Embodiments are described herein that relate to devices and methods for delivery and deployment of prosthetic valves and epicardial pads.
Prosthetic heart valves can pose particular challenges for delivery and deployment within a heart. Valvular heart disease, and specifically, aortic and mitral valve disease is a significant health issue in the United States (US); annually approximately 90,000 valve replacements are conducted in the US. Traditional valve replacement surgery involving the orthotopic replacement of a heart valve is considered an “open heart” surgical procedure. Briefly, the procedure necessitates surgical opening of the thorax, the initiation of extra-corporeal circulation with a heart-lung machine, stopping and opening the heart, excision and replacement of the diseased valve, and re-starting of the heart. While valve replacement surgery typically carries a 1-4% mortality risk in otherwise healthy persons, a significantly higher morbidity is associated to the procedure largely due to the necessity for extra-corporeal circulation. Further, open heart surgery is often poorly tolerated in elderly patients. Thus elimination of the extra-corporeal component of the procedure could result in reduction in morbidities and cost of valve replacement therapies could be significantly reduced.
While replacement of the aortic valve in a transcatheter manner is the subject of intense investigation, lesser attention has been focused on the mitral valve. This is in part reflective of the greater level of complexity associated to the native mitral valve apparatus, and thus, a greater level of difficulty with regards to inserting and anchoring the replacement prosthesis. A need exists for delivery devices and methods for transcatheter mitral valve replacements.
Devices and methods for use in the delivery and deployment of a prosthetic valve and an epicardial pad are described herein. As described herein, in some embodiments, a method includes delivering and deploying an expandable tissue dilator device. The expandable tissue dilator device can be used to dilate tissue or otherwise create space near an apex of a heart. In some embodiments, after a prosthetic mitral valve has been deployed within the heart via a transfemoral, transapical or other suitable delivery approach, a tether attached to the prosthetic valve can extend outside the apex of the heart. The tissue dilator can be used to dilate tissue or otherwise create space for delivery and/or deployment of an epicardial pad device near the apex of the heart to secure the tether and the prosthetic valve in a desired position. In some embodiments, the epicardial pad can be an expandable epicardial pad.
Devices and methods for use in the delivery and deployment of prosthetic mitral valves and epicardial pads are described herein. As described herein, in some embodiments, a method includes delivering and deploying an expandable tissue dilator device. The expandable tissue dilator device can be used to dilate tissue or otherwise create space near an apex region of a heart. In some embodiments, after a prosthetic mitral valve has been deployed within the heart via a transcatheter or other suitable delivery approach, a tether attached to the prosthetic valve can extend outside the apex of the heart. The tissue dilator device can be used to dilate tissue or otherwise create space for delivery and/or deployment of an epicardial pad device at the apex region of the heart to secure the tether and the prosthetic valve in a desired position.
The prosthetic valve can be delivered to within a patient's heart using a variety of different delivery approaches for delivering a prosthetic heart valve (e.g., prosthetic mitral valve). For example, the prosthetic valves described herein can be delivered using a transfemoral delivery approach as described in International Application No. PCT/US15/14572 (the '572 PCT application) incorporated by reference above, or via a transatrial approach, such as described in U.S. Provisional Patent Application Ser. No. 62/220,704, entitled “Apparatus and Methods for Transatrial Delivery of Prosthetic Mitral Valve,” filed Sep. 18, 2015 (“the '704 provisional application”), which is incorporated herein by reference in its entirety. In another example, a prosthetic mitral valve as described herein can be delivered via a transjugular approach, via the right atrium and through the atrial septum and into the left atrium. The prosthetic valves described herein can also be delivered apically if desired.
In some embodiments, an apparatus includes an epicardial pad configured to engage an outside surface of a heart to secure a prosthetic heart valve in position within the heart. The prosthetic heart valve has a tether extending therefrom and outside the heart when the prosthetic heart valve is disposed within the heart. The epicardial pad defines a lumen configured to receive the tether therethrough. The epicardial pad is movable between a first configuration in which the epicardial pad has a first outer perimeter and is configured to be disposed within a lumen of a delivery sheath and a second configuration in which the epicardial pad has a second outer perimeter greater than the first outer perimeter. The epicardial pad can be disposed against the outside surface of the heart when in the second configuration to secure the prosthetic valve and tether in a desired position within the heart.
In some embodiments, an apparatus includes a delivery sheath that defines a first lumen and a dilator device that defines a second lumen and is movably disposed within the first lumen of the delivery sheath. The dilator device includes an elongate member and an expandable member disposed at a distal end of the elongate member. The expandable member has a collapsed configuration and an expanded configuration. The dilator device is in the collapsed configuration when disposed within the first lumen. An epicardial pad having a collapsed configuration and an expanded configuration is configured to be disposed within the second lumen when in the collapsed configuration. The epicardial pad is configured to be disposed against an outside surface of a heart when in the expanded configuration. The dilator member of the dilator device is configured to dilate tissue associated with the outside surface of the heart when moved from its collapsed configuration to its expanded configuration such that a space is formed in which the epicardial pad can be disposed.
In some embodiments, a method includes disposing a distal end portion of a delivery sheath outside a surface of a heart near an apex of the heart. The delivery sheath has a dilator device movably disposed within a lumen of the delivery sheath. The dilator device includes an elongate member and a dilator member disposed at a distal end portion of the elongate member, and is movable from a collapsed configuration when disposed within the lumen of the delivery sheath and an expanded configuration. After disposing the delivery sheath outside a surface of the heart, the dilator member of the dilator device is disposed outside a distal end of the delivery sheath, and is moved to the expanded configuration such that tissue associated with the surface of the heart is dilated from pressure exerted on the tissue by the dilator member and a space is formed to receive an epicardial pad device.
In some embodiments, a method includes disposing a distal end portion of a delivery sheath outside a surface of a heart near an apex of the heart. The delivery sheath has an epicardial pad disposed within a lumen of the delivery sheath. The epicardial pad has a collapsed configuration when disposed within the lumen of the delivery sheath and an expanded configuration. The epicardial pad defines an opening and has a tether extending through the opening. The tether is coupled to a prosthetic heart valve implanted within the heart. The epicardial pad is disposed outside a distal end of the delivery sheath and outside the surface of the heart near the apex of the heart. The epicardial pad is secured in the expanded configuration to the outside surface of the heart to secure the prosthetic heart valve and the tether in a desired position.
After the leader tube 224 has been extended between the apex Ap and the access site to the femoral vein, a valve leader member 234 attached to the prosthetic mitral valve 200 (also referred to as “valve”) can be inserted into the leader tube 224 at the femoral end of the leader tube 224 and extended through the leader tube 224 until the valve leader member 234 exits the leader tube at the apex end of the leader tube 224. After the valve leader member 234 is inserted and extended outside the apex Ap, the leader tube 224 can be removed from the patient. For example, the leader tube 224 can be pulled out through the apex puncture site, or through the femoral vein puncture site. Thus, only the valve leader member 234 remains disposed within the body, as shown in
The valve leader member 234 can have a tapered distal end 235 to aid in the insertion and maneuvering of the valve leader member 234 through the leader tube 224. The valve leader member 234 is attached at a proximal end portion 237 to a tether line 236 (also referred to herein as “tether”), which is attached to the valve 200.
As shown in
Also as shown in
After the valve leader member 234 has been placed in position between the femoral puncture site and the apical puncture site, as described above, the delivery sheath 226 with the valve 200 can be inserted through the femoral puncture site and moved through the femoral vein, through the inferior vena cava, into the right atrium, and then through the septum Sp until a distal end portion of the delivery sheath 226 (with the valve 200) is disposed within the left atrium LA, as shown in
As shown in
As shown, outer frame assembly 510 includes an outer frame 520, covered on all or a portion of its outer face with an outer covering 530, and covered on all or a portion of its inner face by an inner covering 532. Outer frame 520 can provide several functions for prosthetic heart valve 500, including serving as the primary structure, as an anchoring mechanism and/or an attachment point for a separate anchoring mechanism to anchor the valve to the native heart valve apparatus, a support to carry inner valve assembly 540, and/or a seal to inhibit paravalvular leakage between prosthetic heart valve 500 and the native heart valve apparatus.
Outer frame 520 is configured to be manipulated and/or deformed (e.g., compressed and/or expanded) and, when released, return to its original (undeformed) shape. To achieve this, outer frame 520 can be formed of materials, such as metals or plastics, that have shape memory properties. With regards to metals, Nitinol® has been found to be especially useful since it can be processed to be austenitic, martensitic or super elastic. Other shape memory alloys, such as Cu—Zn—Al—Ni alloys, and Cu—Al—Ni alloys, may also be used.
As best shown in
Inner valve assembly 540 includes an inner frame 550, an outer covering 560, and leaflets 570. As shown, the inner valve assembly 540 includes an upper portion having a periphery formed with multiple arches. The inner frame 550 includes six axial posts or frame members that support outer covering 560 and leaflets 570. Leaflets 570 are attached along three of the posts, shown as commissure posts 552 (best illustrated in
Although inner valve assembly 540 is shown as having three leaflets, in other embodiments, an inner valve assembly can include any suitable number of leaflets. The leaflets 570 are movable between an open configuration and a closed configuration in which the leaflets 570 coapt, or meet in a sealing abutment.
Outer covering 530 of the outer frame assembly 510 and inner covering 532 of outer frame assembly 510, outer covering 560 of the inner valve assembly 540 and leaflets 570 of the inner valve assembly 540 may be formed of any suitable material, or combination of materials, such as those discussed above. In this embodiment, the inner covering 532 of the outer frame assembly 510, the outer covering 560 of the inner valve assembly 540, and the leaflets 570 of the inner valve assembly 540 are formed, at least in part, of porcine pericardium. Moreover, in this embodiment, the outer covering 530 of the outer frame assembly 510 is formed, at least in part, of polyester.
Inner frame 550 is shown in more detail in
In this embodiment, inner frame 550 is formed from a laser-cut tube of Nitinol®. Inner frame 550 is illustrated in
Connecting portion 544 includes longitudinal extensions of the struts, connected circumferentially by pairs of opposed, slightly V-shaped connecting members (or “micro-Vs”). Connecting portion 544 is configured to be radially collapsed by application of a compressive force, which causes the micro-Vs to become more deeply V-shaped, with the vertices moving closer together longitudinally and the open ends of the V shapes moving closer together circumferentially. Thus, connecting portion 544 can be configured to compressively clamp or grip one end of a tether, either connecting directly onto a tether line (e.g. braided filament line) or onto an intermediate structure, such as a polymer or metal piece that is in turn firmly fixed to the tether line.
