005 WO
2005081877 Sep 2005 WO
2005094297 Oct 2005 WO
2005112834 Dec 2005 WO
2005112835 Dec 2005 WO
2005115261 Dec 2005 WO
2006017507 Feb 2006 WO
2006044920 Apr 2006 WO
2006047587 May 2006 WO
2006047645 May 2006 WO
2006058079 Jun 2006 WO
2006058281 Jun 2006 WO
2006060420 Jun 2006 WO
2006063083 Jun 2006 WO
2006065419 Jun 2006 WO
2006066228 Jun 2006 WO
2006072941 Jul 2006 WO
2006078972 Jul 2006 WO
2006081843 Aug 2006 WO
2006108067 Oct 2006 WO
2006118944 Nov 2006 WO
2007009107 Jan 2007 WO
2007022194 Feb 2007 WO
2007028098 Mar 2007 WO
2007048012 Apr 2007 WO
2007067726 Jun 2007 WO
2007084427 Jul 2007 WO
2007119212 Oct 2007 WO
2007124130 Nov 2007 WO
2008005627 Jan 2008 WO
2008011378 Jan 2008 WO
2008044057 Apr 2008 WO
2008064842 Jun 2008 WO
2008070863 Jun 2008 WO
2008103781 Aug 2008 WO
2008103832 Aug 2008 WO
2009064787 May 2009 WO
2009092102 Jul 2009 WO
2009124269 Oct 2009 WO
2009143496 Nov 2009 WO
2009147527 Dec 2009 WO
2009152919 Dec 2009 WO
2010011348 Jan 2010 WO
2010068725 Jun 2010 WO
2010075451 Jul 2010 WO
2010075555 Jul 2010 WO
2010088766 Aug 2010 WO
2010121002 Oct 2010 WO
2010136170 Dec 2010 WO
2010148112 Dec 2010 WO
2011013047 Feb 2011 WO
2011046459 Apr 2011 WO
2011046460 Apr 2011 WO
2011060087 May 2011 WO
2011079910 Jul 2011 WO
2011119617 Sep 2011 WO
2011142761 Nov 2011 WO
2011150350 Dec 2011 WO
2012009152 Jan 2012 WO
2012027490 Mar 2012 WO
2012028182 Mar 2012 WO
2012030331 Mar 2012 WO
2012089317 Jul 2012 WO
2012103254 Aug 2012 WO
2012122294 Sep 2012 WO
2012129197 Sep 2012 WO
2012135764 Oct 2012 WO
2013006669 Jan 2013 WO
2013023096 Feb 2013 WO
2013025876 Feb 2013 WO
2013043850 Mar 2013 WO
2013062903 May 2013 WO
2013082184 Jun 2013 WO
2013148176 Oct 2013 WO
2013149611 Oct 2013 WO
2013158294 Oct 2013 WO
2013173767 Nov 2013 WO
2013184946 Dec 2013 WO
2014014610 Jan 2014 WO
2014018098 Jan 2014 WO
2014026007 Feb 2014 WO
2014035962 Mar 2014 WO
2014088521 Jun 2014 WO
2014116891 Jul 2014 WO
2014144696 Sep 2014 WO
2015004660 Jan 2015 WO
2015013479 Jan 2015 WO
2015022039 Feb 2015 WO
2015048997 Apr 2015 WO
2016069796 May 2016 WO
2016118246 Jul 2016 WO
2016127139 Aug 2016 WO
2017040881 Mar 2017 WO
2017136620 Aug 2017 WO
2018078148 May 2018 WO
Non-Patent Literature Citations (88)
Entry
Alfen et al., “Developments in the area of Endoscopic Spine Surgery”, European Musculoskeletal Review 2006, pp. 23-24, ThessysTM, Transforaminal Endoscopic Spine Systems, joi max Medical Solutions.
Brochure for PERPOS PLS System Surgical Technique by Interventional Spine, 2008, 8 pages.
