The embodiments described herein relate to deployment systems and transportation systems for spoolable pipes.
Flexible pipe is useful in a myriad of environments, including in the oil and gas industry. Flexible pipe may be durable and operational in harsh operating conditions and can accommodate high pressures and temperatures. Flexible pipe may be packaged into a coil or onto a reel to facilitate transporting and using the pipe.
Coils of pipe may be positioned in an “eye to the side” or “eye to the sky” orientation. When the flexible pipe is coiled and is disposed with its interior channel facing upwards, such that the coil is in a horizontal orientation, then the coils of pipe are referred to as being in an “eye to the sky” orientation. If, instead, the flexible pipe is coiled and disposed such that the interior channel is not facing upwards, such that the coil is in an upright or vertical orientation, then the coils of pipe are referred to as being in an “eye to the side” orientation.
The flexible pipe may be transported as coils or reels to various sites for deployment (also referred to as uncoiling or unspooling). Different types of devices and vehicles are currently used for loading and transporting coils of pipe, but usually extra equipment and human manual labor is also involved in the process of loading or unloading such coils for transportation and/or deployment. Such coils of pipe are often quite large and heavy. Additionally, the equipment used to store, collect, deploy and transport the coils of spoolable pipe is often times bulky and not reasonably able to deploy or collect spoolable pipe in a quick an efficient manner. Accordingly, there exists a need for an improved method and apparatus for loading, unloading, deploying, collecting, transporting and storing coils of pipe, including coils of pipe disposed on coil drums and coil drum assemblies.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
In one aspect, embodiments of the present disclosure relate to a coil deployment system. The coil deployment system can be utilized with various coil drums that have different widths and heights. In one or more embodiments, the coil deployment system includes a coil deployment trailer. In one or more embodiments, the coil deployment trailer includes a first support bracket configured to interlockingly and rotatably receive a first hub shaft of a coil drum. In one or more embodiments, the coil deployment trailer also includes a second support bracket, configured to interlockingly and rotatably receive a second hub shaft of the coil drum, that is spaced apart from the first support bracket. In one or more embodiments, the coil drum is an expandable coil drum assembly. In one or more other embodiments, the coil deployment trailer is configured to manipulate a reel of spoolable pipe wherein the reel includes a first hub shaft and a second hub shaft that are configured to be interlockingly and rotatably engaged by first and second support brackets, respectively. In one or more embodiments, the coil deployment trailer includes a first horizontal support bar including a pair of telescoping extension arms. Each of the pair of telescoping extension arms can include an outer end. In one or more embodiments, the coil deployment trailer also includes a first lower support arm having a first end pivotably connected to the first support bracket, and a second end connected to the horizontal support bar. In one or more embodiments, the coil deployment trailer also includes a second lower support arm having a first end pivotably connected to the second support bracket, and a second end connected to the horizontal support bar. In one or more embodiments, the coil deployment trailer also includes a third lower support arm having a first end, pivotably connected to the first support bracket, and a second end. In one or more embodiments, the coil deployment trailer also includes a fourth lower support arm having a first end, pivotably connected to the second support bracket, and a second end. In one or more embodiments, the width of the coil deployment trailer is adjustable by moving the outer ends of the pair of telescoping extension arms, included in the first horizontal support bar, in an axial direction with respect to one another by slidably adjusting the pair of telescoping extension arms to adjust the length of the horizontal support bar.
In another aspect, embodiments of the present disclosure relate to a coil deployment system. In one or more embodiments, the coil deployment system includes a coil deployment trailer. In one or more embodiments, the coil deployment trailer includes a first set of wheels mounted on each of the first lower support arm and the second lower support arm. In one or more embodiments, the coil deployment trailer also includes a second set of wheels mounted on each of the third lower support arm and fourth lower support arm. In one or more embodiments, each of the first and second set of wheels has an axis generally parallel to the horizontal support bar and is configured to engage a ground surface to provide support and positioning for the coil deployment trailer. In one or more embodiments, the coil deployment trailer also includes a third set of wheels mounted on each of the first lower support arm, between the first set of wheels and the first end of the first lower support arm, and the second lower support arm, between the first set of wheels and the first end of the second lower support arm. In one or more embodiments, the coil deployment trailer also includes a fourth set of wheels mounted on each of the second lower support arm, between the second set of wheels and the first end of the second lower support arm, and the fourth lower support arm, between the second set of wheels and the first end of the fourth lower support arm. In one or more embodiments, each of the first lower support arm, second lower support arm, third lower support arm and fourth lower support arm are of a fixed length and do not include telescoping bars. In one or more embodiments, the height of the trailer is adjustable by moving the first lower support arm, second lower support arm, third lower support arm and fourth lower support arm relative to one to change the angular position of each of the first, second, third and fourth lower support arms with respect to their respective support brackets. In one or more embodiments, each of the first lower support arm, second lower support arm, third lower support arm and fourth lower support arm further comprise a pair of telescoping bars. In one or more embodiments, the height of the trailer is adjustable by moving the first ends and the second ends of each of the first lower support arm, second lower support arm, third lower support arm and fourth lower support arm relative to one another by slidably adjusting the pair of telescoping bars to adjust the length of the first lower support arm, second lower support arm, third lower support arm and fourth lower support arm. In one or more embodiments, each of the third set of wheels and the fourth set of wheels is configured to engage the ground surface and provide support and positioning to the trailer when the height of the trailer is reduced to its fully collapsed position. In one or more embodiments, the third set of wheels has an axis that is generally perpendicular to the axis of the first set of wheels. In one or more embodiments, the fourth set of wheels has an axis that is generally perpendicular to the axis of the second set of wheels.
In one or more embodiments, the coil deployment trailer also includes a first lower support arm having a first end pivotably connected to the first support bracket, and a second end connected to the horizontal support bar. In one or more embodiments, the coil deployment trailer also includes a second lower support arm having a first end pivotably connected to the second support bracket, and a second end connected to the horizontal support bar. In one or more embodiments, the coil deployment trailer also includes a third lower support arm having a first end, pivotably connected to the first support bracket, and a second end. In one or more embodiments, the coil deployment trailer also includes a fourth lower support arm having a first end, pivotably connected to the second support bracket, and a second end. In one or more embodiments, the coil deployment trailer also includes a first hydraulic cylinder disposed between the first lower support arm and the third lower support arm. In one or more embodiments, the coil deployment trailer also includes a second hydraulic cylinder disposed between the second lower support arm and the fourth lower support arm. In one or more embodiments, the height of the coil deployment trailer is adjustable by actuating the first and second hydraulic cylinders to move the first lower support arm with respect to the third lower support arm and the second lower support arm with respect to the fourth lower support arm such that the angular positions of the first, second, third and fourth lower support arms with respect to the support brackets to which they are attached, via their respective pivotable connections, is changed.
In one or more embodiments, the coil deployment system also includes a coil deployment trailer. In one or more embodiments, the coil deployment trailer includes a second horizontal support bar that comprises a pair of telescoping extension arms. In one or more embodiments, each of the pair of telescoping extension arms includes an outer end. In one or more embodiments, the width of the trailer is adjustable by moving the outer ends of the pair of telescoping extension arms included in the second horizontal support bar in an axial direction with respect to one another and in concert with the pair of telescoping extension arms included in the first horizontal support bar. In one or more embodiments, the coil deployment trailer also includes a coupling assembly support bar including a pair of telescoping arms. In one or more embodiments, each of the telescoping arms includes an outer end. In one or more embodiments, the coil deployment trailer also includes a first upper support arm having a first end, connected to the coupling assembly support bar, and a second end pivotably connected to the first support bracket. In one or more embodiments, the coil deployment trailer also includes a second upper support arm having a first end, connected to the coupling assembly support bar, and a second end pivotably connected to the second support bracket. In one or more embodiments, the width of the trailer is adjustable by slidably adjusting the pair of telescoping arms, included in the coupling assembly support bar, with respect to one another in response to adjusting the length of the horizontal support bar. In one or more embodiments, the coil deployment trailer also includes a first hydraulic cylinder disposed between the first upper support arm and the third upper support arm. In one or more embodiments, the coil deployment trailer also includes a second hydraulic cylinder disposed between the second upper support arm and the fourth upper support arm. In one or more embodiments, the height of the coil deployment trailer is adjustable by actuating the first and second hydraulic cylinders to move the first upper support arm with respect to the third upper support arm and the second upper support arm with respect to the fourth upper support arm such that the angular positions of the first, second, third and fourth upper support arms with respect to the support brackets to which they are attached, via their respective pivotable connections, is changed.
