Certain applications require use of a thermal transfer printer (TTP), which is a printer that prints on paper, or some other substrate or material, by melting a dried coating of pre-applied ink on a carrier ribbon such that the coating adheres to the substrate being printed upon. TTPs often use electronic print heads with microscopic heating elements which allow for the heating of discrete portions of the ribbon as the ribbon is moved across the print heads, melting only the coating where heat is applied on the discrete portions of the ribbon, and then transferring that coating onto the substrate. Fresh ribbon is typically wrapped around a first cylindrical core of a supply reel, and then is transferred to and wound around a second cylindrical core of a wind-up reel using a series of spindles, guides, and motors.
In one known TTP, the supply reel is mounted onto a supply spindle, the ribbon is threaded through a series of guides and a tensioner, leading to a wind-up reel which is mounted onto a wind-up spindle. The wind-up spindle is connected to a motor, through a belt and a meter roller, and the spent ribbon is wound up around the wind-up reel.
Once the coating is transferred from ribbon onto the substrate, the ribbon is considered spent and as a result, is wound up around the wind-up reel. The wind-up reel may be driven by the metering roller which may be connected with the wind-up spindle via a rubber band, or polyurethane belt, that goes around both the wind-up spindle and the metering roller in a slip drive configuration. Preferably, the gearing between the metering roller and the wind-up spindle is such that one revolution of the metering roller causes more than one revolution of the wind-up reel.
In one know arrangement, the ribbon is wrapped around the metering roller and then onto the wind-up reel. In this configuration, the wind-up reel has a paper-based cylindrical core have an inner diameter D1 of approximately 25 mm, ±5 mm. The wall of the cylindrical core is approximately 3 mm, ±2 mm, thick. With reference to
Often times the cylindrical cores are not new, and they may be sitting around for some time, gathering humidity, possibly causing their structure to weaken. New supply reels may have as much as 600 meters to 1000 meters of ribbon on them. The ribbon is roughly 30 microns thick, ±10 microns, and is often polyester based, with a heat transferrable coating applied onto the ribbon.
As the ribbon is wound up around the wind-up reel, and specifically the cylindrical core of the wind-up reel, the ribbon tends to wrap itself tighter and tighter around the paper-based cylindrical core. As the diameter of ribbon around the cylindrical core of the wind-up reel grows in size, the tension along the ribbon and around the cylindrical core of the wind-up reel is always changing, and often increasing.
The increasing tension around the around the cylindrical core of the wind-up reel produces an inwardly radial force towards the center of the cylindrical core of the wind-up reel. As a result, many times the tension around the cylindrical core of the wind-up reel is so high that the paper-based cylindrical core of the wind-up reel collapses into itself and around the wind-up spindle, since the cylindrical core of the wind-up reel cannot withstand the high tensions and forces around it. Once the paper-based cylindrical core of the wind-up reel collapses into itself and fuses itself around the wind-up spindle, it becomes very difficult for an operator to remove the collapsed cylindrical core of the wind-up reel from the wind-up spindle. As a result, an operator may have to damage the TTP in order to remove the collapsed cylindrical core from the wind-up spindle, and possibly cause injury to the operator himself/herself in the process. Additionally, removing a collapsed cylindrical core from a wind-up spindle may also cause a significant amount of downtime for the TTP, leading to a loss of manufacturing efficiency.
It would therefore be desirable to have a device and/or method for preventing a cylindrical core of a wind-up reel from collapses into itself and fuses itself around the wind-up spindle.
The present invention is defined by the following claims, and nothing in this section should be taken as a limitation on those claims.
In one aspect, a reel-to-reel assembly is provided. The reel-to-reel assembly includes, but is not limited to a supply spindle and a wind-up spindle. The supply spindle receives a supply reel having a length of ribbon wrapped around the supply reel. The wind-up spindle receives an initially empty wind-up reel. The wind-up spindle includes an adjustment mechanism for varying the outer diameter DO of the wind-up spindle from an initial outer diameter DOi to a final outer diameter DOf which is larger than the initial outer diameter DOi.