Brooks et al., “Efficacy of Supplemental Posterior Transfacet Pedicle Device Fixation in the Setting of One- or Two-Level Anterior Lumbar Interbody Fusion”, Retrieved Jun. 19, 2017, 6 pages.
Burkoth et al., A review of photocrosslinked polyanhydrides: in situ forming degradable networks. Biomaterials. Dec. 2000; 21 (23): 2395-2404.
Chiang, “Biomechanical Comparison of Instrumented Posterior Lumbar Interbody Fusion with One or Two Cages by Finite Element Analysis”, Spine, Sep. 2006, pp. E682-E689, vol. 31(19), Lippincott Williams & Wilkins, Inc.
Chin, “Early Results of the Triage Medical Percutaneous Transfacet Pedicular BONE-LOK Compression Device for Lumbar Fusion”, Accessed online Jul. 10, 2017, 10 pages.
Folman, Posterior Lumbar Interbody Fusion for Degenerative Disc Disease Using a Minimally Invasive B-Twin Expandable Spinal Spacer, Journal of Spinal Disorders & Techniques, 2003, pp. 455-460, vol. 16(5).
Fuchs, “The use of an interspinous implant in conjuction with a graded facetectomy procedure”, Spine vol. 30, No. 11, pp. 1266-1272, 2005.
Gore, “Technique of Cervical Interbody Fusion”, Clinical Orthopaedics and Related Research, Sep. 1984, pp. 191-195, No. 188.
Gray's Anatomy, Crown Publishers, Inc., 1977, pp. 33-54.
Hoogland et al., “Total Lumar Intervertebral Disc Replacement: Testing a New Articulating Space in Human Cadaver Spines-24 1”, Annual ORS, Dallas, TX, Feb. 21-23, 1978, 8 pages.
Hunt, “Expandable Cage Placement Via a Posterolateral Approach in Lumbar Spine Reconstructions”, Journal of Neurosurgery: Spine, Sep. 2006, pp. 271-274, vol. 5.
Iprenburg et al., “Transforaminal Endocopic Surgery in Lumbar Disc Hermiation in an Economic crises—The Tessys Method”, US Musculoskeletal, 2008, pp. 47-49.
Kambin et al., “Percutaneous Lateral Discectomy of the Lumbar Spine: A Preliminary Report”, Clin. Orthop,: 1983, 174: 127-132.
King., “Internal Fixation for Lumbosacral Fusion”, The Journal of Bone and Joint Surgery, J. Bone Joint Surg. Am., 1948; 30: 560-578.
Krbec, “Replacement of the Vertebral Body with an Expansion Implant (Synex)”, Acta Chir Orthop Traumatol Cech, 2002, pp. 158-162, vol. 69(3).
Link SB Charite Brochure—Intervertebral Prosthesis 1988, 29 pages.
Mahar et al., “Biomechanical Comparison of Novel Percutaneous Transfacet Device and a Traditional Posterior System for Single Level Fusion”, Journal of Spinal Disorders & Techniques, Dec. 2006, vol. 19, No. 8, pp. 591-594.
Medco Forum, “Percutaneous Lumbar Fixation Via PERPOS PLS System Interventional Spine”, Sep. 2008, vol. 15, No. 37.
Medco Forum, “Percutaneous Lumbar Fixation via PERPOS System From Interventional Spine”, Oct. 2007, vol. 14, No. 49.
Morgenstern, “Transforaminal Endoscopic Stenosis Surgery—A Comparative Study of Laser and Reamed Foraminoplasty”, in European Musculoskeletal Review, Issue 1, 2009.
Niosi, “Biomechanical Characterization of the three-dimentional kinematic behavior of the dynesys dynamic stabilization system: an in vitro study”, Eur Spine J. (2006), 15: pp. 913-922.
Polikeit, “The Importance of the Endplate for Interbody Cages in the Lumbar Spine”, Eur. Spine J., 2003, pp. 556-561, vol. 12.
ProMap TM EMG Navigation Probe. Technical Brochure Spineology Inc, Dated May 2009.