In one or more embodiments, the coil deployment trailer also includes a pipe re-spooler mounted to the first upper support arm. In one or more embodiments, the pipe re-spooler also includes a first re-spooler bracket mounted to the first upper support arm. In one or more embodiments, the pipe re-spooler also includes a second re-spooler bracket mounted to the second upper support bar. In one or more embodiments, the pipe re-spooler also includes a first substantially cylindrical member having a first end and a second end. In one or more embodiments, the first substantially cylindrical member extends between and is rotatably mounted to the first re-spooler bracket at the first end and the second re-spooler bracket at the second end. In one or more embodiments, the first substantially cylindrical member is configured to engage a coil of spoolable pipe to assist in at least one of the deployment and collection of the spoolable pipe. In one or more embodiments, the pipe re-spooler also includes a second substantially cylindrical member having a first end and a second end. In one or more embodiments, the second substantially cylindrical member extends between and is rotatably mounted to the first re-spooler bracket at the first end and the second re-spooler bracket at the second end. In one or more embodiments, the second substantially cylindrical member is configured to engage the coil of spoolable pipe to assist in at least one of the deployment and collection of the spoolable pipe. In one or more embodiments, the first and second substantially cylindrical members each further comprises a pair of telescoping bars. In one or more embodiments, the length of the first and second substantially cylindrical members is adjustable by slidably adjusting the pairs of telescoping extension bars, included in the first and second substantially cylindrical members, with respect to one another in response to adjusting the length of the horizontal support bar. In one or more embodiments, the length of the coupling assembly support bar and the length of the pipe re-spooler is automatically adjusted when the length of the horizontal support bar is adjusted.
In another aspect, embodiments of the present disclosure relate to a coil deployment system. In one or more embodiments, the coil deployment system also includes a coil deployment trailer. In one or more embodiments, the coil deployment trailer includes a horizontal containment bar including a pair of telescoping bars. In one or more embodiments, each of the telescoping bars includes an outer end. In one or more embodiments, the coil deployment trailer also includes a third upper support arm having a first end, connected to the horizontal containment bar, and a second end pivotably connected to the first support bracket. In one or more embodiments, the coil deployment trailer also includes a fourth upper support arm having a first end, connected to the horizontal containment bar, and a second end pivotably connected to the second support bracket. In one or more embodiments, the length of the horizontal containment bar is adjustable by moving the outer ends of the pair of telescoping bars with respect to one another by slidably adjusting the pair of telescoping bars included in the horizontal containment bar in response to adjusting the length of the horizontal support bar. In one or more embodiments, the length of the horizontal containment bar is adjustable by slidably adjusting the pair of telescoping bars included in the horizontal containment bar in response to adjusting the length of the horizontal support bar. In one or more embodiments, each of the first lower support arm, second lower support arm, third lower support arm and fourth lower support arm each further includes a pair of telescoping bars. In one or more embodiments, the height of the trailer is adjustable by slidably adjusting the pairs of telescoping bars to adjust the length of each of the first lower support arm, second lower support arm, third lower support arm and fourth lower support arm. In one or more embodiments, the height of the trailer is adjustable by adjusting the distance between the first end and the second end of each of the first lower support arm, second lower support arm, third lower support arm and fourth lower support arm by slidably adjusting the pairs of telescoping bars to adjust the length of each of the first lower support arm, second lower support arm, third lower support arm and fourth lower support arm.
In another aspect, embodiments of the present disclosure relate to a coil deployment system. In one or more embodiments, the coil deployment system also includes a coil deployment trailer. In one or more embodiments, the coil deployment trailer includes a first lower support arm, second lower support arm, third lower support arm and fourth lower support arm. In one or more embodiments, each of the first lower support arm, second lower support arm, third lower support arm and fourth lower support arm each further includes a pair of telescoping bars. In one or more embodiments, each of the pairs of telescoping bars further includes one or more actuators that are configured to adjust the length of each of the first lower support arm, second lower support arm, third lower support arm and fourth lower support arm. In one or more embodiments, the one or more actuators include at least one of a hydraulic actuator, a pneumatic actuator, an electro-magnetic actuator, and an electrical actuator. In one or more embodiments, the coil deployment system also includes a controller that is operable to automatically adjust the width of the trailer frame. In one or more embodiments, the coil deployment system also includes a controller that is operable to automatically adjust the height of the trailer frame.
In another aspect, embodiments of the present disclosure relate to one or more methods of manipulating a coil of spoolable pipe, including the deploying, collecting, transporting or storing a coil of spoolable pipe using a coil deployment system. In one or more embodiments, one or more methods include providing a coil drum. In one or more embodiments, a coil drum includes a first hub disposed at the first end of the support bar and a second hub disposed at the second end of the support bar. In one or more embodiments, the first hub comprises a first hub shaft and the second hub comprises a second hub shaft.
In another aspect, embodiments of the present disclosure relate to one or more methods of manipulating, deploying, collecting or storing a coil of spoolable pipe using a coil deployment system. In one or more embodiments, one or more methods include a coil deployment trailer. In one or more embodiments, the coil deployment trailer includes a first support bracket configured to interlockingly and rotatably receive the first hub shaft of the coil drum. In one or more embodiments, the coil deployment trailer includes a second support bracket, configured to interlockingly and rotatably receive the second hub shaft of the coil drum, that is spaced apart from the first support bracket. In one or more embodiments, the coil deployment trailer includes a horizontal support bar including a pair of telescoping extension arms. In one or more embodiments, the coil deployment trailer includes a first lower support arm having a first end pivotably connected to the first support bracket, and a second end connected to the horizontal support bar. In one or more embodiments, the first lower support arm further includes interconnected telescoping arms. In one or more embodiments, the coil deployment trailer includes a second lower support arm having a first end pivotably connected to the second support bracket. In one or more embodiments, the coil deployment trailer includes a second end connected to the horizontal support bar. In one or more embodiments, the second lower support arm further includes interconnected telescoping arms. In one or more embodiments, the coil deployment trailer includes a third lower support arm having a first end, pivotably connected to the first support bracket, and a second end. In one or more embodiments, the third lower support arm further includes interconnected telescoping arms. In one or more embodiments, the coil deployment trailer includes a fourth lower support arm having a first end, pivotably connected to the second support bracket, and a second end. In one or more embodiments, the fourth lower support arm further includes interconnected telescoping arms. In one or more embodiments, the space between the first, second, third and fourth lower support arms defines an interior space of the trailer frame. In one or more embodiments, one or more methods include positioning the coil drum of spoolable pipe within the interior region of the trailer frame, aligning the first hub with the first support bracket. In one or more embodiments, one or more methods include aligning the second hub with the second support bracket. In one or more embodiments, one or more methods include extending the pair of telescoping arms included in the first, second, third and fourth support arms to raise the trailer frame such that the first hub engages the first support bracket and the second hub engages the second support bracket such that the coil drum is secured to the trailer frame. In one or more embodiments, one or more methods include determining the width of the coil drum. In one or more embodiments, one or more methods include extending the pair of telescoping extension arms included in the horizontal support bar to adjust the width of the trailer frame to a suitable width to accommodate the coil drum of spoolable pipe.
In another aspect, embodiments of the present disclosure relate to one or more methods of manipulating, deploying, collecting or storing a coil of spoolable pipe using a coil deployment system. In one or more embodiments, one or more methods include a coil deployment trailer. In one or more embodiments, the coil deployment trailer includes a first set of wheels mounted on each of the first lower support arm and the second lower support arm. In one or more embodiments, the coil deployment trailer includes a second set of wheels mounted on each of the third lower support arm and fourth lower support arm. In one or more embodiments, the coil deployment trailer includes a third set of wheels mounted on each of the first lower support arm, between the first set of wheels and the first end of the first lower support arm, and the second lower support arm, between the first set of wheels and the first end of the second lower support arm. In one or more embodiments, the coil deployment trailer includes a fourth set of wheels mounted on each of the second lower support arm, between the second set of wheels and the first end of the second lower support arm, and the fourth lower support arm, between the second set of wheels and the first end of the fourth lower support arm. In one or more embodiments, each of the first and second set of wheels has an axis generally parallel to the horizontal support bar. In one or more embodiments, each of the third and fourth set of wheels has an axis generally perpendicular to the first and second set of wheels. In one or more embodiments, one or more methods include using the first, second, third and fourth set of wheels to maneuver the trailer frame to position the coil drum of spoolable pipe within the interior space of the trailer frame.