In contrast to connecting portion 544, atrial portion 541 and body portion 542 are configured to be expanded radially. Strut portion 543 forms a longitudinal connection, and radial transition, between the expanded body portion and the compressed connecting portion 544.
Body portion 542 includes six longitudinal posts, such as post 542A. The posts can be used to attach leaflets 570 to inner frame 540, and/or can be used to attach inner assembly 540 to outer assembly 510, such as by connecting inner frame 550 to outer frame 520. In the illustrated embodiment, the posts include openings through which connecting members (such as suture filaments and/or wires) can be passed to couple the posts to other structures.
Inner frame 550 is shown in a fully deformed, i.e. the final, deployed configuration, in side view and bottom view in
Outer frame 520 of valve 500 is shown in more detail in
Outer frame 520 is shown in a fully deformed, i.e. the final, deployed configuration, in side view and top view in
Outer frame 520 and inner frame 550 are shown coupled together in
As shown in
The procedure to deliver the valve 300 to the heart can be the same as or similar to the procedure described with reference to
As the valve 300 exits the lumen of the delivery sheath 326, the outer frame assembly 310 exits first in its inverted configuration as shown in the progression of
In this embodiment, to deliver the valve 400, a leader tube (not shown) can be inserted through an apical puncture and extended through the heart and out through a femoral vein access site. A valve leader member 434 coupled to a tether 436 can be inserted through the femoral end of the leader tube and extended out the apical end of the leader tube, as described above with respect to
The balloon dilator device 445 includes a balloon member 446 that can be disposed at least partially within the distal end portion of the lumen of the delivery device 426, and distal of the valve 400, as shown in
In use, the wire assist structure 649 can be movably disposed within a delivery sheath 626 used to deliver the valve 600 to the heart. The wire assist structure 649 can hold the inner frame 650 and allow for positioning control of the valve 600 (i.e., clocking and advancement) while the outer frame 650 of the valve 600 is fully expanded, which allows the valve 600 to be functioning during the positioning phase. When the valve 600 is in the desired final position, the wire assist structure 649 can be released from the inner frame 650 and removed with the delivery sheath 626.
In use, the assist member 748 can be movably disposed within a delivery sheath (not shown) used to deliver the valve 700 and be disposed over at least a portion of the inner valve assembly 740. As with the wire assist structure 649, the assist member 748 can hold the inner frame 750 in a small compact configuration and allow for positioning control of the valve 700 (i.e., clocking and advancement) while the outer frame of the valve 700 is being expanded. This can in some cases allow the valve 700 to be functioning (or at least partially functioning) during the positioning phase of the valve 700. With the inner frame 750 held in a compact or small diameter form factor, the valve 700 can be more easily positioned to help seal the annulus with the outer frame (not shown) of the valve 700. When the valve 700 is in the desired final position, the assist member 748 can be removed.
At 884, after inverting the outer frame, the prosthetic mitral valve is inserted into a lumen of a delivery sheath such that the prosthetic mitral valve is moved to a collapsed configuration. The delivery sheath can be the same delivery sheath as used with the snare device or a different delivery sheath. At 885, a valve leader member is inserted to the leader tube at the femoral end of the leader tube, and moved through the leader tube until the valve leader member exits the leader tube outside of the apex of the heart. A proximal end of the valve leader member is coupled to a tether line that in turn is coupled to the prosthetic mitral valve and disposed within the delivery sheath. At 886, the delivery sheath is inserted into the femoral vein and moved through the femoral vein and through a septum of a heart until a distal end portion of the delivery sheath is disposed in the left atrium of the heart. At 887, the prosthetic mitral valve is moved distally out of the delivery sheath such that the inverted outer frame of the prosthetic mitral valve reverts, and the prosthetic mitral valve assumes its biased expanded configuration. At 888, the prosthetic mitral valve is positioned within a mitral annulus of the heart and optionally an epicardial pad device can be secured to the apex of the heart to maintain the prosthetic mitral valve in the desired position (e.g., orientation) within the mitral annulus. In some embodiments, rather than securing the prosthetic mitral valve with a tether and epicardial pad, the prosthetic mitral valve can be secured with clips or other coupling methods to a portion(s) of the ventricular wall of the heart.
As shown in
In use, after a prosthetic mitral valve has been deployed within the heart H (e.g., via a transfemoral delivery approach as described herein or a transatrial delivery approach), the tether 936 attached to the prosthetic valve (not shown) can extend outside the apex of the heart. The epicardial pad 939 can be used to secure the tether 936 and prosthetic valve in a desired position. With the tether 936 extending outside of the heart, the tether 936 can be threaded through a center opening of the epicardial pad 939 and through a lumen of the inner delivery sheath 964, as shown in
Prior to moving the expanded epicardial pad 939 into position on the apex of the heart, conventional purse-string sutures 965 at the incision through which the tether 936 extends out of the heart at the apex of the heart can be closed. Although purse-string sutures 965 are illustrated in this embodiment, the epicardial pad 939 can alternatively be implemented without the use of such purse-string sutures 965. The epicardial pad 939, in the expanded configuration, can then be positioned on the apex of the heart. In this embodiment, the epicardial pad 939 includes an integral locking mechanism that includes barbs 967 as shown in
In alternative embodiments, other methods of securing the epicardial pad 939 to the heart can be used. For example, in an embodiment in which the epicardial pad 939 does not include an integrated locking mechanism as described above, the distal end portion of the tether 936 can be tied or another securing device such as a clip or locking pin can be used.
As shown in
In use, after a prosthetic mitral valve has been deployed within the heart H (
Prior to moving the expanded epicardial pad 1039 into position on the apex of the heart, conventional purse-string sutures 1065 at the incision through which the tether 1036 extends out of the heart at the apex of the heart can be closed. As with the previous embodiment, although purse-string sutures 1065 are illustrated in this embodiment, the epicardial pad 1039 can alternatively be implemented without such purse-string sutures 1065. The epicardial pad 1039, in the expanded configuration, can then be positioned on the apex of the heart. The epicardial pad 1039 can include an integral locking mechanism, similar to or the same as locking mechanism (e.g., barbs) described above to secure or lock the tether 1036 and epicardial pad 1039 in position on the heart. In alternative embodiments, other methods of securing the epicardial pad 1039 to the heart can be used. For example, as described above, the distal end portion of the tether 1036 can be tied or another securing device such as a clip or locking pin can be used.
The balloon member 1155 can define an inner lumen through which the tether 1136 can be inserted. The epicardial pad 1139 can also include an inflation lumen through which an inflation medium can be communicated to and from the balloon member 1155. For example, the inflation lumen (not shown) can be defined by the balloon member 1155 or by a separate inflation line (not shown) in fluid communication with an interior of the balloon member 1155.
In use, after a prosthetic mitral valve has been deployed within the heart H (
Purse-string sutures 1165 at the incision through which the tether 1136 extends out of the heart at the apex of the heart can be closed prior to positioning the epicardial pad 1139 on the apex. As with previous embodiments, although purse-string sutures 1165 are illustrated in this embodiment, the epicardial pad 1139 can alternatively be implemented without such purse-string sutures 1165. Prior to positioning the balloon member 1155 on the apex of the heart, the balloon member 1155 can be partially deflated or fully deflated. The balloon member 1155 is then moved distally into contact with the heart where it can collapse inwardly upon itself to form a cup shape as the balloon member 1155 is pushed against the heart, as shown in
In use, after a prosthetic mitral valve has been deployed within the heart H, for example, via a transfemoral delivery approach as described herein, the tether 1236 attached to the prosthetic valve (not shown) can extend outside the apex of the heart. With the tether 1236 extending outside of the heart, a first stackable pad member 1273 can be slid onto the tether 1236. For example, the stacking members 1273 can define a through-hole in which the tether 1236 can be received. The first stackable pad member 1273 can be slid or moved distally along the tether 1236 until it contacts the surface of the heart H as shown in
In some embodiments, prior to deployment of an epicardial pad device to secure a tether and a prosthetic valve in a desired position, as discussed above, for example, with respect to
The tissue dilator 1376 can be used, for example, during a procedure to deliver a prosthetic heart valve transfemorally as described herein or in any other suitable delivery method (e.g., transapical, transatrial, transjugular). In this embodiment the tissue dilator 1376 can include an expandable member 1377 coupled to a distal end of an elongate member (not shown). The expandable member 1377 can be moved between a collapsed configuration for delivery of the expandable member 1377 and an expanded configuration, in which the size (e.g., diameter) of the expandable member 1377 is greater than when in the collapsed configuration. When in the collapsed configuration, the expandable member 1377 can be introduced through a lumen defined by a small profile delivery sheath 1363 and to a desired location within a patient's body (e.g., near a patient's heart H). The expandable member 1377 can be moved to the expanded configuration when at the desired location to dilate surrounding tissue as described in more detail below. In some embodiments, the expandable member 1377 can be a balloon that can be expanded (e.g., inflated) with an inflation medium. For example, the elongate member (not shown) can define a lumen that can communicate an inflation medium to and from the expandable member 1377. The tissue dilator 1376 can be delivered to the exterior of the heart via a small incision I, in which the delivery catheter or sheath 1363 (see
In use, after a prosthetic mitral valve has been deployed within the heart H via a transfemoral approach (as described herein), a transapical approach, or other suitable delivery approach, the tether 1336 attached to the prosthetic valve (not shown) can extend outside the apex of the heart H and outside the patient's body via a small incision I (see, e.g.,
With the expandable member 1377 disposed outside the heart of the patient (e.g., between the patient's ribs and the heart) the expandable member 1377 can be moved to its expanded configuration such that tissue near the expandable member 1377 is dilated by the pressure exerted by the expandable member 1377 on the surrounding tissue. For example, the elongate member of the tissue dilator 1376 can be fluidically coupled directly, or via a fluid line (not shown), to a source of an inflation medium suitable to expand (e.g., inflate) the expandable member 1377. When the expandable member 1377 is disposed at the desired location in the patient near the apex of the heart, the expandable member 1377 can be expanded. In this manner, the tissue dilator 1376 can be used to dilate tissue or otherwise create space suitable for delivery and/or deployment (e.g., expansion and securement to the heart H) of the epicardial pad device 1339, as described in more detail below.