Shin, “Posterior Lumbar Interbody Fusion via a Unilateral Approach”, Yonsei Medical Journal, 2006, pp. 319-325, vol. 47(3).
Siddiqui,“The Positional Magnetic Resonance Imaging Changes in the Lumbar Spine Following Insertion of a Novel Interspinous Process Distraction Device”, Spine, vol. 30, No. 23, pp. 2677-2682, 2005.
Slivka et al., In vitro compression testing of fiber-reinforced, bioabsorbable, porous implants. Synthetic Bioabsorbable Polymers for Implants. STP1396, pp. 124-135, ATSM International, Jul. 2000.
Spine Solutions Brochure—Prodisc 2001, 16 pages.
Talwar “Insertion loads of the X STOP interspinous process distraction system designed to treat neurogenic intermittent claudication”, Eur Spine J. (2006) 15: pp. 908-912.
U.S. Appl. No. 60/424,055, Method and apparatus for spinal fixation, filed Nov. 5, 2002.
U.S. Appl. No. 60/397,588, Method and apparatus for spinal fixation, filed Jul. 19, 2002.
U.S. Appl. No. 61/675,975, Expandable Implant, filed Jul. 26, 2012.
U.S. Appl. No. 60/942,998, Method and Apparatus for Spinal Stabilization, filed Jun. 8, 2007.
U.S. Appl. No. 14/640,220, filed Mar. 6, 2015, entitled Expandable Intervertebral Implant.
U.S. Appl. No. 14/685,358, filed Apr. 13, 2015, entitled Expandable Intervertebral Implant.
U.S. Appl. No. 14/685,402, filed Apr. 13, 2015, entitled Expandable Intervertebral Implant.
U.S. Appl. No. 14/790,866, filed Jul. 2, 2015, entitled Expandable Implant.
U.S. Appl. No. 60/794,171, filed Apr. 21, 2006, entitled Method and Apparatus for Spinal Fixation.
Zucherman, “A Multicenter, Prospective, Randomized Trial Evaluating the X STOP Interspinous Process Decompression System for the Treatment of Neurogenic Intermittent Claudication”, SPINE, vol. 30, No. 12, pp. 1351-1358, 2005.
International Patent Application No. PCT/US2013/029014, International Search Report dated Jul. 1, 2013, 2 pages.
Bruder et al., Identification and characterization of a cell surface differentiation antigen on human osteoprogenitor cells. 42nd Annual Meeting of the Orthopaedic Research Society, p. 574, Feb. 19-22, 1996, Atlanta, Georgia.
Bruder et al., Monoclonal antibodies reactive with human osteogenic cell surface antigens. Bone. Sep. 1997;21(3):225-235.
Cambridge Scientific News, FDA Approves Cambridge Scientific, Inc.'s Orthopedic WISORB (TM) Malleolar Screw [online], Jul. 30, 2002 [retrieved on Oct. 14, 2003]. Retrieved from the Internet <URL: http://www.cambridgescientificinc.com>.
Carrino, John A., Roxanne Chan and Alexander R. Vaccaro, “Vertebral Augmentation: Vertebroplasty and Kyphoplasty”, Seminars in Roentgenology, vol. 39, No. 1 Jan. 2004: pp. 68-84.
Cheng, B.C., Ph.D., Biomechanical pullout strength and histology of Plasmapore Registered XP coated implants: Ovine multi time point survival study. Aesculap Implant Systems, LLC, 2013, 12 pages.
Edeland, H.G., “Some Additional Suggestions For An Intervertebral Disc Prosthesis”, J of Bio Medical Engr., vol. 7(1) pp. 57-62, Jan. 1985.
European Search Report EP03253921 dated Nov. 13, 2003, 4 pages.
Flemming et al., Monoclonal anitbody against adult marrow-derived mesenchymal stem cells recognizes developing vasculature in embryonic human skin. Developmental Dynamics. 1998;212:119-132.
