This disclosure relates generally to methods and apparatus for radially expanding connected tubular members in a wellbore. In particular, this disclosure relates to the radial expansion of tubular members that are connected via a threaded connection offering improved efficiency as compared to conventional expandable threaded connections.
During hydrocarbon exploration, a wellbore typically traverses a number of zones within a subterranean formation. Wellbore casings are then formed in the wellbore by radially expanding and plastically deforming tubular members that are coupled to one another by threaded connections. In certain wellbore environments, existing apparatus and methods for coupling together and radially expanding tubular members may not be suitable.
For example, a series of expanded tubular members can be subjected to elevated axial loads during installation, under pressure loading, or when subjected to significant temperature differentials during certain wellbore operations. The maximum axial load that can be applied to a series of expanded tubular members is, in most instances, limited by the threaded connections between adjacent tubular members. To quantify the performance of an expandable threaded connection, connections are often referred to as having an efficiency, which is defined as the tensile rating of the connection divided by the tensile rating of the base tubular.
Many expandable threaded connections rely on elastomeric materials to provide a seal. Elastomeric seals may not be suitable for certain high-temperature environments on when exposed to certain wellbore fluids. In conditions where elastomeric seals may not be desirable, it may be preferable to have a threaded connection that utilizes a metal-to-metal seal. A connection that utilizes a metal-to-metal seal forms a seal between two abutting surfaces of the threaded connections that contact with sufficient compressive force to form a seal between the surfaces. An example of a known connection that utilizes a metal-to-metal seal is described in U.S. Application Pub. No. 2015/0285009.
Although there are many available examples of threaded connections that utilize metal-to-metal seals, those threaded connections that are also rated for radial expansion have not proven suitable for all applications. Thus, there is a continuing need in the art for methods and apparatus for providing an expandable threaded connection with a metal-to-metal seal that also provides increased efficiency and ability to handle increased tensile loads.
The disclosure describes a method of expanding tubular members.
The method may comprise forming a threaded pin end on a first expandable tubular member. The pin end may have a first inner diameter that is less than a second inner diameter of the first expandable tubular member. An inner diameter of the pin end may increase on both sides of the first inner diameter. The first inner diameter may be located at a base of threads.
The method may comprise forming a threaded box end on a second expandable tubular member. A wall thickness of the box end may vary from being thinner near an extremity of the threads, and may increase toward a face of the box end. The wall thickness of the box end may also increase toward a body of the second expandable tubular member.
The method may comprise engaging the box end and the pin end to form an expandable assembly having an expandable threaded connection with one or two metal-to-metal seals. A thickness of the expandable threaded connection that is a sum of a thickness of the box end and a thickness of the pin end, may be maximum at the face of the box end.
The method may comprise disposing the expandable assembly in a wellbore, and moving an expansion cone longitudinally through the first expandable tubular member, the expandable threaded connection, and the second expandable tubular member so as to radially expand the first inner diameter and the second inner diameter to an expanded inner diameter.
The method may further comprise creating a metal-to-metal seal from a spring-back effect after moving the expansion cone.
For a more detailed description of the embodiments of the present disclosure, reference will now be made to the accompanying drawings, wherein:
It is to be understood that the following disclosure describes several exemplary embodiments for implementing different features, structures, or functions of the invention. Exemplary embodiments of components, arrangements, and configurations are described below to simplify the present disclosure; however, these exemplary embodiments are provided merely as examples and are not intended to limit the scope of the invention. Additionally, the present disclosure may repeat reference numerals and/or letters in the various exemplary embodiments and across the Figures provided herein. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various exemplary embodiments and/or configurations discussed in the various figures. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact. Finally, the exemplary embodiments presented below may be combined in any combination of ways, i.e., any element from one exemplary embodiment may be used in any other exemplary embodiment, without departing from the scope of the disclosure.