After inflation of the expandable member 1377 of the tissue dilator 1376, and the dilation of the surrounding tissue, the expandable member 1377 of the tissue dilator 1376 can be deflated or collapsed and withdrawn proximally (not shown) through the lumen of the delivery sheath 1363 and outside of the patient. In some embodiments, the delivery sheath 1363 can be removed from the patient's body at the same time or after the tissue dilator 1376 is removed. The tether 1336 extending outside of the patient can be threaded through a center opening of the epicardial pad 1339 and through a lumen of an inner delivery sheath (not shown). The epicardial pad 1339 can be used to secure the tether 1336 and the prosthetic valve (not shown) in a desired position. The delivery sheath 1363 can be placed over the inner delivery sheath and the epicardial pad 1339 to collapse the epicardial pad 1339 in a similar manner as described above for previous embodiments.
The delivery sheath 1363 can then be re-inserted through the small incision I in the skin of the patient and a distal end of the delivery sheath 1363 disposed near the apex of the heart. When the distal end of the delivery sheath 1363 is at the desired location near the apex of the heart, the epicardial pad 1339 can be moved outside the distal end of the delivery sheath 1363 such that the epicardial pad 1339 can assume a biased expanded configuration (see
In other alternative embodiments, an expandable tissue dilator device can define an inner lumen through which the tether can be inserted. The tissue dilator can also include an inflation lumen through which an inflation medium can be communicated to and from the expandable member of the tissue dilator, as previously described. For example, the inflation lumen can be defined by the tissue dilator or by a separate inflation line that can be disposed within a lumen of the tissue dilator (e.g., a lumen defined by the elongate member of the tissue dilator). In such embodiments, in use, after a prosthetic mitral valve has been deployed within the heart, the tether attached to the prosthetic valve can extend outside the apex of the heart, as described with respect to previous embodiments. With the tether extending outside of the heart, the tether can be threaded or inserted through the lumen of the tissue dilator. As described with respect to previous embodiments, the expandable member of the tissue dilator can be collapsed or deflated and placed within the lumen of the delivery sheath. The delivery sheath can be inserted through a small incision in the skin of the patient and a distal end of the delivery sheath disposed at a desired location near the apex of the heart. The expandable member of the tissue dilator can be moved outside a distal end of the delivery sheath and expanded at or near the heart (e.g., the apex region) as shown and described with respect to the tissue dilator 1376.
After expanding the expandable member of the tissue dilator, and in turn creating space suitable for delivery and/or deployment of an epicardial pad device, the tissue dilator can be collapsed or deflated and withdrawn proximally about the tether and through the lumen of the delivery sheath and outside of the patient. The delivery sheath can be withdrawn from the patient's body through the small incision I. Upon removal of the tissue dilator and the delivery sheath from the tether, the proximal end of the tether can be threaded through a center opening of the epicardial pad and an inner sheath, and the epicardial pad can be delivered to and deployed at the heart using the delivery sheath, as described in previous embodiments.
In alternative embodiments, the tissue dilator can be delivered through a lumen of a delivery sheath separate from the delivery sheath through which the epicardial pad is delivered. Said another way, the tissue dilator can be delivered through a first delivery sheath and the epicardial pad can be delivered through a second delivery sheath.
In yet other alternative embodiments, a delivery sheath can include multiple lumens (e.g., two lumens). In such embodiments, the tether can be routed or threaded through a first lumen of the delivery sheath, and the tissue dilator can be routed and delivered through the second lumen of the delivery sheath. In such an embodiment, after the tissue dilator has been used to dilate the surrounding tissue near the apex of the heart, the tissue dilator can be removed leaving the delivery sheath within the body of the patient. The proximal end of the tether (extending through the first lumen of the delivery sheath) can then be threaded through an epicardial pad and an inner sheath as described above. The epicardial pad and inner sheath can then be inserted into the proximal end of the delivery sheath (e.g., delivery sheath 1363) and moved distally to the distal end of the delivery sheath. For example, the inner sheath can push the epicardial pad distally along the tether. The epicardial pad can then be deployed out the distal end of the delivery sheath and secured to the apex of the heart, as described above for previous embodiments.
In another embodiment, a delivery device can define a lumen that can receive both a dilator device and an expandable epicardial pad. For example,
The expandable epicardial pad 1439 (also referred to as “epicardial pad” or “pad”) can have a collapsed configuration for delivery of the pad 1439 within a body of a patient, and an expanded configuration. When in the collapsed configuration, the pad 1439 can have a small profile such that the pad 1439 can be disposed within a lumen of the delivery device 1401. A tether 1436 attached to a prosthetic mitral valve (not shown) deployed within the heart H can extend through the delivery device 1401 as described in more detail below.
The delivery sheath 1463 includes an elongate member 1411 and at least one retracting element 1479. The delivery sheath 1463 also defines a lumen 1413 that can receive therethrough the dilator device 1476. The elongate member 1411 can have an outer diameter, for example, in the range of 3-5 mm. The retracting element 1479 can be located at or near a distal end of the delivery sheath 1463. The at least one retracting element 1479 can include a lip that extends partially or fully around the circumference of the delivery sheath 1463. The lip can be shaped such that the retracting element 1479 can pull tissue proximally when the delivery sheath 1463 is moved in a proximal direction. For example, in this embodiment, at least a portion of the lip can form an angle relative to the elongate member 1411 such that the lip is capable of catching and pulling tissue. For example, the retracting element 1479 can be used to retract or separate pericardium tissue from epicardial tissue at the surface of the heart as described in more detail below. The angle can be, for example, about 90°. In other configurations, the angle can be greater than or less than 90°.
In some embodiments, the retracting element 1479 can include a threaded feature (not shown). Rotation of the delivery sheath 1463 in a first direction can cause the threaded feature to engage with and/or capture tissue. Rotation of the delivery sheath 1463 in a second direction opposite the first direction can cause the thread feature to release the tissue. For example, depending on the direction of thread or threads in the threaded feature, the threaded feature could be rotated clockwise to capture the tissue (e.g., pericardium) such that the retracting element 1479 can be used to pull the tissue proximally. To release the tissue from the retracting element 1479, the threaded feature can be rotated counter-clockwise. In other embodiments, the retracting element 1479 can be configured to release captured tissue when the retracting element 1479 reaches a predetermined tension. In some embodiments, the retracting element 1479 can be collapsible from an expanded configuration in which the retracting element 1479 engages with and captures tissue to a collapsed configuration in which the retracting element 1479 disengages with the captured tissue.
The expandable tissue dilator device 1476 (also referred to herein as “tissue dilator” or “dilator device”) can be movably disposed within the lumen 1413 of the delivery sheath 1463. The tissue dilator 1476 can be used to dilate tissue or otherwise create space suitable for delivery and/or deployment of the epicardial pad device 1439. The tissue dilator 1476 can include an expandable member 1477 coupled to a distal end of an elongate member 1491 and can define a lumen 1415. The expandable member 1477 can be moved between a collapsed configuration for delivery of the expandable member 1477 and an expanded configuration, in which the size (e.g., diameter) of the expandable member 1477 is greater than when in the collapsed configuration. When in the collapsed configuration, the expandable member 1477 can be introduced through the lumen 1413 of the delivery sheath 1463 to a desired location within a patient's body (e.g., near a patient's heart H). The expandable member 1477 can be moved to the expanded configuration when at the desired location to dilate surrounding tissue as described in more detail below. In some embodiments, the expandable member 1477 can be a balloon that can be expanded (e.g., inflated) with an inflation medium. For example, the elongate member 1491 can define an inflation lumen (not shown) that can communicate an inflation medium to and from the expandable member 1477.
As described above, the expandable epicardial pad 1439 can have a collapsed configuration for delivery of the epicardial pad 1439 to the exterior of the heart. As shown in
The stopper tube 1489 can define an inner lumen through which the tether 1436 can be inserted. The tether 1436 can be movably disposed within the stopper tube 1489 such that the stopper tube 1489 can control the movement of the expandable epicardial pad 1439. Said another way, the stopper tube 1489 can be used to prevent proximal movement of the expandable epicardial pad 1439 and to push the expandable epicardial pad 1439 distally relative to the tissue dilator 1476 and/or the outer delivery sheath 1463. The stopper tube 1489 can be releasably attachable to the epicardial pad 1439 such that the stopper tube 1489 is secured to the epicardial pad 1439 during insertion and/or delivery of the epicardial pad 1439. In other embodiments, the stopper tube 1489 is configured to abut a portion of the epicardial pad 1439 such that it can limit proximal movement of the epicardial pad 1439 and push the epicardial pad 1439 distally. The stopper tube 1489 can also include an inflation lumen (not shown) through which an inflation medium can be communicated to and from the epicardial pad 1439. Alternatively, the inflation lumen can be defined by a separate inflation line (not shown) in fluid communication with an interior of the epicardial pad 1439.
In use, after a prosthetic mitral valve (not shown) has been deployed within the heart H via a transfemoral approach (as described herein), a transapical approach, a transjugular approach, or another suitable delivery approach, the tether 1436 attached to the prosthetic valve can extend outside the apex of the heart H and outside the patient's body via a small incision (similar to incision I as shown above in
Alternatively, rather than arranging the tissue dilator 1476, the epicardial pad 1439, and the stopper tube 1489 within the delivery sheath 1463 prior to insertion of the delivery device 1401, in some embodiments, the components of the delivery device 1401 can be inserted in stages. The tether 1436 can be threaded into and through the lumen 1413 of the delivery sheath 1463 and the delivery sheath 1463 can then be moved along the tether 1436 and inserted through the pericardium P of the heart H such that the retracting element 1479 is disposed between the pericardium P and the epicardium E. The tissue dilator 1476 can then be delivered to the apex region of the heart H via the delivery sheath 1463. More specifically, the tissue dilator 1476, with the expandable member 1477 in its collapsed or deflated configuration, can be inserted through the proximal end of the lumen 1413 of the delivery sheath 1463, and moved distally towards the distal end 1478 of the delivery sheath 1463. The tether 1436 extending outside of the patient can then be threaded through a center opening of the epicardial pad 1439. Before insertion, the delivery sheath 1463 and the tissue dilator 1476 can be placed over the epicardial pad 1439 to collapse the epicardial pad 1439 in a similar manner as described above for previous embodiments. Alternatively, the epicardial pad 1439 can be threaded over the tether 1436 and into the lumen 1413 of the tissue dilator 1476.