Ha et al. (Topographical characterization and microstructural interface analysis of vacuum-plasma-sprayed titanium and hydroxyapatite coatings on carbon fiber-reinforced poly(etheretherketone), Journal of Materials Science: Materials in Science 9 (1997), pp. 891-896.
Haas, Norbert P., New Products from AO Development [online], May 2002 [retrieved on Oct. 14, 2003], Retrieved from the Internet <URL: http://www.ao.asif.ch/development/pdf_tk_news_02.pdf>.
Hao et al., Investigation of nanocomposites based on semi-interpenetrating network of [L-poly (epsilon-caprolactone)]/[net-poly (epsilon-caprolactone)] and hydroxyapatite nanocrystals. Biomaterials. Apr. 2003;24(9): 1531-9.
Harsha et al., Tribo performance of polyaryletherketone composites, Polymer Testing (21) (2002) pp. 697-709.
Haynesworth et al., Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone. 1992;13(1):69-80.
Hitchon et al., Comparison of the biomechanics of hydroxyapatite and polymethylmethacrylate vertebroplasty in a cadaveric spinal compression fracture model. J Neurosurg. Oct. 2001;95(2 Suppl):215-20.
International Patent Application No. PCT /US2013/029014, International Search Report dated Jul. 1, 2013, 7 pages.
Joshi, Ajeya P., M.D. and Paul A. Glazer, M.D., “Vertebroplasty: Current Concepts and Outlook for the Future”, 2003, (5 pages), From: http://www.orthojournalhms.org/html/pdfs/manuscript-15.pdf.
Kandziora, Frank, et al., “Biomechanical Analysis of Biodegradable Interbody Fusion Cages Augmented with Poly(propylene Glycol-co-Fumaric Acid),” SPINE, 27(15): 1644-1651 (2002).
Kotsias, A., Clinical trial of titanium-coated PEEL cages anterior cervical discectomy and fusion. [Klinishe Untersuching zum Einsatz von titanbeschichteten Polyetheretherketon-Implantaten bei der cervikalen interkorporalen fusion]. Doctoral thesis. Department of Medicine, Charite, University of Medicine Berlin, 2014, 73 pages. (German language document/Engl. summary).
Kroschwitz et al., eds., Hydrogels. Concise Encyclopedia of Polymer Science and Engineering. Wiley and Sons, pp. 458-459, 1990.
Lendlein et al., AB-polymer networks based on oligo(epsilon-caprolactone) segments showing shape-memory properties. Proc Natl Acad Sci US A. Jan. 30, 2001;98(3):842-7. Epub Jan. 23, 2001.
Malberg. M.I., MD; Pimenta, L., MD; Millan, M.M., MD, 9th International Meeting on Advanced Spine Techniques, May 23-25, 2002, Montreux, Switzerland. Paper #54, Paper #60, and E-Poster#54, 5 pages.
McAfee et al., Minimally invasive anterior retroperitoneal approach to the lumbar spine: Emphasis on the lateral BAK. SPINE. 1998;23(13):1476-84.
Mendez et al., Self-curing acrylic formulations containing PMMA/PCL composites: properties and antibiotic release behavior. J Biomed Mater Res. Jul. 2002;61 (1 ):66-74.
Nguyen et al., Poly(Aryl-Ether-Ether-Ketone) and its Advanced Composites: A Review, Polymer Composites, Apr. 1987, vol. 8, No. 2, pp. 57-73.
OSTEOSET Registered DBM Pellets (Important Medical Information) [online], Nov. 2002 [retrieved on Oct. 14, 2003], Retrieved from the Internet <URL: http://www.wmt.com/Literature>.
POROCOAT(R) Porous Coating, 1 Page, https://emea.depuysynthese.com/hcp/hip/products/qs/porocoat-porous-coatingemea Accessed on Jul. 31, 2017.
Regan et al., Endoscopic thoracic fusion cage. Atlas of Endoscopic Spine Surgery. Quality Medical Publishing, Inc. 1995;350-354.