In one aspect, a spindle is provided. The spindle includes, but is not limited to, a bearing, a central shaft connected with the bearing, and an adjustment mechanism connected with the central shaft. The bearing allows the central shaft to rotate axially. The adjustment mechanism varies an outer diameter DO of the spindle from an initial outer diameter DOi to a final outer diameter DOf which is larger than the initial outer diameter DOi.
In one aspect, a spindle for a reel-to-reel assembly is provided. The spindle includes, but is not limited to a central shaft, an outer mandrel which is rotatably connected with the central shaft, and an adjustment mechanism connected with the outer mandrel. The central shaft is fixedly connected with a mounting plate. The adjustment mechanism varies an outer diameter DO of the spindle from an initial outer diameter DOi to a final outer diameter DOf which is larger than the initial outer diameter DOi.
The invention can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
Methods and devices consistent with the present invention overcome the disadvantages of conventional TTPs by using a cassette assembly having a wind-up spindle with an adjustment mechanism for varying an outer diameter DO of the wind-up spindle from an initial outer diameter DOi to a final outer diameter DOf which is larger than the initial outer diameter DOi. By using such an adjustment mechanism, then an outer diameter DO of the wind-up spindle can be made larger in order to accommodate a cylindrical core of a wind-up reel, and then adjusted to be made smaller in case the cylindrical core of the wind-up reel collapses onto itself and fuses itself around the wind-up spindle. By adjusting the outer diameter DO of the wind-up spindle to be made smaller, a collapsed cylindrical core can be more easily removed from the wind-up spindle.
With reference to
Preferably, the reel-to-reel assembly 100 is a cassette assembly which is mounted within a thermal transfer printer, or any printer which uses a ribbon-based system for imprinting an image onto a substrate. However, the reel-to-reel assembly 100 may be a portion of device which uses a reel-to-reel system, such as a movie projector, a tape player, a magnetic tape player, or any other device which uses reels of ribbon or rolls of material mounted onto a rotating spindle.
Mounting plate 102 provides a rigid inner surface 105 upon which to mount many of the components of the reel-to-reel assembly 100. In one embodiment, the mounting plate 102 is made from a metal material, such as steel, having a thickness of between 5 and 15 mm. Preferably, handles 104 are affixed to an outer surface 103 the mounting plate 102 to provide a user with a means for holding and moving the reel-to-reel assembly 100.
The supply spindle 110 includes a fixed central shaft (not shown) which is fixedly connected with the inner surface 105 of the mounting plate 102, and an outer mandrel 111 which is rotatably connected with the fixed central shaft (not shown) preferably via a pair of needle bearings (not shown). The needle bearings (not shown) allowing for the outer mandrel 111 to rotate and spin freely about the fixed central shaft (not shown). Preferably, the supply spindle 110 includes a friction fitting 115, such as a compression spring, on the supply spindle 110 which applies a certain amount of force onto a first cylindrical core 113 of the supply reel 112, in order to secure the first cylindrical core 113 and the supply reel 112 on the supply spindle 110.
With reference to
Preferably, the wind-up spindle 130 includes an adjustment mechanism 150 for varying an outer diameter DO of the wind-up spindle 130 from an initial outer diameter DOi to a final outer diameter DOf which is larger than the initial outer diameter DOi. Once adjusted, the adjustment mechanism 150 is capable of applying a certain amount of force onto a second cylindrical core 134 of the wind-up reel 132, in order to secure the second cylindrical core 134 and the wind-up reel 132 onto and around the wind-up spindle 130. The adjustment mechanism 150 is able to vary the outer diameter DO of the wind-up spindle 130 from the initial outer diameter DOi to the final outer diameter DOf in order to secure an initially empty second cylindrical core 134 of the wind-up reel 132 on the wind-up spindle 130.