After inflation of the expandable member 1477 of the tissue dilator 1476, and the dilation of the surrounding tissue, the expandable member 1477 of the tissue dilator 1476 can be deflated or collapsed and withdrawn proximally into the lumen 1413 of the delivery sheath 1463 or through the lumen 1413 of the delivery sheath 1463 and outside of the patient. The proximal movement of the tissue dilator 1476 relative to the epicardial pad 1439 causes the epicardial pad 1439 to be disposed distally of the distal end of both the delivery sheath 1463 and the tissue dilator 1476. The stopper tube 1489 can prevent undesired proximal movement of the epicardial pad 1439. Alternatively or additionally, the epicardial pad 1439 can be moved distally outside of the lumen of the delivery sheath 1463 and the lumen of the tissue dilator 1476. For example, the stopper tube 1489 can be used to move or push the epicardial pad 1439 out of the delivery sheath 1463. When the epicardial pad 1439 has been moved distally relative to the delivery sheath 1463 and the tissue dilator 1476, the epicardial pad 1439 can assume a biased expanded configuration, similar to, for example, the epicardial pad 936 described above, or can be moved to an expanded configuration as described above for epicardial pad 1139. The stopper tube 1489 can then be moved distally to position the epicardial pad 1439 against the apex of the heart H as shown in
Upon delivery and deployment of the epicardial pad 1439 at the apex of the heart H, the delivery sheath 1463, tissue dilator 1476, and stopper tube 1489 can be removed from the patient and the incision can be closed with sutures (similar to above with reference to
In some embodiments, the delivery device 1401 can include an anchoring member in the form of an internal balloon that can be disposed inside the heart during the delivery of the epicardial pad 1439. For example,
In use, the tether 1436 can be threaded through the tether lumen of the expandable anchoring member 1492. With the locating balloon in an unexpanded configuration, the expandable anchoring member 1492 can be pushed or moved distally through the lumen of the stopper tube 1489 and the epicardial pad 1439. When the delivery device 1401 is positioned in the desired location near the apex of the heart H, the elongate member of the expandable anchoring member 1492 can be pushed distally, pushing the locating balloon through the puncture site in the apex of the heart H through which the tether 1436 extends.
With the locating balloon disposed within the left ventricle LV, the locating balloon can be transitioned from an unexpanded configuration (not shown) to an expanded configuration, as shown in
In this embodiment, the pad assembly 1502 can include an inner anchor 1592 and an expandable epicardial pad 1539 (shown in
The expandable epicardial pad 1539 and the inner anchor 1592 are attached via a first suture 1594 and a second suture 1595. The first suture 1594 is attached to the inner anchor 1592 via a first suture knot 1596 and the second suture 1595 is attached to the inner anchor 1592 via a second suture knot 1596. The first suture 1594 also includes a third knot 1598 and a fourth knot 1599. The third knot 1598 and the fourth knot 1599 are sliding knots configured to be tightened to secure the expandable epicardial pad 1539 against the heart H as described in more detail below.
In addition to the delivery sheath 1563, the delivery device 1501 includes an inner stopper tube 1589A and an outer stopper tube 1589B. The outer stopper tube 1589B is movably disposed within a lumen of the delivery sheath 1563, and the inner stopper tube 1589A is movably disposed within a lumen of the outer stopper tube 1589A. The inner stopper tube 1589A can define an inner lumen through which the tether 1536 can be inserted. The inner stopper tube 1589A can be coupled to the inner anchor 1592 and control the movement of the inner anchor 1592. For example, the inner stopper tube 1589A can be used to prevent proximal movement of the inner anchor 1592 and to push the inner anchor 1592 distally relative to the delivery sheath 1563 and/or the outer stopper tube 1589B. The inner stopper tube 1589A can be releasably coupled to the inner anchor 1592 such that the inner stopper tube 1589A is secured to the inner anchor 1592 during insertion and/or delivery of the epicardial pad assembly 1501. In other embodiments, the inner stopper tube 1589A is configured to abut a portion of the inner anchor 1592 such that it can limit proximal movement of the inner anchor 1592 and push the inner anchor 1592 distally.
Similarly, the outer stopper tube 1589B can define an inner lumen through which the inner stopper tube 1589A can be inserted. The outer stopper tube 1589B can be coupled to and can control movement of the epicardial pad 1539. For example, the outer stopper tube 1589B can be used to prevent proximal movement of the epicardial pad 1539 and to push the epicardial pad 1539 distally relative to the delivery sheath 1563 and/or the inner stopper tube 1589A. The outer stopper tube 1589B can be releasably coupled to the epicardial pad 1539 such that the outer stopper tube 1589B is secured to the epicardial pad 1539 during insertion and/or delivery of the epicardial pad assembly 1501. In other embodiments, the outer stopper tube 1589B is configured to abut a portion of the epicardial pad 1539 such that it can limit proximal movement of the epicardial pad 1539 and push the epicardial pad 1539 distally.
The inner anchor 1592 can be formed with, for example, suitable medical-grade polymer or metal materials such as, for example, PEEK plastic, or stainless steel such as, for example, MP35N stainless steel. The inner anchor 1592 can also be formed with, for example, purified terephthalic acid (PTA), polylactic acid (PLA), or Nitinol®. In some embodiments, the inner anchor 1592 can be configured to remain in the heart. In other embodiments, the inner anchor 1592 can be formed of a bioabsorbable material or a bioresorbable material such that initially, the inner anchor 1592 can contribute to the stability of the epicardial pad 1539, and after a period of time, the inner anchor 1592 can be absorbed into the body. For example, in some cases, the inner anchor 1592 can be absorbed or at least partially absorbed when ingrowth of the epicardial pad 1539 to the heart has at least partially begun.
In use, after a prosthetic mitral valve has been deployed within the heart H via a transfemoral approach (as described herein), a transapical approach, or another suitable delivery approach, the tether 1536 attached to the prosthetic valve (not shown) can extend outside the apex of the heart H and outside the patient's body via a small incision (similar to incision I as shown above in
With the distal end 1578 of the delivery sheath 1563 positioned in the left ventricle LV, the inner anchor 1592 can be extended outside the distal end of the lumen of the delivery sheath 1563 and moved to its expanded configuration in the left ventricle LV, as shown in
When the inner anchor 1592 is positioned in the left ventricle LV, the delivery sheath 1563 can be moved proximally such that the delivery sheath 1563 is withdrawn from the left ventricle LV through the apex of the heart H. As shown in
As shown in
Upon delivery and deployment of the epicardial pad 1539 at the apex of the heart H, the delivery sheath 1563, the inner stopper tube 1589A and the outer stopper tube 1589B can be removed from the patient. The epicardial pad 1539 and tether 1536 can be secured in the desired position with, for example, clip(s) or a locking pin(s) or by tying the tether 1536.
In use, the side openings of the outer tube 1505 and the inner tube 1506 can be aligned such that the side openings at least partially overlap to collectively define an opening between the first sharp edge 1507 and the second sharp edge 1508. The tether 1536, the first suture 1594, and the second suture 1595 can be inserted through the distal end opening in the inner tube 1506 and threaded through the combined opening defined between the first sharp edge 1507 and the second sharp edge 1508. The rotational knob 1504 can rotate the inner tube 1506 relative to the outer tube 1507 (or vice versa) such that the second sharp edge 1508 rotates toward the first sharp edge 1507 and pinches the tether 1536, the first suture 1594, and/or the second suture 1595 between the first sharp edge 1507 and the second sharp edge 1508. The inner tube 1506 and the outer tube 1507 can be further rotated relative to each other such that the first sharp edge 1507 and the second sharp edge 1508 cut the tether 1536, the first suture 1594, and/or the second suture 1595.
In some embodiments, the cutting assembly 1503 can be used to cut the tether 1536 at a first time and be used to cut the first suture 1594 and/or the second suture 1595 at a second time before or after the first time. In other embodiments, the cutting assembly 1503 can be used to cut the tether 1536, the first suture 1594, and the second suture 1595 in one motion. In some embodiments, a first cutting assembly can be used to cut the tether 1536 and a second cutting assembly can be used to cut the first suture 1594 and/or the second suture 1595. The first cutting assembly can be a different size than the second cutting assembly depending on the size of the tether 1536, the first suture 1594 and/or the second suture 1595. In still other embodiments, the tether 1536, the first suture 1594 and/or the second suture 1595 can be trimmed using scissors, cauterization, or any other suitable cutting methods. Additionally, in some embodiments, the cutting assembly 1503 can be used to slide the third knot 1598 and the fourth knot 1599 distally along the first suture 1594 and the second suture 1595, respectively, to secure the epicardial pad 1539 and the inner anchor 1592 against the apex of the heart H.
The outer delivery sheath 1663 extends from the handle 1617 and defines a lumen 1613. The outer delivery sheath 1663 can have an outer diameter, for example, in the range of 3-5 mm. The inner tube 1619 can be moveably disposed within the lumen 1613 of the outer delivery sheath 1663. The inner tube 1619 defines a lumen (not shown) configured to receive a portion of the tether 1636. The push rod 1618 can be movably disposed within the lumen 1613 such that the push rod 1618 can control the movement of the locking member 1616 and the spiral member 1609. For example, the push rod 1618 can be used to push the locking member 1616 until most or all of the spiral member 1609 and/or the locking member 1616 has been pushed out of the distal end of the outer delivery sheath 1663.
The spiral member 1609 is configured to be manipulated and/or deformed (e.g., compressed and/or expanded) and, when released, return to its original (undeformed) shape. To achieve this, the spiral member 1609 can be formed of various materials, such as biocompatible metals or plastics, that have shape memory properties. For example, the spiral member 1609 can be formed with, for example, a suitable polymer, such as, for example, PEEK plastic. With regards to metals, Nitinol® has been found to be especially useful since it can be processed to be austenitic, martensitic or super elastic. Other shape memory alloys, such as Cu—Zn—Al—Ni alloys, and Cu—Al—Ni alloys, may also be used. The spiral member 1609 can also optionally be covered at least in part with a polyester material to promote ingrowth.