Sonic Accelerated Fracture Healing System/Exogen 3000. Premarket Approval. U.S. Food & Drug Administration. Date believed to be May 10, 2000. Retrieved Jul. 23, 2012 from <http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMA/pma.cfm?id=14736#>. 4 pages, 2012.
Stewart et al., Co-expression of the stro-1 anitgen and alkaline phosphatase in cultures of human bone and marrow cells. ASBMR 18th Annual Meeting. Bath Institute for Rheumatic Diseases, Bath, Avon, UK. Abstract No. P208, p. S142, 1996.
Timmer et al., In vitro degradation of polymeric networks of poly(propylene fumarate) and the crosslinking macromer poly(propylene fumarate)-diacrylate. Biomaterials. Feb. 2003;24(4 ):571-7.
United States Disctrict Court, Central District of California, Case No. 1 :10-CV-00849-LPS, Nuvasive, Inc., vs., Globus Medical, Inc., Videotaped Deposition of: Luiz Pimenta, M.D., May 9, 2012, 20 pages.
Walsh et al., Preparation of porous composite implant materials by in situ polymerization of porous apatite containing epsilon-caprolactone or methyl methacrylate. Biomaterials. Jun. 2001;22( 11):1205-12.
Zimmer.com, Longer BAK/L Sterile Interbody Fusion Devices. Date believed to be 1997. Product Data Sheet.Zimmer. Retrieved Jul. 23, 2012 from <http:/ catalog.zimmer.com/contenUzpc/products/600/600/620/S20/S045. html>, 2 pages.
CN Office Action dated Apr. 24, 2020 for ON Application No. 201780040910.
U.S. Appl. No. 09/558,057, filed Apr. 26, 2000, entitled Bone Fixation System.
Allcock, “Polyphosphazenes”; The Encyclopedia of Polymer Science; 1988; pp. 31-41; vol. 13; Wiley Intersciences, John Wiley & Sons.
Cohn, “Biodegradable PEO/PLA Block Copolymers”; Journal of Biomedical Materials Research; 1988; pp. 993-1009; vol. 22; John Wiley & Sons, Inc.
Cohn, “Polymer Preprints”; Journal of Biomaterials Research; 1989; p. 498; Biomaterials Research Labortatory, Casal Institute of Applied Chemistry, Israel.
Heller, “Poly (Otrho Esters)”; Handbook of Biodegradable Polymers; edited by Domb; et al.; Hardwood Academic Press; 1997; pp. 99-118.
Japanese Office Action for Application No. 2013-542047, dated Sep. 8, 2015 (12 pages).
Japanese Office Action for Application No. 2016-135826, dated Jun. 6, 2017, (7 pages).
Kemnitzer, “Degradable Polymers Derived From the Amino Acid L-Tyrosine”; 1997; pp. 251-272; edited by Domb, et al., Hardwood Academic Press.
Khoo, “Minimally Invasive Correction of Grade I and II Isthmic Spondylolisthesis using AxiaLIF for L5/S1 Fusion”, pp. 1-7, Rev B Sep. 15, 2008.
Khoo, Axilif address spongy from the caudal approach. Minimally Invasive Correction of Grage I and II Isthmic Spondylolisthesis using AsiaLiF for L5/S1 Fusion, pp. 45-0123 Rev B Sep. 15, 2008.
U.S. Appl. No. 61/009,546, filed Dec. 28, 2007 Rodgers.
U.S. Appl. No. 61/140,926, filed Dec. 26, 2008 Spann.
U.S. Appl. No. 61/178,315, filed May 14, 2009 Spann.
Vandorpe, “Biodegradable Polyphosphazenes for Biomedical Applications”; Handbook of Biodegradable Polymers; 1997; pp. 161-182; Hardwood Academic Press.
Related Publications (1)
Number Date Country
20190336301 A1 Nov 2019 US
Continuations (1)
Number Date Country
Parent 15589209 May 2017 US
Child 16512043 US