Other aspects and advantages of the claimed subject matter will be apparent from the following description and the appended claims.
Embodiments of the present disclosure relate generally to systems used for deploying coils of flexible pipe. The coils of pipe may be self-supported, for example, using bands to hold coils together. Coil handling drum assemblies (coil drums) according to embodiments of the present disclosure may be of a fixed diameter or may be expandable in the radial direction.
Embodiments of the present disclosure will be described below with reference to the figures. In one aspect, embodiments disclosed herein relate to embodiments for handling coils using expandable drum assemblies.
As used herein, the term “coupled” or “coupled to” may indicate establishing either a direct or indirect connection, and is not limited to either unless expressly referenced as such. The term “set” may refer to one or more items. Wherever possible, like or identical reference numerals are used in the figures to identify common or the same elements. The figures are not necessarily to scale and certain features and certain views of the figures may be shown exaggerated in scale for purposes of clarification.
The disclosure provided with respect to
Pipe, as understood by those of ordinary skill, may be a tube to convey or transfer any water, gas, oil, or any type of fluid known to those skilled in the art. The spoolable pipe 12 may be made of any type of materials including without limitation plastics, metals, a combination thereof, composites (e.g., fiber reinforced composites), or other materials known in the art. The flexible pipe of the spoolable pipe 12 is used frequently in many applications, including without limitation, both onshore and offshore oil and gas applications. Flexible pipe may include Flexible Composite Pipe (FCP) or Reinforced Thermoplastic Pipe (RTP). A FCP or RTP pipe may itself be generally composed of several layers. In one or more embodiments, a flexible pipe may include a thermoplastic liner or internal pressure sheath having a reinforcement layer and a thermoplastic outer cover layer. In one or more embodiments, the thermoplastic may be high density polyethylene (HDPE). Thus, flexible pipe may include different layers that may be made of a variety of materials and also may provide corrosion resistance. For example, in one or more embodiments, pipe used to make up a coil of pipe may have a corrosion protection outer cover layer that is disposed over another layer of steel reinforcement. In this embodiment, helically wound steel strips may be placed over a liner made of thermoplastic pipe. Flexible pipe may be designed to handle a variety of pressures. Further, flexible pipe may offer unique features and benefits versus steel/carbon steel pipelines in the area of corrosion resistance, flexibility, installation speed and re-usability.
The drum assembly 10 of
The drum assembly 10 also includes a first support bracket 30 disposed on the support bar 14 near the first end 16 and a second support bracket 32 disposed on the support bar 14 near the second end 18. The first support bracket 30 is moveable along a first longitudinal section 34 of the support bar 14 and the second support bracket 32 is moveable along a second longitudinal section 36 of the support bar 14. A primary mechanical actuator 38 may extend between the first support bracket 30 and the second support bracket 32. The primary mechanical actuator 38 may be used to move the first support bracket 30, the second support bracket 32, or both brackets 30 and 32. A first plurality of secondary mechanical actuators 40 may extend between the first support bracket 30 and one of the plurality of drum segments 24. A second plurality of secondary mechanical actuators 42 may also extend between the second support bracket 32 and one of the plurality of drum segments 24. For clarity, only one secondary mechanical actuator 40 and one secondary mechanical actuator 42 are shown in
As shown in
As known to those of ordinary skill in the art, the spoolable pipe 12 used to make up the coil 60 shown in
After being assembled into a coil, the coil 60 shown in
In particular, the first hub 100 and second hub can be used to handle and move the drum assembly 10. In addition, when the drum assembly 10 is placed in an appropriate frame, trailer, or other deployment device, the first hub shaft 102 and second hub shaft may be used to enable rotation of the drum assembly 10. In other words, the first hub shaft 102 and second hub shaft may fit within a circular opening of the frame, trailer, or other deployment device, such as a coil deployment trailer system described herein with reference to
In certain embodiments, the drum assembly 10 may include a cage 110 that at least partially covers one or more components of the drum assembly 10. For example, the cage 110 may help to protect components of the drum assembly 10 when the drum assembly 10 is moved or handled via the fork channels 106. The cage 110 may be made from expanded metal or mesh and coupled to the support bar 14, expandable spokes 20 or 22, spoke frames 90, fork channels 106, or other appropriate locations of the drum assembly 10.
One or more embodiments of a coil deployment trailer system for mounting and deploying spoolable pipe will now be described with reference to
In one or more other embodiments, the coil deployment trailer system is utilized to store, transport, manipulate, translate, collect and deploy various sizes of coils 60 of spoolable pipe 12 that are disposed on a reel, such as reel 44 shown in
One or more of these embodiments of a coil deployment trailer system will now be described herein with reference to
As illustrated in
As illustrated in
In one or more embodiments, each of the upper support arms 304 is pivotably adjustable with respect to the support bracket 302 to which each support arm 304 is connected. In one or more of these embodiments, the upper support arms 304 are of a fixed length such that the height of the coil deployment trailer frame 300 is varied by changing the angular positions of each of the upper support arms 304 with respect to the corresponding support bracket 302 by rotating each upper support arm 304 about the corresponding pivotable connection 318 included in the support bracket 302 to which the support arm 304 is connected. In this manner, the height of the coil deployment trailer frame 300 can be changed to accommodate and manipulate coils 60 of spoolable pipe 12 of different radial dimensions 72 (e.g., a radial dimension 72 of the coil 60 is based on the diameter of the pipe and the number and radial 64 position of the wraps forming the coil 60) within the coil deployment trailer frame 300.
In one or more other embodiments, each of the upper support arms 304 includes two telescoping bars, including a male telescoping bar 392 and a female telescoping bar 394, such that the length of the upper support arms can be extended or retracted to change the height of the coil deployment trailer frame 300. In this manner, the coil deployment trailer frame 300 can accommodate and manipulate coils 60 of spoolable pipe 12 of different radial dimensions 72 (e.g., a radial dimension 72 of the coil 60 is based on the diameter of the pipe and the number and radial 64 position of the wraps forming the coil 60) within the coil deployment trailer frame 300.
Each female telescoping bar 394 receives in telescoping manner the corresponding male telescoping bar 392 such that the length of the upper support arms 304 can be lengthened, by extending the upper male telescoping bars 392 from the lower female telescoping bars 394, or can be shortened by retracting the upper male telescoping bars 392. For example, hydraulic actuators, electric actuators, electro-magnetic actuators, pneumatic actuators or similar means such as pneumatic cylinders or hydraulic cylinders or the like can be utilized to shorten or lengthen upper support arms 304. One having skill in the art and the benefit of the teachings provided herein appreciates that the upper support arms 304 can have a cross sectional shape that is configured to affect the purpose of the coil deployment trailer frame 300 disclosed herein. For example, the upper support arms 304 can have a cross sectional shape which is substantially rectangular, square, cylindrical, or any other shape known in the art. The upper support arms 304 can be substantially solid or have a substantially hollow center. One having skill in the art and the benefit of the teachings provided herein appreciates that the first pair of upper support arms 304 can be configured to accommodate the actuators described herein that operate to shorten or lengthen upper support arms 304 as described herein.
In one or more embodiments, means to extend and retract the first pair of upper support arms 304, as described herein, such that, for example, the male telescoping bars 392 are extended or retracted relative to the female telescoping bars 394, are utilized. For example, a piston cylinder operated by an electrical actuator can be mounted within each of the upper support arms 304 such that a rod is operated by the piston cylinder to extend or retract the male telescoping bars 392 in unison. In other embodiments, the telescoping means can include a hand crank jack, a mechanical power screw, an electrical actuator, a manual-powered jack including a hand or foot operated lifting mechanism or some combination of the aforementioned. Those having skill in the art appreciate that the actuating piston can be located in various positions on or within each of the upper support arms 304. In one or more embodiments, the upper support arms 304 are hollow and have a cross-section configured to accommodate a hydraulic cylinder and piston such that the cylinder and piston are disposed within the hollow space of the upper support arms 304. In one or more embodiments, a hydraulically, pneumatically, magnetically or electrically actuated piston can be mounted to a side of the upper support arms 304 and located beneath or adjacent the retractable male telescoping bars 392 or adjacent any side of the upper support arms 304.