The spiral member 1609 can be moved from a first configuration when the spiral member 1609 is disposed within the outer delivery sheath 1663 to a second, expanded configuration when the spiral member 1609 is unconstrained (e.g., outside the lumen of the delivery sheath 1663). In the first configuration, the spiral member 1609 is radially compressed and placed into an elongated, stretched shape within the lumen 1613 of the outer delivery sheath 1663 as partially shown in
In some embodiments, the spiral member 1609 can be biased toward the second expanded configuration shown in
The locking member 1616 can include a collapsible sock portion 1629 that can be used to lock the spiral member 1609 in the third configuration as described in more detail below. More specifically, the locking member 1616 can define a lumen (not shown) configured to receive the inner tube 1619 such that the locking member 1616 can move distally along the inner tube 1619 as the push rod 1618 pushes the locking member 1616 distally relative to the outer delivery sheath 1663. Additionally, the push rod 1618 can define a lumen configured to receive the inner tube 1619 such that the push rod 1618 can travel over the inner tube 1619 as the push rod 1618 pushes the locking member 1616 and the spiral member 1609 distally through the outer delivery sheath 1663. The sock portion 1629 can be formed of, for example, a mesh or fabric material. The sock portion 1629 can be, for example, a Dacron sock. The sock portion 1629 is tubular shaped and can be moved from a first configuration during delivery of the epicardial pad 1639 in which the sock portion 1629 has a first length, to a second configuration in which the sock portion 1629 is at least partially collapsed upon itself and has a second shorter length than the first length. In the second configuration, the sock portion 1629 can engage at least some of the coils of the spiral member 1609 to maintain the spiral member 1609 in the third configuration (as shown in
As described above for previous embodiments, a tether locking mechanism (not shown) can be used to lock the tether 1636 to the epicardial pad 1639. For example, when the tether 1636 is taut (e.g., when a desired tension on the tether has been achieved), the tether locking mechanism can be configured to pin or lock the tether 1636 to the epicardial pad 1639. In some embodiments, the tether locking mechanism can be incorporated into the locking member 1616. Alternatively, the delivery device 1601 can include an extension element (not shown). The tether 1636 can be extended through the extension element. The extension element can be, for example, a tube, coil, or spring. The extension element can abut the locking member 1616 on the side of the locking member 1616 opposite the spiral member 1609 and extend proximally from the locking member 1616. The tether locking mechanism can be located on the proximal end of the extension element. In embodiments including the extension element, the tether locking mechanism can be located close to the skin of the patient after delivery of the spiral member 1609, providing easier access to the tether locking mechanism if a user (e.g., physician) desires to release the tether and remove the spiral member 1609 from the patient.
In some embodiments, the delivery device 1601 includes an inner delivery sheath (not shown). The spiral member 1609 in the first configuration can be movably disposed within the inner delivery sheath. The inner delivery sheath can be moved distally relative to the outer delivery sheath 1663 by rotating the inner delivery sheath such that the distal end of the inner delivery sheath extends beyond the distal end of the outer delivery sheath 1663. The rotation of the inner delivery sheath can assist in shaping the spiral member 1609 as it is being moved to the second and/or third configuration.
As shown in
In use, after a prosthetic mitral valve has been deployed within the heart H via a transfemoral approach (as described herein), a transapical approach, or another suitable delivery approach, the tether 1636 attached to the prosthetic valve (not shown) can extend outside the apex of the heart H and outside the patient's body via a small incision (similar to incision I as shown above in
When positioned between the epicardium E and the pericardium P, the distal end of the delivery sheath 1663 can be pulled proximally slightly to make room for the delivery of the epicardial pad 1639 (as shown in
After the stopper tube 1618 has pushed the epicardial pad 1639 far enough distally, the spiral member 1609 can transition to its second configuration outside the apex of the heart H, as shown in
After the guide wire 1737 has been extended between the apex Ap and the access site to the femoral vein, the delivery sheath 1726 can be removed. A leader tube 1724 is loaded over the guide wire 1737 starting outside the heart (and outside the procedural catheter 1735) and exiting the femoral vein at the femoral puncture site as shown in
The prosthetic valve 1700 can be configured the same as or similar to the prosthetic valves described herein. The prosthetic valve 1700 (shown schematically within the delivery sheath 1726 in
The delivery sheath 1726 can then be inserted through the femoral puncture site and moved through the femoral vein, through the inferior vena cava, into the right atrium, and then through the septum Sp until a distal end portion of the delivery sheath 1726 (with the valve 1700) is disposed within the left atrium LA, as shown in
With the distal end of the delivery sheath 1726 within the left atrium LA, the leader tube 1724 can be removed through the apex Ap, leaving the tether 1736 extended between the valve 1700 and outside the apex Ap of the heart (see
As shown in
In some embodiments, the pusher 1738 can also be used to aid in positioning the valve 1700 in a desired radial orientation within the left atrium LA. For example, the pusher device 1738 can define an internal lumen (not shown) that can be placed over an inner frame portion of the valve 1700 to hold the inner frame portion in a small diameter, which can help enable the valve 1700 to be positioned in a desired radial orientation and be seated within the annulus of the mitral valve. Further examples of such a valve assist device are described below with reference to
As shown in
Although not shown for all embodiments, any of the embodiments of a delivery device or system can include a handle or handle assembly to which the various delivery sheaths and components can be operatively coupled and which a user (e.g., physician) can grasp and use to manipulate the delivery device or system. For example, the handle assembly can include controls to move the various delivery sheaths and other components.
In addition, the systems and methods described herein can also be adapted for use with a prosthetic tricuspid valve. For example, in such a case, a procedural catheter can be inserted into the right ventricle of the heart, and the delivery sheath delivered to the right atrium of the heart either directly (transatrial), or via the jugular or femoral vein. In such a case, the delivery devices to deliver an epicardial pad can be disposed outside the heart below the right ventricle and/or be inserted within the right ventricle depending on the particular embodiment of the epicardial pad being delivered.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Where methods described above indicate certain events occurring in certain order, the ordering of certain events may be modified. Additionally, certain of the events may be performed concurrently in a parallel process when possible, as well as performed sequentially as described above.
Where schematics and/or embodiments described above indicate certain components arranged in certain orientations or positions, the arrangement of components may be modified. While the embodiments have been particularly shown and described, it will be understood that various changes in form and details may be made. Any portion of the apparatus and/or methods described herein may be combined in any combination, except mutually exclusive combinations. The embodiments described herein can include various combinations and/or sub-combinations of the functions, components, and/or features of the different embodiments described.