Preferably, the first and second cylindrical cores 113, 134 are paper-based cylindrical cores having an inner diameter DI of approximately 25 mm, ±5 mm. An outer wall of the cylindrical cores 113, 134 is approximately 3 mm, ±2 mm, thick. Preferably, the wind-up reel 132 has an inner diameter DI which is greater than the initial outer diameter DOi to allow for the wind-up reel 132 to be mounted onto the wind-up spindle 130. Upon receiving and mounting the wind-up reel 132 onto the wind-up spindle 130, the adjustment mechanism 150 is engaged to vary and enlarge the outer diameter DO of the wind-up spindle 130 from an initial outer diameter DOi to a final outer diameter DOf.
In this way, by varying and enlarging the outer diameter DO of the wind-up spindle 130 from an initial outer diameter DOi to a final outer diameter DOf, if the cylindrical core 134 of the wind-up reel 132 collapses onto itself and fuses itself around the wind-up spindle 130, the outer diameter DO of the wind-up spindle can then be adjusted and varied again to be made smaller, allowing for a collapsed cylindrical core 134 to be more easily removed from the wind-up spindle 130.
With reference to
Guide roller 116 and metering roller 140 are rotationally connected to and mounted on the inner surface 105 of the mounting plate 102, and metering roller 140 is preferably covered with a padded or rubber-like member to better grip onto and guide ribbon 120. Guide roller 116 preferably includes a low-friction sleeve designed to reduce friction between ribbon 120 and a supporting shaft of guide roller 116. Tensioner 122 is movably mounted on the inner surface 105 of the mounting plate 102, and includes a spring which biases the tensioner 122 in a direction against the ribbon and towards the guide roller 116, as shown in
Metering roller 140 is connected to a motor, preferably an electric motor, which imparts a rotational movement onto the meter roller 140. Metering roller is rotationally connected with the wind-up spindle 130 in order to impart the rotational movement generated by the motor onto the wind-up spindle 130. Preferably, metering roller 140 is rotationally connected with the wind-up spindle 130 via a gear or set of gears, a belt, a band, or series of belts or bands. In one embodiment, the metering roller 140 is rotationally connected with the wind-up spindle 130 via a round belt 142, preferably made of rubberized material or polyurethane, that goes partially around a first grove formed on the metering roller 140 and partially around a second groove 190 formed on the wind-up spindle 130.
With reference to
With reference to
With reference to
The adjustment member 166 is any member which can be engaged to provide axial pressure onto the expansion rings 162a, 162b, and 162c, such as a threaded member, a threaded lock, an internally threaded knob, a screw and washer, or a lever having a cam attached at one end of the lever for providing axial pressure onto the expansion rings 162a, 162b, and 162c. With reference to
In one embodiment, the adjustment mechanism 150 includes an inner ring 156 adjacent a reel retainer flange 168 surrounding and connected with the outer mandrel 186 at a first end 188 adjacent the mounting plate 102. The reel retainer flange 168 prevents the wind-up reel 132 from touching the mounting plate 102 when mounted onto the wind-up spindle 130. Preferably, the second groove 190 is formed on a lower portion of the reel retainer flange 168, as shown in
With reference to
With reference to
In one embodiment, the adjustment mechanism 150 includes an outer ring 160 adjacent the adjustment member 166, surrounding and connected with the outer mandrel 186 at a second end 189 of the outer mandrel 186 opposed to the first end 188. The outer ring 160 surrounds the outer mandrel 186 and the fixed central shaft 154 and abuts the expansion ring 162c on a first side.
Preferably, the inner ring 156 forms a wedge-shaped edge on the side which abuts the expansion ring 162a, and the outer ring 160 also forms a wedge-shaped edge on the side which abuts the expansion ring 162c.