As illustrated in
A pipe re-spooler assembly 342 is included in both the coil deployment trailer frame 300, and the coil deployment trailer frame 500 discussed herein with respect to
In one or more embodiments, the pipe re-spooler assembly 342 includes first and second substantially cylindrical elongated members 360 and 362 that are substantially parallel to one another and configured to engage the coil of spoolable pipe 12 when the expandable drum assembly 301 is securely mounted in the coil deployment trailer frames 300,500. The first substantially cylindrical elongated member 360 includes two interconnected telescoping bars, including a male telescoping bar 374 extending from a first end 364 of the first substantially cylindrical elongated member 360 and a female telescoping bar 376 extending from a second end 366 of the first substantially cylindrical elongated member 360. Similarly, the second substantially cylindrical elongated member 362 includes two interconnected telescoping bars, including a male telescoping bar 378 extending from a first end 370 of the second substantially cylindrical elongated member 362 and a female telescoping bar 380 extending from a second end 372 of the second substantially cylindrical elongated member 362.
In one or more embodiments, the first substantially cylindrical elongated member 360 is a roller and is connected to the re-spooler brackets 346 and 348 and configured to rotate about a first axle 352 disposed on the bracket 346 and a second axle 356 disposed on the second bracket 348. In these embodiments, the second substantially cylindrical elongated member 362 is a roller connected to the re-spooler brackets 346 and 348 and configured to rotate about a first axle 354 disposed on the bracket 346 and a second axle 358 disposed on the second bracket 348, respectively. In one or more embodiments, the female telescoping bars 376 and 380 are longer than their respective male bars 374 and 378 such that the female telescoping bars contact more of the surface of the coil of spoolable pipe 12 when the first and second elongated members 360 and 362 engage the spoolable pipe 12. In one or more other embodiments, the first and second substantially cylindrical elongated members 360 and 362 are stationary members with respect to their respective axes and are configured to assist in the stabilization of the spoolable pipe 12 as it is being taken up by or dispensed from the expandable drum assembly 301. In these embodiments, the first and second substantially cylindrical elongated members 360 and 362 may be coated with an anti-friction coating to help reduce the friction between the elongated members and the spoolable pipe 12.
In one or more embodiments, the re-spooler brackets 346 and 348 of the re-spooler assembly 342 can be fixedly coupled to the first pair of upper support arms 304 such that the positions of the first and second substantially cylindrical elongated members 360 and 362 are fixed in their respective positions. Similarly, with respect to coil deployment trailer frame 500, in one or more embodiments, the first and second re-spooler brackets 346 and 348 can be fixedly coupled to the trailer support arms 502 such that the positions of the first and second substantially cylindrical elongated members 360 and 362 are fixed in their respective positions. In other embodiments, the positions of the first and second substantially cylindrical elongated members 360 and 362, via the re-spooler brackets 346 and 348, are adjustable to accommodate coils 60 of spoolable pipe 12 of different heights 72. For example, the position of the re-spooler brackets 346 and 348 can be moved in a radial direction 64 (e.g., up and down) along the length of the first pair of upper support arms 304 such that coils 60 of various heights can be secured to the coil deployment trailer frame 300 for manipulation. Similarly, with respect to the coil deployment trailer frame 500, the position of the re-spooler brackets 346 and 348 can be moved in a radial direction 64 (e.g., up and down) along the length of the trailer support arms 502 such that coils 60 of various heights can be secured to the coil deployment trailer frame 500 for manipulation. In other embodiments, the re-spooler brackets 346 and 348 can be moved in an axial direction 62 (e.g., closer or further apart from one another) to accommodate coils 60 of various widths 70. In these embodiments, the female telescoping bars 376 and 380 receive their respective male bars 374 and 378 in telescoping manner such that the length of the substantially cylindrical elongated members 360 and 362 can be lengthened by extending the elongated members 360 and 362, or can be shortened by retracting the elongated members 360 and 362.
In one or more embodiments, the pipe re-spooler assembly 342 does not include actuators such that the first substantially cylindrical elongated member 360 and the second substantially cylindrical elongated member 362 are configured to freely extend or contract in an axial direction and in a telescoping manner when the length of the horizontal support assembly 430 is adjusted, as described herein. In one or more embodiments, securement pins or positioning screws or other means for lockingly setting the length of the pipe re-spooler assembly 342 can be used once the desired length of the pipe re-spooler assembly 342 is achieved. In one or more embodiments, hydraulic actuators, electric actuators, or similar means such as pneumatic cylinders or the like may be utilized to shorten or lengthen the pipe re-spooler assembly 342. Adjustment of the substantially cylindrical elongated members 360 and 362 can be accomplished hydraulically, electrically, magnetically, pneumatically, or a combination of the aforementioned in a similar manner as discussed herein with respect to the first pair of upper support arms 304. For example, the substantially cylindrical elongated members 360 and 362 can be configured to accommodate similar actuators, as described herein with respect to the first pair of upper support arms 304, that operate to shorten or lengthen the substantially cylindrical elongated members 360 and 362.
In the illustrated embodiments shown in
One having skill in the art and the benefit of the teachings provided herein appreciates that various pivotable connections 318 included in the pair of brackets 302 can be utilized to pivotably connect the support brackets 302 to the first and second pair of upper support arms 302 and 304, respectively, and the first and second pair of lower support arms 308 and 310, respectively, to allow the first and second pair of upper support arms 302 and 304 and the first and second pair of lower support arms 308 and 310 to pivot in a circumferential direction 66 at the pivotable joint connections 318 with respect to the support bracket 302. For example, the joint connections can include one or a combination of one or more of ball joint connections, pins, ball bearing assemblies, screws, bolts, bolt and nut assemblies, etc.
As illustrated in
In one or more other embodiments, each of the upper support arms included in the second pair of upper support arms 306 includes two telescoping bars including a male telescoping bar 396, illustrated in
As illustrated in
As illustrated in
In one or more other embodiments, each lower support arm included in the first pair of lower support arms 308 includes two telescoping bars including a male telescoping bar 424, illustrated in
Each female telescoping bar 426 receives in telescoping manner the corresponding male telescoping bar 424 such that the first pair of lower support arms 308 can be lengthened by extending the male telescoping bars 424 from the female telescoping bars 426, or can be shortened by retracting the male telescoping bars 424 into the female telescoping bars 426. For example, hydraulic actuators, electric actuators, electro-magnetic actuators, pneumatic actuators or similar means such as pneumatic cylinders or hydraulic cylinders or the like can be utilized to shorten or lengthen the first pair of lower support arms 308. One having skill in the art and the benefit of the teachings provided herein appreciates that the first pair of lower support arms 308 can have a cross sectional shape that is configured to affect the purpose of the coil deployment trailer frame 300 disclosed herein. For example, the first pair of lower support arms 308 can have a cross sectional shape which is substantially rectangular, square, cylindrical, or any other shape known in the art. The first pair of lower support arms 308 can be substantially solid or have a substantially hollow center. One having skill in the art and the benefit of the teachings provided herein appreciates that the first pair of lower support arms 308 can be configured to accommodate the actuators described herein that operate to shorten or lengthen the first pair of lower support arms 308, as described herein.
In one or more embodiments, means to extend and retract the first pair of lower support arms 308, as described herein, such that, for example, the male telescoping bars 424 are extended or retracted relative to the female telescoping bars 426, are utilized. For example, a piston cylinder operated by an electrical actuator can be mounted within each lower support arm included in the first pair of lower support arms 308 such that a rod is operated by the piston cylinder to extend or retract the male telescoping bars 424 in unison. In other embodiments, the telescoping means can include a hand crank jack, a mechanical power screw, an electrical actuator, a manual-powered jack including a hand or foot operated lifting mechanism or a combination of one or more of the aforementioned. Those having skill in the art with the benefit of the teachings provided the present disclosure appreciate that the actuating piston can be located in various positions on or within each of the lower support arms 308. In one or more embodiments, the lower support arms 308 are hollow and have a cross-section configured to accommodate a hydraulic cylinder and piston such that the cylinder and piston are disposed within the hollow space of the lower support arms 308. In one or more embodiments, a hydraulically or electrically actuated piston can be mounted to a side of the lower support arms 308 and located beneath or adjacent the retractable male telescoping bars 424 or adjacent any side of the lower support arms 308.