This application is a continuation of International PCT Application No. PCT/US2016/016567, entitled “Expandable Epicardial Pads and Devices and Methods for Delivery of Same,” filed Feb. 4, 2016, which claims priority to and is a continuation-in-part of International PCT Application No. PCT/US2015/014572, entitled “Apparatus and Methods for Transfemoral Delivery of Prosthetic Mitral Valve,” filed Feb. 5, 2015, which claims priority to and the benefit of U.S. Provisional Patent Application Ser. No. 61/935,899, entitled “Transfemoral Delivery of Prosthetic Mitral Valve,” filed Feb. 5, 2014, and U.S. Provisional Patent Application No. 62/100,548, entitled “Apparatus and Methods for Transfemoral Delivery of Prosthetic Mitral Valve,” filed Jan. 7, 2015. The disclosure of each of the above applications is incorporated herein by reference in its entirety. International PCT Application No. PCT/US2016/016567 also claims priority to and the benefit of U.S. Provisional Patent Application No. 62/212,803, entitled “Dilator Devices and Methods for Epicardial Pad Delivery,” filed Sep. 1, 2015, the disclosure of which is incorporated herein by reference in its entirety. International PCT Application No. PCT/US2016/016567 is also related to International PCT Application No. PCT/US2014/0049218, entitled “Epicardial Anchor Devices and Methods,” filed Jul. 31, 2014, the disclosure of which is incorporated herein by reference in its entirety
Number | Name | Date | Kind |
---|---|---|---|
2697008 | Rowley | Dec 1954 | A |
3409013 | Berry | Nov 1968 | A |
3472230 | Fogarty et al. | Oct 1969 | A |
3476101 | Ross | Nov 1969 | A |
3548417 | Kisher | Dec 1970 | A |
3587115 | Shiley | Jun 1971 | A |
3657744 | Ersek | Apr 1972 | A |
3671979 | Moulopoulos | Jun 1972 | A |
3714671 | Edwards et al. | Feb 1973 | A |
3755823 | Hancock | Sep 1973 | A |
3976079 | Samuels et al. | Aug 1976 | A |
4003382 | Dyke | Jan 1977 | A |
4035849 | Angell et al. | Jul 1977 | A |
4056854 | Boretos et al. | Nov 1977 | A |
4073438 | Meyer | Feb 1978 | A |
4106129 | Carpentier et al. | Aug 1978 | A |
4222126 | Boretos et al. | Sep 1980 | A |
4265694 | Boretos et al. | May 1981 | A |
4297749 | Davis et al. | Nov 1981 | A |
4339831 | Johnson | Jul 1982 | A |
4343048 | Ross et al. | Aug 1982 | A |
4345340 | Rosen | Aug 1982 | A |
4373216 | Klawitter | Feb 1983 | A |
4406022 | Roy | Sep 1983 | A |
4470157 | Love | Sep 1984 | A |
4490859 | Black et al. | Jan 1985 | A |
4535483 | Klawitter et al. | Aug 1985 | A |
4574803 | Storz | Mar 1986 | A |
4585705 | Broderick et al. | Apr 1986 | A |
4592340 | Boyles | Jun 1986 | A |
4605407 | Black et al. | Aug 1986 | A |
4612011 | Kautzky | Sep 1986 | A |
4626255 | Reichart et al. | Dec 1986 | A |
4638886 | Marietta | Jan 1987 | A |
4643732 | Pietsch et al. | Feb 1987 | A |
4655771 | Wallsten | Apr 1987 | A |
4692164 | Dzemeshkevich et al. | Sep 1987 | A |
4733665 | Palmaz | Mar 1988 | A |
4759758 | Gabbay | Jul 1988 | A |
4762128 | Rosenbluth | Aug 1988 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4787899 | Lazarus | Nov 1988 | A |
4787901 | Baykut | Nov 1988 | A |
4796629 | Grayzel | Jan 1989 | A |
4824180 | Levrai | Apr 1989 | A |
4829990 | Thuroff et al. | May 1989 | A |
4830117 | Capasso | May 1989 | A |
4851001 | Taheri | Jul 1989 | A |
4856516 | Hillstead | Aug 1989 | A |
4878495 | Grayzel | Nov 1989 | A |
4878906 | Lindemann et al. | Nov 1989 | A |
4883458 | Shiber | Nov 1989 | A |
4922905 | Strecker | May 1990 | A |
4923013 | De Gennaro | May 1990 | A |
4960424 | Grooters | Oct 1990 | A |
4966604 | Reiss | Oct 1990 | A |
4979939 | Shiber | Dec 1990 | A |
4986830 | Owens et al. | Jan 1991 | A |
4994077 | Dobben | Feb 1991 | A |
4996873 | Takeuchi | Mar 1991 | A |
5007896 | Shiber | Apr 1991 | A |
5026366 | Leckrone | Jun 1991 | A |
5032128 | Alonso | Jul 1991 | A |
5035706 | Giantureo et al. | Jul 1991 | A |
5037434 | Lane | Aug 1991 | A |
5047041 | Sammuels | Sep 1991 | A |
5059177 | Towne et al. | Oct 1991 | A |
5064435 | Porter | Nov 1991 | A |
5080668 | Bolz et al. | Jan 1992 | A |
5085635 | Cragg | Feb 1992 | A |
5089015 | Ross | Feb 1992 | A |
5152771 | Sabbaghian et al. | Oct 1992 | A |
5163953 | Vince | Nov 1992 | A |
5167628 | Boyles | Dec 1992 | A |
5192297 | Hull | Mar 1993 | A |
5201880 | Wright et al. | Apr 1993 | A |
5266073 | Wall | Nov 1993 | A |
5282847 | Trescony et al. | Feb 1994 | A |
5295958 | Shturman | Mar 1994 | A |
5306296 | Wright et al. | Apr 1994 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5336616 | Livesey et al. | Aug 1994 | A |
5344442 | Deac | Sep 1994 | A |
5360444 | Kusuhara | Nov 1994 | A |
5364407 | Poll | Nov 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5397351 | Pavcnik et al. | Mar 1995 | A |
5411055 | Kane et al. | May 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5415667 | Frater | May 1995 | A |
5443446 | Shturman | Aug 1995 | A |
5480424 | Cox | Jan 1996 | A |
5500014 | Quijano et al. | Mar 1996 | A |
5545209 | Roberts et al. | Aug 1996 | A |
5545214 | Stevens | Aug 1996 | A |
5549665 | Vesely et al. | Aug 1996 | A |
5554184 | Machiraju | Sep 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5571175 | Vanney et al. | Nov 1996 | A |
5591185 | Kilmer et al. | Jan 1997 | A |
5607462 | Imran | Mar 1997 | A |
5607464 | Trescony et al. | Mar 1997 | A |
5609626 | Quijano et al. | Mar 1997 | A |
5639274 | Fischell et al. | Jun 1997 | A |
5662704 | Gross | Sep 1997 | A |
5665115 | Cragg | Sep 1997 | A |
5674279 | Wright et al. | Oct 1997 | A |
5697905 | Ambrosio | Dec 1997 | A |
5702368 | Stevens et al. | Dec 1997 | A |
5716417 | Girard et al. | Feb 1998 | A |
5728068 | Leone et al. | Mar 1998 | A |
5728151 | Garrison et al. | Mar 1998 | A |
5735842 | Krueger et al. | Apr 1998 | A |
5741333 | Frid | Apr 1998 | A |
5749890 | Shaknovich | May 1998 | A |
5756476 | Epstein | May 1998 | A |
5769812 | Stevens et al. | Jun 1998 | A |
5792179 | Sideris | Aug 1998 | A |
5800508 | Goicoechea et al. | Sep 1998 | A |
5833673 | Ockuly et al. | Nov 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5855597 | Jayaraman | Jan 1999 | A |
5855601 | Bessler | Jan 1999 | A |
5855602 | Angell | Jan 1999 | A |
5904697 | Gifford, III et al. | May 1999 | A |
5925063 | Khosravi | Jul 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
5968052 | Sullivan, III et al. | Oct 1999 | A |
5968068 | Dehdashtian et al. | Oct 1999 | A |
5972030 | Garrison et al. | Oct 1999 | A |
5993481 | Marcade et al. | Nov 1999 | A |
6027525 | Suh et al. | Feb 2000 | A |
6042607 | Williamson, IV et al. | Mar 2000 | A |
6045497 | Schweich, Jr. et al. | Apr 2000 | A |
6063112 | Sgro et al. | May 2000 | A |
6077214 | Mortier et al. | Jun 2000 | A |
6099508 | Bousquet | Aug 2000 | A |
6132473 | Williams et al. | Oct 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6171335 | Wheatley et al. | Jan 2001 | B1 |
6174327 | Mertens et al. | Jan 2001 | B1 |
6183411 | Mortier et al. | Feb 2001 | B1 |
6210408 | Chandrasakaran et al. | Apr 2001 | B1 |
6217585 | Houser et al. | Apr 2001 | B1 |
6221091 | Khosravi | Apr 2001 | B1 |
6231602 | Carpentier et al. | May 2001 | B1 |
6245102 | Jayaraman | Jun 2001 | B1 |
6260552 | Mortier et al. | Jul 2001 | B1 |
6261222 | Schweich, Jr. et al. | Jul 2001 | B1 |
6264602 | Mortier et al. | Jul 2001 | B1 |
6287339 | Vazquez et al. | Sep 2001 | B1 |
6299637 | Shaolian | Oct 2001 | B1 |
6302906 | Goecoechea et al. | Oct 2001 | B1 |
6312465 | Griffin et al. | Nov 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6350277 | Kocur | Feb 2002 | B1 |
6358277 | Duran | Mar 2002 | B1 |
6379372 | Dehdashtian et al. | Apr 2002 | B1 |
6402679 | Mortier et al. | Jun 2002 | B1 |
6402680 | Mortier et al. | Jun 2002 | B2 |
6402781 | Langberg et al. | Jun 2002 | B1 |
6406420 | McCarthy et al. | Jun 2002 | B1 |
6425916 | Garrison et al. | Jul 2002 | B1 |
6440164 | Di Matteo et al. | Aug 2002 | B1 |
6454799 | Schreck | Sep 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6461382 | Cao | Oct 2002 | B1 |
6468660 | Ogle et al. | Oct 2002 | B2 |
6482228 | Norred | Nov 2002 | B1 |
6488704 | Connelly et al. | Dec 2002 | B1 |
6537198 | Vidlund et al. | Mar 2003 | B1 |
6540782 | Snyders | Apr 2003 | B1 |