In one embodiment, the adjustment mechanism 150 also includes a first intermediate ring 158a located in between the first and second expansion rings 162a and 162b, and a second intermediate ring 158b located in between the second and third expansion rings 162b and 162c. Preferably, the intermediate rings 158a and 158b form wedge shaped edges on each side which abuts an expansion ring 162a, 162b, and 162c. The wedge-shaped edges of the inner and outer rings 156 and 160 and the intermediate rings 158a and 158b, tend to drive the expansion rings 162a, 162b, and 162c up and away from an outer surface of the outer mandrel 186, increasing the diameters of the expansion rings 162a, 162b, and 162c, as pressure is applied directly to the outer ring 160, and indirectly to the remaining rings 162a, 162b, 162c, 158a, 158b, and 156, from the adjustment member 166.
Preferably the expansion rings 162a, 162b, and 162c have a wedge shaped cross-section, as shown in
In operation, the supply spindle 110 receives the supply reel 112 having a length of ribbon 120 wrapped around the supply reel 112. The ribbon 120 is wound around and between the guide roller 116, the tensioner 122, the first and second guides 118, 119 and the metering roller 140 along path P to the wind-up spindle 130. The wind-up reel 132, and specifically the cylindrical core 134 is the mounted around and received by the wind-up spindle 130 having initial an outer diameter DOi which is less than the inner diameter DI of the cylindrical core 134.
Then the adjustment mechanism 150 is engaged so to vary the outer diameter DO of the wind-up spindle 130 from the initial outer diameter DOi to a final outer diameter DOf which is larger than the initial outer diameter DOi. In one embodiment, the adjustment mechanism 150 is engaged by engaging adjustment member 166 to provide axial pressure onto the expansion rings 162a, 162b, and 162c, causing the expansion rings 162a, 162b, and 162c to expand in diameter, and therefore causing the outer diameter DO of the wind-up spindle 130 to vary from the initial outer diameter DOi to a final outer diameter DOf which is larger than the initial outer diameter DOi. Upon engaging the adjustment mechanism 150 and increasing the outer diameter DO of the wind-up spindle 130 to a final outer diameter DOf, the ribbon 120 is connected with the cylindrical core 134, the motor engaging the metering roller 140 is activated, and the wind-up spindle 130 is rotated, wrapping the ribbon 120 around the cylindrical core 134.
When the ribbon 120 has finished wrapped around the cylindrical core 134, the adjustment mechanism 150 is then engaged again so to vary the outer diameter DO of the wind-up spindle 130 from the final outer diameter DOf to an adjusted outer diameter DOa which is smaller than the final outer diameter DOf. In one embodiment, the adjustment mechanism 150 is engaged again by engaging an adjustment member 166 to release axial pressure provided onto the expansion rings 162a, 162b, and 162c, causing the expansion rings 162a, 162b, and 162c to contract in diameter, and therefore causing the outer diameter DO of the wind-up spindle 130 to vary from the final outer diameter DOf to an adjusted outer diameter DOa which is smaller than the final outer diameter DOf, and which allows for removal of the cylindrical core 134 from the wind-up spindle 130.
Upon engaged the adjustment mechanism 150 again so as to vary the outer diameter DO of the wind-up spindle 130 from the final outer diameter DOf to an adjusted outer diameter DOa, the cylindrical core 134 and the wind-up reel 132 are removed from the wind-up spindle 130, and possibly discarded.
The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.
While various embodiments of the invention have been described, it will be apparent to those of ordinary skill in the art that other embodiments and implementations are possible within the scope of the invention. Accordingly, the invention is not to be restricted except in light of the attached claims and their equivalents.
The Present Application is based on and claims the benefit of priority from U.S. Provisional Patent Application Ser. No. 61/481,674, entitled “EXPANDABLE CHUCK FOR THERMAL PRINTING RIBBON REEL” and filed on May 2, 2011 with the United States Patent and Trademark Office, the contents of which are hereby incorporated by reference in their entirety to the extent permitted by law.
Number | Date | Country | |
---|---|---|---|
61481674 | May 2011 | US |