In one or more embodiments, as illustrated in
The horizontal support assembly 430, which is included in one or more embodiments of the coil deployment trailer frame 300 described with respect to
In one or more embodiments, as illustrated in
For example, with reference to
Similarly, in one or more embodiments of the coil deployment trailer frame 300, discussed with reference to
As one having skill in the art and the benefit of the teachings provided herein appreciates, the width of the coil deployment trailer frame 300, 500 can be varied, as described herein, by extending and retracting the male telescoping extension arms 438 and 446 to shorten or lengthen the horizontal support assembly 430. In one or more other embodiments, the width of the coil deployment trailer frame 300, 500 can be varied, as described herein, by extending and retracting the female male telescoping extension arms 436 and 444 to shorten or lengthen the horizontal support assembly 430. In one or more embodiments, hydraulic actuators, electric actuators, or similar means such as pneumatic cylinders or the like may be utilized to shorten or lengthen the horizontal support assembly 430. One having skill in the art and the benefit of the teachings provided herein appreciates that each of the horizontal telescoping support bars 432 and 434 included in the horizontal support assembly can have a cross sectional shape which is substantially rectangular, square, cylindrical, or any other shape known in the art and can be configured to accommodate similar actuators described herein that operate to shorten or lengthen upper support arms 304. As one having skill in the art and the benefit of the teachings provided herein appreciates, although the horizontal support assembly illustrated in
In one or more embodiments, as illustrated in
In one or more embodiments, as illustrated in
As illustrated in
In one or more other embodiments, each lower support arm included in the second pair of lower support arms 310 includes two telescoping bars, including a male telescoping bar 470, illustrated in
In one or more embodiments, as illustrated in
In one or more embodiments, as illustrated in
In one or more embodiments, the expandable drum assembly 301 may be lowered to a position at or near the ground to secure a coil of spoolable pipe or raised to a position above the ground to collect or dispense a coil of spoolable pipe on or from the expandable drum assembly 301. In one or more embodiments, hydraulic actuators, electric actuators, or a combination of hydraulic and electric actuators are utilized to lower and raise the coil deployment trailer frame 300 to a height that is suitable for securely and interlockingly mounting the expandable drum assembly 301 on the coil deployment trailer frame 300 as disclosed herein. In one or more embodiments, once the expandable drum assembly 301 is securely mounted upon the coil deployment trailer frame 300, hydraulic actuators, electric actuators, pneumatic actuators or a combination of one or more hydraulic, electric and pneumatic actuators can be utilized to lower and raise the expandable drum assembly 301 or the coil of spoolable pipe 12 disposed on the expandable drum assembly 301 to a height such that the spoolable pipe 12 can be securely stored upon, collected to or dispensed from the expandable drum assembly 301.
In one or more other embodiments, a second pair of hydraulic cylinders (not shown) can be coupled to and secured between the first pair of upper support arms 304 and the second pair of upper support arms 306 in a similar fashion as the pair of hydraulic cylinders 480 are coupled to and secured between the first pair of lower support arms 308 and the second pair of lower support arms 310, as shown in
In one or more embodiments, operation of one or more of the first pair of upper support arms 304, second pair of upper support arms 306, first pair of lower support arms 308, second pair of lower support arms 310, coupling assembly 330, horizontal support assembly 430, horizontal containment bar 410 and the pipe re-spooler assembly 342 can be controlled by suitable electrical, pneumatic and/or hydraulic conduits and connectors that terminate in a control housing located within reach of the trailer deployment assembly operator. Preferably, the electrical system controlling the actuators is provided with a controller that functions to lock the actuators in a desired position, such that the position of one or more of the first pair of upper support arms 304, second pair of upper support arms 306, first pair of lower support arms 308, second pair of lower support arms 310, coupling assembly 330, horizontal support assembly 430, horizontal containment bar 410 and the pipe re-spooler assembly 342 can be changed during at any time by an operator and/or pre-determined by data input into the controller by an operator to control the operations of the coil deployment trailer 300. For example, in one or more embodiments, a hydraulic controller is utilized to control the hydraulic pressure in the hydraulic chambers provided in each of the actuators. In one or more other embodiments, a pneumatic controller is utilized to control the pneumatic pressure in the pneumatic chambers provided in each of the actuators. In other embodiments, electro-magnetic actuators can be included in one or more of the first pair of upper support arms 304, second pair of upper support arms 306, first pair of lower support arms 308, second pair of lower support arms 310, coupling assembly 330, horizontal support assembly 430, horizontal containment bar 410 and the pipe re-spooler assembly 342 such that the controller can enable electrical switches to operate the electro-magnetic actuators to attain the proper positioning of one or more of the aforementioned frame components.
For example, if an operator determines that the coil 60 of spoolable pipe 12 is of a particular width in the axial dimension 70 and a particular height in the radial dimension 72, the operator can input the measurements of the width and height into the controller such that the actuators will extend or contract the coupling assembly 330, horizontal support assembly 430, horizontal containment bar 410 and the pipe re-spooler assembly 342, depending upon the original positioning of each of the aforementioned components, to configure the coil deployment trailer frame 300 to accommodate the coil 60 of spoolable pipe 12 that has the predetermined width and height. Once the coil deployment trailer frame 300 has been configured to achieve an appropriate configuration, the coil 60 can be inserted in an interior region disposed between the first pair of upper support arms 304, second pair of upper support arms 306, first pair of lower support arms 308 and second pair of lower support arms 310 to be securely mounted on coil deployment trailer frame 300, as illustrated in
In one or more embodiments, once the required width of the coil deployment trailer frame 300 to mount a coil 60 of spoolable pipe 12 is determined, the horizontal support assembly 430 is controlled such that the telescoping horizontal telescoping support bar 432 is, or both the first and second horizontal telescoping support bars 432 and 434, depending upon the configuration of the coil deployment trailer frame 300, are expanded via the utilization of one or more actuators, as described herein, such that the coil deployment trailer frame 300 assumes a suitable width to accommodate the coil 60 of spoolable pipe 12. In one or more embodiments, if the one or more of the coil deployment trailer frame 300 frame components, including the coupling assembly 330, horizontal containment bar 410 and the pipe re-spooler assembly 342, do not include actuators, these frame components automatically extend to the proper width dimension when the horizontal support assembly 430 is extended as the telescoping bars included in each of these frame components are free to move relative to one another to expand and retract the respective frame components. In other embodiments, if one or more of the coupling assembly 330, horizontal containment bar 410 and the pipe re-spooler assembly 342 include actuators, then the respective actuators included in the frame components will operate to adjust the frame components to assume the desired width along with the horizontal support assembly 430 such that the coil deployment trailer frame 300 is configured to accommodate the coil 60 of spoolable pipe 12.
In one or more embodiments, once a width of the coil deployment trailer frame 300 relative to the first pair of upper support arms 304, second pair of upper support arms 306, first pair of lower support arms 308 and second pair of lower support arms 310 (e.g., the distance between the support brackets 302) has been achieved, one or more of the frame components, including, for example, the coupling assembly 330, horizontal support assembly 430, horizontal containment bar 410 and the pipe re-spooler assembly 342 can be locked into place via the respective actuators such that the trailer will remain rigid to perform the desired functions.
In one or more other embodiments, locking screws, securement pins or similar means can be provided on the first pair of upper support arms 304, second pair of upper support arms 306, first pair of lower support arms 308, second pair of lower support arms 310, coupling assembly 330, horizontal support assembly 430, horizontal containment bar 410 and the pipe re-spooler assembly 342 as a primary or back-up securing system to lock each one of the aforementioned trailer frame components in place such that the length of each of the aforementioned frame components is set. Utilizing the locking screws, securement pins or similar means, the position of the male telescoping bars with respect to each of the female telescoping members included in each of the first pair of upper support arms 304, second pair of upper support arms 306, first pair of lower support arms 308, second pair of lower support arms 310, coupling assembly 330, horizontal support assembly 430, horizontal containment bar 410 and the pipe re-spooler assembly 342 can be further secured during use. Although one or more of the frame components included in one or more embodiments of the coil deployment trailer frame 300, frame components including the first pair of upper support arms 304, second pair of upper support arms 306, first pair of lower support arms 308, second pair of lower support arms 310, coupling assembly 330, horizontal support assembly 430, horizontal containment bar 410 and the pipe re-spooler assembly 342, include extendable and retractable male and female telescoping bars, one having ordinary skill in the art with the benefit of the teachings provided herein appreciates that the one or more frame components can include a rod and channel configuration, a track and rail configuration, or any other suitable extendable and retractable configurations known in the art to allow the width and the height of the frame components to be adjusted relative to one another. For example, in one or more embodiments, one or more frame components can include high load capacity and reduced deflection telescopic rails with linear slides with inductively hardened raceways and caged balls bearings. In operation, these high load capacity and reduced deflection telescopic rails can be extended or retracted using one or more of the actuators described herein, or manually by personnel, and exhibit little deflection while under heavy loads.