Additionally, certain terms are used throughout the following description and claims to refer to particular components. As one skilled in the art will appreciate, various entities may refer to the same component by different names, and as such, the naming convention for the elements described herein is not intended to limit the scope of the invention, unless otherwise specifically defined herein. Further, the naming convention used herein is not intended to distinguish between components that differ in name but not function. Additionally, in the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to.” All numerical values in this disclosure may be approximate values unless otherwise specifically stated. Accordingly, various embodiments of the disclosure may deviate from the numbers, values, and ranges disclosed herein without departing from the intended scope. Furthermore, as it is used in the claims or specification, the term “or” is intended to encompass both exclusive and inclusive cases, i.e., “A or B” is intended to be synonymous with “at least one of A and B,” unless otherwise expressly specified herein.
Referring initially to
Pin end 16 has a minimum inner diameter 26 that is smaller than the inner diameter 18. The inner diameter along the pin end 16 varies from being smaller near the base 28 of the thread and then increases on both sides of the minimum inner diameter 26, that is, on the side toward the pin end 16 as well as on the side toward the main body 12. As such, the inner profile of the pin end 16 forms a “V” shape having a cusp near the base 28 of threads 30. The wall thickness of the pin end 16 varies from being thicker near the main body 12 and then tapering toward the end of the pin end 16.
The box end 14 has an outer diameter 22 that is substantially the same as an outer diameter 24 of the main body 12. The box end 14 extends beyond the extremity 54 of the threads 32 over an unthreaded length 56, which may be approximately 3 times longer than the wall thickness at the face 42 of the box end 14. The wall thickness of the box end 14 varies from being thinner near the extremity 54 of the threads 32, then increases toward the face 42 of the box end 14. Accordingly, the face 42 of the box end 14 is thicker (as compared to conventional flush-joint connections). The wall thickness of the box end 14 also increases from the extremity 54 of the threads 32 toward the main body 12.
In certain embodiments, the box end 14 and/or pin end 16 may include sealing surfaces 34 that are configured to facilitate metal-to-metal sealing engagement of the threads prior to expansion.
The thickness of the threaded connection 46, which is the sum of the thickness of the box end 14, and the thickness of the pin end 16 is preferably maximum at the face 42 of the box end 14.
In operation, an expansion cone (not shown) having an expansion diameter that is greater than both inner diameter 18 and minimum inner diameter 26 is moved axially through the tubular assembly 36 so as to radially expand the expandable tubular 10B, the threaded connection 46, and then the expandable tubular 10A. As shown in
Forming the pin end threaded connection on a portion of the tubular with an inner diameter less than the main body inner diameter allows the thread to be formed closer to the center of the tubular and on a thicker portion of the tubular as compared to conventional flush-joint threaded connections. This also allows the box end threaded connection to be formed closer to the center of the tubular (as compared to conventional flush-joint connections), which provides thicker material at the end of the tubular that can be utilized to create the metal-to-metal seal described herein. Thus, the disclosed embodiment that provides a threaded connection that has a thicker wall section as compared to conventional expandable flush-joint connections without an unacceptable increase in the expansion forces needed to expand the threaded connection. Therefore, the disclosed embodiments provide greater resistance to tensile loads, and therefore a greater efficiency, as compared to conventional expandable threaded connections.
In addition, because of the inner diameter variations along the pin end, the plastic deformation of the threaded connection that occurs during expansion may be larger near the minimum inner diameter. Further, because of the thickness variation along the box end, the amount of spring-back that occurs after expansion at the extremity of the threads of the box end may be less than the amount of spring-back that occurs at the face of the box end. As such, the unthreaded length of the box end may rotate and form a new metal-to-metal seal after expansion. In some embodiments, the pressure contact at the new metal-to-metal seal may be sufficient to prevent the seal from opening under a differential pressure of 10,000 psi or less between inside and outside the expanded tubulars.
In contrast with other known expandable connections having a metal-to-metal seal, the expandable connection described herein may be expanded at different expansion ratio, (i.e., using any of several expansions cones having different expansion diameters) while still providing a metal-to-metal seal after expansion of the threaded connection.
While the disclosure is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and description. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the disclosure to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present disclosure.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US18/44022 | 7/27/2018 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62537644 | Jul 2017 | US |