6569196 | Vesely et al. | May 2003 | B1 |
6575252 | Reed | Jun 2003 | B2 |
6582462 | Andersen et al. | Jun 2003 | B1 |
6605112 | Moll | Aug 2003 | B1 |
6616684 | Vidlund et al. | Sep 2003 | B1 |
6622730 | Ekvall et al. | Sep 2003 | B2 |
6629534 | St. Goar et al. | Oct 2003 | B1 |
6629921 | Schweich, Jr. et al. | Oct 2003 | B1 |
6648077 | Hoffman | Nov 2003 | B2 |
6648921 | Anderson et al. | Nov 2003 | B2 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6669724 | Park et al. | Dec 2003 | B2 |
6706065 | Langberg et al. | Mar 2004 | B2 |
6709456 | Langberg et al. | Mar 2004 | B2 |
6723038 | Schroeder et al. | Apr 2004 | B1 |
6726715 | Sutherland | Apr 2004 | B2 |
6730118 | Spenser et al. | May 2004 | B2 |
6733525 | Yang et al. | May 2004 | B2 |
6740105 | Yodfat et al. | May 2004 | B2 |
6746401 | Panescu | Jun 2004 | B2 |
6746471 | Mortier et al. | Jun 2004 | B2 |
6752813 | Goldfarb et al. | Jun 2004 | B2 |
6764510 | Vidlund et al. | Jul 2004 | B2 |
6797002 | Spence et al. | Sep 2004 | B2 |
6810882 | Langberg et al. | Nov 2004 | B2 |
6830584 | Seguin | Dec 2004 | B1 |
6854668 | Wancho et al. | Feb 2005 | B2 |
6855144 | Lesh | Feb 2005 | B2 |
6858001 | Aboul-Hosn | Feb 2005 | B1 |
6890353 | Cohn et al. | May 2005 | B2 |
6893460 | Spenser et al. | May 2005 | B2 |
6896690 | Lambrecht et al. | May 2005 | B1 |
6908424 | Mortier et al. | Jun 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
6936067 | Buchanan | Aug 2005 | B2 |
6945996 | Sedransk | Sep 2005 | B2 |
6955175 | Stevens et al. | Oct 2005 | B2 |
6974476 | McGuckin et al. | Dec 2005 | B2 |
6976543 | Fischer | Dec 2005 | B1 |
6997950 | Chawia | Feb 2006 | B2 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7018408 | Bailey et al. | Mar 2006 | B2 |
7044905 | Vidlund et al. | May 2006 | B2 |
7060021 | Wilk | Jun 2006 | B1 |
7077862 | Vidlund et al. | Jul 2006 | B2 |
7087064 | Hyde | Aug 2006 | B1 |
7100614 | Stevens et al. | Sep 2006 | B2 |
7101395 | Tremulis et al. | Sep 2006 | B2 |
7108717 | Freidberg | Sep 2006 | B2 |
7112219 | Vidlund et al. | Sep 2006 | B2 |
7115141 | Menz et al. | Oct 2006 | B2 |
7141064 | Scott et al. | Nov 2006 | B2 |
7175656 | Khairkhahan | Feb 2007 | B2 |
7198646 | Figulla et al. | Apr 2007 | B2 |
7201772 | Schwammenthal et al. | Apr 2007 | B2 |
7247134 | Vidlund et al. | Jul 2007 | B2 |
7252682 | Seguin | Aug 2007 | B2 |
7267686 | DiMatteo et al. | Sep 2007 | B2 |
7275604 | Wall | Oct 2007 | B1 |
7276078 | Spenser et al. | Oct 2007 | B2 |
7276084 | Yang et al. | Oct 2007 | B2 |
7316706 | Bloom et al. | Jan 2008 | B2 |
7318278 | Zhang et al. | Jan 2008 | B2 |
7326236 | Andreas et al. | Feb 2008 | B2 |
7329278 | Seguin et al. | Feb 2008 | B2 |
7331991 | Kheradvar et al. | Feb 2008 | B2 |
7335213 | Hyde et al. | Feb 2008 | B1 |
7361137 | Taylor | Apr 2008 | B2 |
7374571 | Pease et al. | May 2008 | B2 |
7377941 | Rhee et al. | May 2008 | B2 |
7381210 | Zarbatany et al. | Jun 2008 | B2 |
7381218 | Schreck | Jun 2008 | B2 |
7393360 | Spenser et al. | Jul 2008 | B2 |
7404824 | Webler et al. | Jul 2008 | B1 |
7416554 | Lam et al. | Aug 2008 | B2 |
7422072 | Dade | Sep 2008 | B2 |
7429269 | Schwammenthal et al. | Sep 2008 | B2 |
7442204 | Schwammenthal et al. | Oct 2008 | B2 |
7445631 | Salahieh et al. | Nov 2008 | B2 |
7462191 | Spenser | Dec 2008 | B2 |
7470285 | Nugent et al. | Dec 2008 | B2 |
7500989 | Solem et al. | Mar 2009 | B2 |
7503931 | Kowalsky et al. | Mar 2009 | B2 |
7510572 | Gabbay | Mar 2009 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7513908 | Lattouf | Apr 2009 | B2 |
7524330 | Berreklouw | Apr 2009 | B2 |
7527647 | Spence | May 2009 | B2 |
7534260 | Lattouf | May 2009 | B2 |
7556646 | Yang et al. | Jul 2009 | B2 |
7579381 | Dove | Aug 2009 | B2 |
7585321 | Cribier | Sep 2009 | B2 |
7591847 | Navia et al. | Sep 2009 | B2 |
7618446 | Andersen et al. | Nov 2009 | B2 |
7618447 | Case et al. | Nov 2009 | B2 |
7621948 | Herrmann et al. | Nov 2009 | B2 |
7632304 | Park | Dec 2009 | B2 |
7632308 | Loulmet | Dec 2009 | B2 |
7635386 | Gammie | Dec 2009 | B1 |
7674222 | Nikolic et al. | Mar 2010 | B2 |
7674286 | Alfieri et al. | Mar 2010 | B2 |
7695510 | Bloom et al. | Apr 2010 | B2 |
7708775 | Rowe et al. | May 2010 | B2 |
7748389 | Salahieh et al. | Jul 2010 | B2 |
7766961 | Patel et al. | Aug 2010 | B2 |
7783366 | Morgan | Aug 2010 | B1 |
7789909 | Andersen et al. | Sep 2010 | B2 |
7803168 | Gifford et al. | Sep 2010 | B2 |
7803184 | McGuckin, Jr. et al. | Sep 2010 | B2 |
7803185 | Gabbay | Sep 2010 | B2 |
7806928 | Rowe et al. | Oct 2010 | B2 |
7837727 | Goetz et al. | Nov 2010 | B2 |
7854762 | Speziali et al. | Dec 2010 | B2 |
7892281 | Seguin et al. | Feb 2011 | B2 |
7896915 | Guyenot et al. | Mar 2011 | B2 |
7901454 | Kapadia et al. | Mar 2011 | B2 |
7927370 | Webler et al. | Apr 2011 | B2 |
7931630 | Nishtala et al. | Apr 2011 | B2 |
7942928 | Webler et al. | May 2011 | B2 |
7955247 | Levine et al. | Jun 2011 | B2 |
7955385 | Crittenden | Jun 2011 | B2 |
7972378 | Tabor et al. | Jul 2011 | B2 |
7988727 | Santamore et al. | Aug 2011 | B2 |
7993394 | Hariton et al. | Aug 2011 | B2 |
8007992 | Tian et al. | Aug 2011 | B2 |
8029556 | Rowe | Oct 2011 | B2 |
8043368 | Crabtree | Oct 2011 | B2 |
8052749 | Salahieh | Nov 2011 | B2 |
8052750 | Tuval et al. | Nov 2011 | B2 |
8052751 | Aklog et al. | Nov 2011 | B2 |
8062355 | Figulla et al. | Nov 2011 | B2 |
8062359 | Marquez et al. | Nov 2011 | B2 |
8070802 | Lamphere et al. | Dec 2011 | B2 |
8109996 | Stacchino et al. | Feb 2012 | B2 |
8142495 | Hasenkam et al. | Mar 2012 | B2 |
8152821 | Gambale et al. | Apr 2012 | B2 |
8157810 | Case et al. | Apr 2012 | B2 |
8167932 | Bourang et al. | May 2012 | B2 |
8167934 | Styrc et al. | May 2012 | B2 |
8187299 | Goldfarb et al. | May 2012 | B2 |
8206439 | Gomez Duran | Jun 2012 | B2 |
8216301 | Bonhoeffer et al. | Jul 2012 | B2 |
8226711 | Mortier et al. | Jul 2012 | B2 |
8236045 | Benichou et al. | Aug 2012 | B2 |
8241274 | Keogh et al. | Aug 2012 | B2 |
8252051 | Chau et al. | Aug 2012 | B2 |
8303653 | Bonhoeffer et al. | Nov 2012 | B2 |
8308796 | Lashinski et al. | Nov 2012 | B2 |
8323334 | Deem et al. | Dec 2012 | B2 |
8353955 | Styrc et al. | Jan 2013 | B2 |
RE44075 | Williamson et al. | Mar 2013 | E |
8449599 | Chau et al. | May 2013 | B2 |
8454656 | Tuval | Jun 2013 | B2 |
8470028 | Thornton et al. | Jun 2013 | B2 |
8480730 | Maurer et al. | Jul 2013 | B2 |
8486138 | Vesely | Jul 2013 | B2 |
8506623 | Wilson et al. | Aug 2013 | B2 |
8506624 | Vidlund et al. | Aug 2013 | B2 |
8578705 | Sindano et al. | Nov 2013 | B2 |
8579913 | Nielsen | Nov 2013 | B2 |
8591573 | Barone | Nov 2013 | B2 |
8591576 | Hasenkam et al. | Nov 2013 | B2 |
8597347 | Maurer et al. | Dec 2013 | B2 |
8685086 | Navia et al. | Apr 2014 | B2 |
8790394 | Miller et al. | Jul 2014 | B2 |
8845717 | Khairkhahan et al. | Sep 2014 | B2 |
8888843 | Khairkhahan et al. | Nov 2014 | B2 |
8900214 | Nance et al. | Dec 2014 | B2 |
8900295 | Migliazza et al. | Dec 2014 | B2 |
8926696 | Cabiri et al. | Jan 2015 | B2 |
8932342 | McHugo et al. | Jan 2015 | B2 |
8932348 | Solem et al. | Jan 2015 | B2 |
8945208 | Jimenez et al. | Feb 2015 | B2 |
8956407 | Macoviak et al. | Feb 2015 | B2 |
8961597 | Subramanian et al. | Feb 2015 | B2 |
8979922 | Thambar et al. | Mar 2015 | B2 |
8986376 | Solem | Mar 2015 | B2 |
9011522 | Annest et al. | Apr 2015 | B2 |
9023099 | Duffy et al. | May 2015 | B2 |
9034032 | McLean et al. | May 2015 | B2 |
9034033 | McLean et al. | May 2015 | B2 |
9039757 | McLean et al. | May 2015 | B2 |
9039759 | Alkhatib et al. | May 2015 | B2 |
9078645 | Conklin et al. | Jul 2015 | B2 |
9078749 | Lutter et al. | Jul 2015 | B2 |
9084676 | Chau et al. | Jul 2015 | B2 |
9095433 | Lutter et al. | Aug 2015 | B2 |
9125742 | Yoganathan et al. | Sep 2015 | B2 |
9149357 | Sequin | Oct 2015 | B2 |
9161837 | Kapadia | Oct 2015 | B2 |
9168137 | Subramanian et al. | Oct 2015 | B2 |
9232995 | Kovalsky et al. | Jan 2016 | B2 |
9232998 | Wilson et al. | Jan 2016 | B2 |
9232999 | Maurer et al. | Jan 2016 | B2 |
9241702 | Maisano et al. | Jan 2016 | B2 |
9254192 | Lutter et al. | Feb 2016 | B2 |
9265608 | Miller et al. | Feb 2016 | B2 |
9289295 | Aklog et al. | Mar 2016 | B2 |
9289297 | Wilson et al. | Mar 2016 | B2 |
9345573 | Nyuli et al. | May 2016 | B2 |