With respect to coil deployment trailer frame 300, to use one or more embodiments of the coil deployment trailer system to store or dismount an empty expandable drum assembly 301, mount an unloaded expandable drum assembly 301, or mount a loaded expandable drum assembly 301 that includes a coil 60 of spoolable pipe 12 disposed on the expandable drum assembly 301, the height of coil deployment trailer frame 300 can be adjusted for its intended purpose. For example, the coil deployment trailer frame 300 can be collapsed to a height such that an empty expandable drum assembly 301 that has deployed all of the spoolable pipe 12 can be stored or dismounted. In one or more embodiments, the coil deployment trailer system operator initiates actuators to collapse the coil deployment trailer frame 300 to a height such that the wheels 452 disposed on the first pair of lower support arms 308 and the wheels 458 disposed on the second pair of lower support arms 310 the coil deployment trailer frame 300 make contact with the ground surface. In one or more embodiments, the hydraulic cylinders 480 are utilized to move the first pair of lower support arms 308 and the second pair of lower support arms 310 away from one another such that the first and second pair of lower support arms 308,310 pivot about their respective pivotable connections 318 to achieve a position wherein the wheels 452 disposed on the first pair of lower support arms 308 and the wheels 458 disposed on the second pair of lower support arms 310 are in contact with the ground surface.
When the coil deployment trailer frame 300 is in a collapsed position, the set of wheels 450 disposed on each lower support arm included in the first set of lower support arms 308 and the set of wheels 456 disposed on each lower support arm included in the second set of lower support arms 310 are disposed above the ground surface such that they are not in contact with the ground surface. When the coil deployment trailer frame 300 is in a collapsed configuration, the wheels 452 disposed on the first pair of lower support arms 308 and the wheels 458 disposed on the second pair of lower support arms 310 are in contact with the ground surface and, as such, can be utilized to manipulate and translate the coil deployment trailer frame 300 across the ground surface to position the coil deployment trailer frame 300 such that the expandable drum assembly 301 or the reel 44 can be dismounted therefrom, or stored thereon. During this operation, the first pair of upper support arms 304 and the second pair of upper support arms 306 are each pivotably adjusted at their respective pivotable connections 318 included in the support brackets 302 such that the first and second pair of upper support arms 304,306 extend outwardly from the supporting bracket 302 in substantially opposing directions to achieve angular positions that enable the expandable drum assembly 301 or the reel 44 to be mounted to or dismounted from the coil deployment trailer frame 300. In one or more embodiments, hydraulic cylinders are utilized to move the first pair of upper support arms 304 and the second pair of upper support arms 306 away from one another to achieve angular positions that enable the expandable drum assembly 301 or the reel 44 to be mounted to or dismounted from the coil deployment trailer frame 300. In one or more other embodiments, pins or other mechanical means and implements, as described herein, are utilized to secure the first pair of upper support arms 304 and the second pair of upper support arms 306 in their respective positions. In one or more of these embodiments, the first and second pair of upper support arms 304,306 may be manually adjusted to the requisite positions such that the expandable drum assembly 301 or the reel 44 to be mounted to or dismounted from the coil deployment trailer frame 300.
In one or more embodiments, the width of the coil deployment trailer frame 300 can be adjusted when the coil deployment trailer frame 300 is in a collapsed position. To adjust the width of the coil deployment trailer frame 300, the length of the horizontal support assembly 430 is adjusted utilizing actuators, as described herein. In one or more embodiments, the male and female telescoping components included in each of the coupling assembly 330, horizontal containment bar 410 and the pipe re-spooler assembly 342 are free to move with respect to another, as discussed herein, to obtain the proper length, respectively, in response to the axial expansion or contraction of the horizontal support assembly 430. In one or more embodiments, the male and female telescoping components, included in each of the coupling assembly 330, horizontal containment bar 410 and the pipe re-spooler assembly 342, include enough resistance with respect to one another such that their respective configurations (e.g., lengths and axial positions) will be maintained to carry out their respective functions. In one or more other embodiments, securement pins, positioning screws, or some other means known by those having skill in the art can be utilized to maintain the length of the coupling assembly 330, horizontal containment bar 410 and the pipe re-spooler assembly 342 once the width of the horizontal support assembly 430 is achieved. In one or more other embodiments, actuators are utilized to extend or retract the male and female telescoping components included in each of the coupling assembly 330, horizontal containment bar 410 and the pipe re-spooler assembly 342 frame components such that the frame components are lengthened/shortened and stabilized such that the coil deployment trailer frame 300 can achieve the desired width. In one or more embodiments, the male and female telescoping components included in each of the horizontal support assembly 430, coupling assembly 330, horizontal containment bar 410 and the pipe re-spooler assembly 342 can be manually moved with respect to another, as discussed herein, to obtain the proper length such that the coil deployment trailer frame 300 can achieve the desired width.
In one or more embodiments, an operator of the coil deployment system can automatically configure the coil deployment trailer frame 300 to accommodate a coil 60 of spoolable pipe 12 of a predetermined width by inputting the width of the coil 60 into a controller (e.g., hydraulic controller, pneumatic controller, electro/magnetic controller, or any suitable controller that operates to control the respective actuators utilized in the coil deployment trailer frame 300 to actuate the requisite frame components included therein) which, in turn, will control the actuators to manipulate the frame components to achieve the desired configuration such that the coil 60 of spoolable pipe can be mounted to or unmounted from the coil deployment trailer frame 300. In these embodiments, each of the actuators, that operate to extend the male and female telescoping components included in the horizontal support assembly 430, are controlled to extend or retract, as described herein, such that a width of the trailer assembly that is suitable to accommodate the expandable drum assembly 301 is achieved. In one or more embodiments, actuators in one or more of the coupling assembly 330, horizontal containment bar 410 and the pipe re-spooler assembly 342 are also controlled to extend or retract, as described herein, such that a width of the coil deployment trailer frame 300 that is suitable to accommodate the expandable drum assembly 301 is achieved. In other embodiments, once an operator inputs the desired width of the coil deployment trailer frame 300 into the controller, the male and female telescoping components included in each of the coupling assembly 330, horizontal containment bar 410 and the pipe re-spooler assembly 342 are free to move with respect to another, as discussed herein, to obtain the proper length, respectively, in response to the axial expansion or retraction of the horizontal support assembly 430.
In one or more embodiments, the pair of wheels 452 and the pair of wheels 458 engage the ground surface upon which the coil deployment trailer frame 300 rests and are utilized to move the trailer frame along the ground surface such that the expandable drum assembly 301 is positioned between the first pair of upper support arms 304, the second pair of upper support arms 306, the first pair of lower support arms 308 and the second pair of lower support arms 310. In one or more embodiments, the horizontal containment bar 410 is removable such that the trailer frame can be positioned around the expandable drum assembly 301. Once the expandable drum assembly 301 is properly positioned such that the coil 60 of spoolable pipe 12 is within an interior space between the first pair of upper support arms 304, the second pair of upper support arms 306, the first pair of lower support arms 308 and the second pair of lower support arms 310, and the inner engagement surfaces of the support brackets 302 are aligned with the first hub shaft 305 included in the first hub 303 and the second hub shaft included in the second hub of the expandable drum assembly 301, the coil deployment trailer frame 300 is raised by extending the first pair of lower support arms 308 and the second pair of lower support arms 310 such that the inner engagement surfaces 314 included in each support bracket 302 engages the first hub shaft 305 included in the first hub 303 and the second hub shaft included in the second hub of the expandable drum assembly 301, respectively, as illustrated in
In one or more embodiments, an operator of the coil deployment system can automatically configure the coil deployment trailer frame 300 to accommodate a coil 60 of spoolable pipe 12 of a predetermined width by inputting the width of the coil 60 into the controller which, in turn, will control the actuators to manipulate the frame components to achieve the desired configuration such that the coil 60 of spoolable pipe can be mounted to the coil deployment trailer frame 300. In one or more embodiments, an operator of the coil deployment system can automatically configure the coil deployment trailer frame 300 to accommodate the coil 60 of spoolable pipe 12 of a predetermined height by inputting the height of the coil 60 into the controller which, in turn, will control the actuators to manipulate the frame components to achieve the desired configuration such that the coil 60 of spoolable pipe can be mounted to the coil deployment trailer frame 300. Alternatively, the actuators can be manually controlled, as discussed herein, to manipulate the frame components such that the coil deployment trailer frame 300 is configured to accommodate a coil 60 of a certain width and a certain height such that the coil 60 of spoolable pipe can be mounted to the coil deployment trailer frame 300.
As is seen with respect to
Once the expandable drum assembly 301 is properly mounted in the coil deployment trailer frame 300 such that the expandable drum assembly 301 is securely and interlockingly disposed in the support brackets 302, the coil deployment trailer frame 300 is raised to a suitable height such that the spoolable pipe 12 can be collected, dispensed, stored or transported, depending upon the operation that the operator of the coil deployment trailer system desires to perform. In one or more embodiments, an operator of the coil deployment system can automatically configure the coil deployment trailer frame 300 to deploy, store or collect spoolable pipe 12 from, upon or to, respectively, the coil 60 that has a predetermined height in the radial direction thereof. In these embodiments, the operator will input the height of the coil or a height which the coil 60 will achieve in some time in the future and the controller will, in turn, control the actuators to manipulate the relevant frame components to achieve the desired configuration such that the coil 60 of spoolable pipe can be deployed, stored, or collected from, upon or to, respectively, the coil 60 securely mounted on the coil deployment trailer frame 300. Alternatively, the actuators can be manually controlled, as discussed herein, to manipulate the frame components such that the coil deployment trailer frame 300 is configured to manipulate the coil 60 to perform a desired operation. During the process of collecting or deploying spoolable pipe 12 to or from the coil 16, respectively, the coil deployment trailer frame 300 is configured such that the expandable drum assembly 301 can rotate in a circumferential direction 66 about its axis. For example, when the coil deployment trailer frame 300 is being utilized to collect spoolable pipe 12, the first hub shaft 305 and the second hub shaft are free to rotate within the respective support brackets 302 such the expandable drum assembly 301 rotates in a direction to collect spoolable pipe 12 to add the pipe 12 to the coil 60. When the coil deployment trailer frame 300 is being utilized to deploy spoolable pipe 12, the first hub shaft 305 and the second hub shaft are free to rotate within the respective support brackets 302 such the expandable drum assembly 301 rotates in a direction to deploy the spoolable pipe 12 to remove the pipe 12 from the coil 60. During any of the aforementioned operations, if the coil deployment trailer frame 300 is in a raised position as shown in
The coil deployment trailer frame 300 can also be transported utilizing a towing vehicle, such as a truck, tractor or other suitable vehicle that can move along a ground surface to tow the coil deployment trailer frame 300 behind the vehicle. In one or more other embodiments, the coil deployment trailer frame 300 can be pushed utilizing a suitable vehicle that can operate to push the coil deployment trailer frame 300 across a ground surface. The coil deployment trailer frame 300 is configured such that the coil deployment trailer frame 300 can be towed or pushed when the trailer frame is in a collapsed configuration, or when the coil deployment trailer frame 300 is raised, as shown in
While the present disclosure has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments may be devised which do not depart from the scope of the disclosure as described herein. For example, the expandable drum assembly 301, utilized in the embodiments of the coil deployment system that include the coil deployment trailer frame 300 described above, can be replaced by the reel 44. Furthermore, for example, one or more embodiments of the coil deployment trailer system, discussed with reference to
As shown in
The first pair of support arms 502 is connected to the second pair of support arms 504 via pivotable connections 532. One having skill in the art and the benefit of the teachings provided herein appreciates that pivotable connections 532 can include ball joint connections, pins, ball bearing assemblies, screws, bolts, bolt and nut assemblies, or other connections that allow for a secure and rotatable connection between the first pair of support arms 502 and the second pair of support arms 504. As shown in
The hub engagement sections 536 are formed at or near the intersections of the outwardly curved sections 530 and the second pair of trailer arms 504, and are configured to rotatably secure respective hub shafts 305 and 309 included in first and second hubs 303,307 of the expandable drum assembly 301. The first pair of trailer support arms 502 and the second pair of trailer support arms 504 operate to secure the expandable drum assembly 301 by securing the first hub shaft 305 and the second hub shaft 309 (best shown in
In one or more embodiments, the first pair of support arms 502 and the second pair of support arms 504 are of a fixed length such that the height of the coil deployment trailer frame 500 is varied by changing the angular positions of each of the support arms 502 and 504 with respect to one another about a corresponding pivotable connections 532 to which support arms 502 and 504 are connected. In this manner, the height of the coil deployment trailer frame 500 can be changed to accommodate and manipulate coils 60 of spoolable pipe 12 of different radial dimensions 72 (e.g., a radial dimension 72 of the coil 60 is based on the diameter of the pipe and the number and radial 64 position of the wraps forming the coil 60) within the coil deployment trailer frame 500.
In one or more other embodiments, each of the trailer support arms included in the first pair of trailer support arms 502 includes a telescoping extension arm 540 that extends between the first end 506 of the first pair of trailer support arms 502 and the first section 528 of drum assembly hub engagement sections 536. The telescoping extension arms 540 each include a male telescoping bar 542 and a female telescoping bar 544 and operate in a similar manner to the telescoping bars included in the coil deployment trailer frame 300 to adjust the length of the first pair of upper support arms 304. In one or more embodiments, the telescoping extension arms 540 include actuators to adjust the length of the first pair of trailer support arms 502. In other embodiments, the length of the first pair of trailer support arms 502 can be adjusted by a controller, manually adjusted or adjusted by mechanical means as described herein with respect to the first pair of upper support arms 304 included in the coil deployment trailer frame 300.
In one or more embodiments, each of the trailer support arms included in the first pair of trailer support arms 502 further includes a telescoping extension arm 564 that extends between the second end 546 of the first pair of trailer support arms 502 and the pivotable connections 532. The telescoping extension arms 564 each include a male telescoping bar 548 and a female telescoping bar 550 and operate in a similar manner to the telescoping bars included in the each of the first pair of lower support arms 308 included in the pair of lower support arms 308 included in coil deployment trailer frame 300 to adjust the length of the telescoping extension arms 564 to, thereby, adjust the height of the coil deployment trailer frame 500. In one or more embodiments, the telescoping extension arms 564 include actuators to adjust the length of the telescoping extension arms 564. In other embodiments, the length of the telescoping extension arms 564 can be adjusted by a controller (hydraulic, pneumatic, magnetic, electro-magnetic, or combination of one or more of the aforementioned), manually or by mechanical means as described herein with respect to the pair of lower support arms 308 included in coil deployment trailer frame 300.
In one or more embodiments, each of the trailer support arms included in the second pair of trailer support arms 504 includes a telescoping extension arm 552 that extends between the first ends 516 of the second pair of trailer support arms 504 and the pivotable connections 532. The telescoping extension arms 552 each include a male telescoping bar 554 and a female telescoping bar 556 and operate in a similar manner to the telescoping bars included in first pair of upper support arms 304 included in the coil deployment trailer frame 300 to adjust the length of the second pair of trailer support arms 504. In one or more embodiments, the telescoping extension arms 552 include actuators to adjust the length of the second pair of trailer support arms 504. In other embodiments, the length of the second pair of trailer support arms 504 can be adjusted by the controller, manually or by mechanical means as described herein with respect to the first pair of upper support arms 304 included in the coil deployment trailer frame 300.
In one or more embodiments, each of the trailer support arms included in the second pair of trailer support arms 504 further includes a telescoping extension arm 566 that extends between the second end 538 of the second pair of trailer support arms 504 and the pivotable connections 532. The telescoping extension arms 564 each include an upper male telescoping bar 560 and a lower female telescoping bar 562 and operate in a similar manner to the telescoping bars included in the each of the lower support arms 310 included in the pair of lower support arms 310 included in coil deployment trailer frame 300 to adjust the length of the telescoping extension arms 564 to, thereby, adjust the height of the coil deployment trailer frame 500. In one or more embodiments, the telescoping extension arms 564 include actuators to adjust the length of the telescoping extension arms 564. In other embodiments, the length of the telescoping extension arms 564 can be adjusted by the controller, manually or by mechanical means as described herein with respect to the pair of lower support arms 310 included in coil deployment trailer frame 300.
Similar to the hydraulic cylinders 480 described with respect to one or more embodiments of the coil deployment trailer frame 300, one or more embodiments of the coil deployment trailer frame 500 includes a pair of hydraulic cylinders (not shown) that are coupled to and secured between each of the first pair of trailer support arms 502 and the second pair of trailer support arms 504 at positions above the pivotable connection 532. For example, if the first and second pair of trailer support arms 502,504 are telescopingly extendable, as discussed herein with respect to one or more embodiments, then the pair of hydraulic cylinders can be disposed between telescoping extension arms 564, of the first pair of trailer support arms 502, and the telescoping extension arms 566 of the second pair of trailer support arms 504. In one or more embodiments, the hydraulic cylinders can also be coupled to and secured between each of the first pair of trailer support arms 502 and the second pair of trailer support arms 504 at similar positions, wherein the first and second pair of trailer support arms 502,504 do not have telescoping functionality such that they are fixed in their respective lengths. One having skill in the art with the benefit of the teachings provided the present disclosure appreciates that the hydraulic cylinders included in certain embodiments of the coil deployment trailer frame 500 operate to raise and lower the coil deployment trailer frame 500, and pivotably secure the first pair of trailer support arms 502 and the second pair of trailer support arms 504 about the pivotable connections 532. The hydraulic cylinders of these certain embodiments can also be utilized to provide stability to the coil deployment trailer frame 500 once the hydraulic cylinders have been actuated to position the first pair of trailer support arms 502 with respect to the second pair of trailer support arms 504 as the first pair of trailer support arms 502 and the second pair of trailer support arms 504 will no longer be able to pivot about the pivotable connections 532 without the further actuation of the hydraulic cylinders. In one or more embodiments, a set of pins or other securing elements are utilized and placed at the respective pivot points of the first pair of trailer support arms 502 and the second pair of trailer support arms 504 with respect to the pivotable connections 532 to assist in securely holding the first and second pair of trailer support arms 502,504 in their respective angular positions and help prevent rotation of the first and second pair of lower trailer support arms 502,504 about the pivotable connections 532. One having skill in the art with the benefit of the teachings provided in the present disclosure appreciates that the set of wheels 510 and the set of wheels 508 are utilized to assist the first and second pair of lower trailer support arms 502,504 to move with respect to one another when the hydraulic cylinders are actuated. In one or more other embodiments, a second pair of hydraulic cylinders (not shown) can also be disposed between the first and second pair of trailer support arms 502,504 at positions above the pivotable connection 532, in a similar configuration and to operate in a similar manner as the second pair hydraulic cylinders disposed between the first and second pair of upper support arms 304,306 included in one or more embodiments of the coil deployment trailer frame 300.
As discussed herein with respect to the coil deployment trailer frame 300, the width W of the coil deployment trailer frame 500 can be changed by extending and retracting the length of the horizontal support assembly 430. For example, if the coil deployment trailer frame 500 is configured such that the coil deployment trailer frame 500 has a first width W1, the width W of the coil deployment trailer frame 500 can be lessened to width W minus a length (X) to achieve a new width W−X. To achieve the new width W−X, the horizontal support assembly 430 is retracted using one or more actuators, as described herein, to reduce the length of the of the horizontal support assembly 430. In one or more embodiments, the retraction of the horizontal support assembly 430 also automatically causes each of the horizontal containment bar 518, pipe re-spooler assembly 342 and coupling assembly 520 to also retract such that the length of each of the horizontal containment bar 518, pipe re-spooler assembly 342 and coupling assembly 520 is reduced until the width W−X of the coil deployment trailer frame 500 is achieved. Similarly, if the coil deployment trailer frame 500 is configured such that the coil deployment trailer frame 500 has a first width W, the width W of the coil deployment trailer frame 500 can be increased to W plus a length (Y) to achieve a new width W+Y. To achieve the new width W+Y, the horizontal support assembly 430 is expanded using one or more actuators, as described herein, to increase the length of the of the horizontal support assembly 430. In one or more embodiments, the expansion of the horizontal support assembly 430 also automatically causes each of the horizontal containment bar 518, pipe re-spooler assembly 342 and coupling assembly 520 to also expand such that the length of each of the horizontal containment bar 518, pipe re-spooler assembly 342 and coupling assembly 520 is increased until the width W+Y of the coil deployment trailer frame 500 is achieved. In one or more embodiments, one or more of the horizontal containment bar 518, pipe re-spooler assembly 342 and coupling assembly 520 may contain actuators, as described herein, that operate in conjunction with the actuators included in the horizontal support assembly 430. In one or more other embodiments, each of the horizontal containment bar 518, pipe re-spooler assembly 342 and coupling assembly 520 are void of actuators and are configured to expand or retract in response to the expansion or retraction of the horizontal support assembly 430. In one or more other embodiments, one or more of the horizontal support assembly 430, horizontal containment bar 518, pipe re-spooler assembly 342 and coupling assembly 520 are configured to be manually adjustable such that a user may manually increase or decrease the length thereof such that the coil deployment trailer frame 500 can change its width W to a new width.
Similar to the coil deployment trailer frame 300, one or more embodiments of the coil deployment trailer frame 500 is configured such that an operator of the coil deployment system can automatically configure the coil deployment trailer frame 500 to accommodate a coil 60 of spoolable pipe 12 of a predetermined width by inputting the width of the coil 60 into the controller which, in turn, will control the actuators to manipulate the frame components to achieve the desired configuration such that the coil 60 of spoolable pipe can be mounted to or unmounted from the coil deployment trailer frame 500. In these embodiments, each of the actuators, that operate to extend the male and female telescoping components included in the horizontal support assembly 430, are controlled to extend or retract, as described herein, such that a width of the trailer assembly that is suitable to accommodate the expandable drum assembly 301 is achieved. In one or more embodiments, actuators in one or more of the horizontal containment bar 518, pipe re-spooler assembly 342 and coupling assembly 520 are also controlled to extend or retract, as described herein, such that a width of the coil deployment trailer frame 500 that is suitable to accommodate the expandable drum assembly 301 is achieved. In other embodiments, once an operator inputs the desired width of the coil deployment trailer frame 500 into the controller, the male and female telescoping components included in each of the horizontal containment bar 518, pipe re-spooler assembly 342 and coupling assembly 520 are free to move with respect to another, as discussed herein, to obtain the proper length, respectively, in response to the axial expansion or contraction of the horizontal support assembly 430.
In one or more embodiments, as discussed herein, one or more of the frame components, included in the coil deployment trailer frame 500, can be configured such that the frame component(s) can be telescopically extended using one or more actuators, as described herein. In one or more of these embodiments, actuators, that include one or more hydraulic actuators, pneumatic actuators, electric actuators, electro-magnetic actuators or a combination of hydraulic, pneumatic, electro-magnetic and/or electric actuators that are configured to engage one or more of the telescoping frame components included in the coil deployment trailer frame 500, can be utilized as described herein to extend or contract the frame component(s) such that the desired width and/or height of the coil deployment trailer frame 500 can be achieved.
One having skill in the art having the benefit of the teachings described herein appreciates that one or more embodiments of the coil deployment trailer system can also be utilized to store, transport, manipulate, translate, collect and deploy various sizes of coils 60 of spoolable pipe 12 that are disposed on a reel or other drum assembly and utilizes one or more hub assemblies that are configured to engage the support brackets 302 included in the coil deployment trailer frame 300, as described herein. Similarly, one having skill in the art having the benefit of the teachings described herein appreciates that one or more embodiments of the coil deployment trailer system can also be utilized to store, transport, manipulate, translate, collect and deploy various sizes of coils 60 of spoolable pipe 12 that are disposed on a reel or other drum assembly that utilizes one or more hub assemblies that are configured to engage the hub engagement sections 536 included in the coil deployment trailer frame 500, as described herein. For example, one having skill in the art having the benefit of the teachings described herein appreciates that one or more embodiments of the coil deployment trailer system can also be utilized to store, transport, manipulate, translate, collect and deploy various sizes of coils 60 of spoolable pipe 12 that are disposed on the reel 44, described with respect to
With respect to embodiments disclosed herein that are directed to the coil deployment trailer system that includes the coil deployment trailer frame 500, one having skill in the art with the benefit of the teachings provided herein will appreciate that the coil deployment trailer system that includes the coil deployment trailer frame 500 described herein will operate in a similar fashion to the one or more embodiments of the coil deployment trailer system that includes the coil deployment trailer frame 300 described herein. Accordingly, the scope of the disclosure should be limited only by the attached claims.
The present application is a continuation of U.S. patent application Ser. No. 16/720,856, entitled “EXPANDABLE COIL DEPLOYMENT SYSTEM FOR DRUM ASSEMBLY AND METHOD OF USING SAME” and filed Dec. 19, 2019, which is incorporated herein by reference in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
Parent | 16880068 | May 2020 | US |
Child | 17147084 | US | |
Parent | 16720856 | Dec 2019 | US |
Child | 16880068 | US |