9468526 | Subramanian et al. | Oct 2016 | B2 |
9480557 | Pellegrini et al. | Nov 2016 | B2 |
9480559 | Vidlund et al. | Nov 2016 | B2 |
9526611 | Tegels et al. | Dec 2016 | B2 |
9597181 | Christianson et al. | Mar 2017 | B2 |
9610159 | Christianson et al. | Apr 2017 | B2 |
9675454 | Vidlund et al. | Jun 2017 | B2 |
9730792 | Lutter et al. | Aug 2017 | B2 |
9827092 | Vidlund et al. | Nov 2017 | B2 |
9833315 | Vidlund et al. | Dec 2017 | B2 |
9848880 | Coleman | Dec 2017 | B2 |
9867700 | Bakis et al. | Jan 2018 | B2 |
9883941 | Hastings et al. | Feb 2018 | B2 |
9895221 | Vidlund | Feb 2018 | B2 |
9986993 | Vidlund et al. | Jun 2018 | B2 |
10226334 | Rowe | Mar 2019 | B2 |
20010018611 | Solem et al. | Aug 2001 | A1 |
20010021872 | Bailey et al. | Sep 2001 | A1 |
20010025171 | Mortier et al. | Sep 2001 | A1 |
20020010427 | Scarfone et al. | Jan 2002 | A1 |
20020116054 | Lundell et al. | Aug 2002 | A1 |
20020139056 | Finnell | Oct 2002 | A1 |
20020151961 | Lashinski et al. | Oct 2002 | A1 |
20020161377 | Rabkin | Oct 2002 | A1 |
20020173842 | Buchanan | Nov 2002 | A1 |
20020183827 | Derus et al. | Dec 2002 | A1 |
20030010509 | Hoffman | Jan 2003 | A1 |
20030036698 | Kohler et al. | Feb 2003 | A1 |
20030050694 | Yang et al. | Mar 2003 | A1 |
20030069593 | Tremulis et al. | Apr 2003 | A1 |
20030078652 | Sutherland | Apr 2003 | A1 |
20030100939 | Yodfat et al. | May 2003 | A1 |
20030105519 | Fasol et al. | Jun 2003 | A1 |
20030105520 | Alferness et al. | Jun 2003 | A1 |
20030120340 | Liska et al. | Jun 2003 | A1 |
20030130731 | Vidlund et al. | Jul 2003 | A1 |
20030149476 | Damm et al. | Aug 2003 | A1 |
20030212454 | Scott et al. | Nov 2003 | A1 |
20040039436 | Spenser et al. | Feb 2004 | A1 |
20040049211 | Tremulis et al. | Mar 2004 | A1 |
20040049266 | Anduiza et al. | Mar 2004 | A1 |
20040064014 | Melvin et al. | Apr 2004 | A1 |
20040092858 | Wilson et al. | May 2004 | A1 |
20040093075 | Kuehne | May 2004 | A1 |
20040097865 | Anderson et al. | May 2004 | A1 |
20040127983 | Mortier et al. | Jul 2004 | A1 |
20040133263 | Dusbabek et al. | Jul 2004 | A1 |
20040147958 | Lam et al. | Jul 2004 | A1 |
20040152947 | Schroeder et al. | Aug 2004 | A1 |
20040162610 | Liska et al. | Aug 2004 | A1 |
20040163828 | Silverstein et al. | Aug 2004 | A1 |
20040181239 | Dorn et al. | Sep 2004 | A1 |
20040186565 | Schreck | Sep 2004 | A1 |
20040186566 | Hindrichs et al. | Sep 2004 | A1 |
20040210304 | Seguin et al. | Oct 2004 | A1 |
20040260317 | Bloom et al. | Dec 2004 | A1 |
20040260389 | Case et al. | Dec 2004 | A1 |
20050004652 | Van der Burg et al. | Jan 2005 | A1 |
20050004666 | Alfieri et al. | Jan 2005 | A1 |
20050075727 | Wheatley | Apr 2005 | A1 |
20050080402 | Santamore et al. | Apr 2005 | A1 |
20050085900 | Case et al. | Apr 2005 | A1 |
20050096498 | Houser et al. | May 2005 | A1 |
20050107661 | Lau et al. | May 2005 | A1 |
20050113798 | Slater et al. | May 2005 | A1 |
20050113810 | Houser et al. | May 2005 | A1 |
20050113811 | Houser et al. | May 2005 | A1 |
20050119519 | Girard et al. | Jun 2005 | A9 |
20050121206 | Dolan | Jun 2005 | A1 |
20050125012 | Houser et al. | Jun 2005 | A1 |
20050137686 | Salahieh et al. | Jun 2005 | A1 |
20050137688 | Salahieh et al. | Jun 2005 | A1 |
20050137695 | Salahieh et al. | Jun 2005 | A1 |
20050137698 | Salahieh et al. | Jun 2005 | A1 |
20050148815 | Mortier et al. | Jul 2005 | A1 |
20050177180 | Kaganov et al. | Aug 2005 | A1 |
20050197695 | Stacchino | Sep 2005 | A1 |
20050203614 | Forster et al. | Sep 2005 | A1 |
20050203615 | Forster et al. | Sep 2005 | A1 |
20050203617 | Forster et al. | Sep 2005 | A1 |
20050234546 | Nugent et al. | Oct 2005 | A1 |
20050240200 | Bergheim | Oct 2005 | A1 |
20050251209 | Saadat et al. | Nov 2005 | A1 |
20050256567 | Lim et al. | Nov 2005 | A1 |
20050283231 | Haug et al. | Dec 2005 | A1 |
20050288766 | Plain et al. | Dec 2005 | A1 |
20060004442 | Spenser et al. | Jan 2006 | A1 |
20060025784 | Starksen et al. | Feb 2006 | A1 |
20060025857 | Bergheim et al. | Feb 2006 | A1 |
20060030885 | Hyde | Feb 2006 | A1 |
20060042803 | Gallaher | Mar 2006 | A1 |
20060047338 | Jenson et al. | Mar 2006 | A1 |
20060052868 | Mortier et al. | Mar 2006 | A1 |
20060058872 | Salahieh et al. | Mar 2006 | A1 |
20060074484 | Huber | Apr 2006 | A1 |
20060094983 | Burbank et al. | May 2006 | A1 |
20060129025 | Levine et al. | Jun 2006 | A1 |
20060142784 | Kontos | Jun 2006 | A1 |
20060161040 | McCarthy et al. | Jul 2006 | A1 |
20060161249 | Realyvasquez et al. | Jul 2006 | A1 |
20060167541 | Lattouf | Jul 2006 | A1 |
20060195134 | Crittenden | Aug 2006 | A1 |
20060195183 | Navia et al. | Aug 2006 | A1 |
20060229708 | Powell et al. | Oct 2006 | A1 |
20060229719 | Marquez et al. | Oct 2006 | A1 |
20060241745 | Solem | Oct 2006 | A1 |
20060247491 | Vidlund et al. | Nov 2006 | A1 |
20060252984 | Rahdert et al. | Nov 2006 | A1 |
20060259135 | Navia et al. | Nov 2006 | A1 |
20060259136 | Nguyen et al. | Nov 2006 | A1 |
20060259137 | Artof et al. | Nov 2006 | A1 |
20060276874 | Wilson et al. | Dec 2006 | A1 |
20060282161 | Huynh et al. | Dec 2006 | A1 |
20060287716 | Banbury et al. | Dec 2006 | A1 |
20060287717 | Rowe et al. | Dec 2006 | A1 |
20070005131 | Taylor | Jan 2007 | A1 |
20070005231 | Seguchi | Jan 2007 | A1 |
20070010877 | Salahieh et al. | Jan 2007 | A1 |
20070016286 | Herrmann et al. | Jan 2007 | A1 |
20070016288 | Gurskis et al. | Jan 2007 | A1 |
20070027535 | Purdy et al. | Feb 2007 | A1 |
20070038291 | Case et al. | Feb 2007 | A1 |
20070050020 | Spence | Mar 2007 | A1 |
20070061010 | Hauser et al. | Mar 2007 | A1 |
20070066863 | Rafiee et al. | Mar 2007 | A1 |
20070073387 | Forster et al. | Mar 2007 | A1 |
20070078297 | Rafiee et al. | Apr 2007 | A1 |
20070083076 | Lichtenstein | Apr 2007 | A1 |
20070083259 | Bloom et al. | Apr 2007 | A1 |
20070093890 | Eliasen et al. | Apr 2007 | A1 |
20070100439 | Cangialosi et al. | May 2007 | A1 |
20070112422 | Dehdashtian | May 2007 | A1 |
20070112425 | Schaller et al. | May 2007 | A1 |
20070118151 | Davidson | May 2007 | A1 |
20070118154 | Crabtree | May 2007 | A1 |
20070118210 | Pinchuk | May 2007 | A1 |
20070118213 | Loulmet | May 2007 | A1 |
20070142906 | Figulla et al. | Jun 2007 | A1 |
20070161846 | Nikolic et al. | Jul 2007 | A1 |
20070162048 | Quinn et al. | Jul 2007 | A1 |
20070162103 | Case et al. | Jul 2007 | A1 |
20070168024 | Khairkhahan | Jul 2007 | A1 |
20070185565 | Schwammenthal et al. | Aug 2007 | A1 |
20070185571 | Kapadia et al. | Aug 2007 | A1 |
20070203575 | Forster et al. | Aug 2007 | A1 |
20070213813 | Von Segesser et al. | Sep 2007 | A1 |
20070215362 | Rodgers | Sep 2007 | A1 |
20070221388 | Johnson | Sep 2007 | A1 |
20070233239 | Navia et al. | Oct 2007 | A1 |
20070239265 | Birdsall | Oct 2007 | A1 |
20070256843 | Pahila | Nov 2007 | A1 |
20070265658 | Nelson et al. | Nov 2007 | A1 |
20070267202 | Mariller | Nov 2007 | A1 |
20070270932 | Headley et al. | Nov 2007 | A1 |
20070270943 | Solem | Nov 2007 | A1 |
20070293944 | Spenser et al. | Dec 2007 | A1 |
20080009940 | Cribier | Jan 2008 | A1 |
20080033543 | Gurskis et al. | Feb 2008 | A1 |
20080065011 | Marchand et al. | Mar 2008 | A1 |
20080071361 | Tuval et al. | Mar 2008 | A1 |
20080071362 | Tuval et al. | Mar 2008 | A1 |
20080071363 | Tuval et al. | Mar 2008 | A1 |
20080071366 | Tuval et al. | Mar 2008 | A1 |
20080071368 | Tuval et al. | Mar 2008 | A1 |
20080071369 | Tuval et al. | Mar 2008 | A1 |
20080082163 | Woo | Apr 2008 | A1 |
20080082166 | Styrc et al. | Apr 2008 | A1 |
20080091264 | Machold et al. | Apr 2008 | A1 |
20080109069 | Coleman et al. | May 2008 | A1 |
20080114442 | Mitchell et al. | May 2008 | A1 |
20080125861 | Webler et al. | May 2008 | A1 |
20080140189 | Nguyen et al. | Jun 2008 | A1 |
20080147179 | Cai et al. | Jun 2008 | A1 |
20080154355 | Benichou et al. | Jun 2008 | A1 |
20080154356 | Obermiller et al. | Jun 2008 | A1 |
20080161911 | Revuelta et al. | Jul 2008 | A1 |
20080172035 | Starksen et al. | Jul 2008 | A1 |
20080177381 | Navia et al. | Jul 2008 | A1 |
20080183203 | Fitzgerald et al. | Jul 2008 | A1 |
20080183273 | Mesana et al. | Jul 2008 | A1 |
20080188928 | Salahieh et al. | Aug 2008 | A1 |
20080208328 | Antocci et al. | Aug 2008 | A1 |
20080208332 | Lamphere et al. | Aug 2008 | A1 |
20080221672 | Lamphere et al. | Sep 2008 | A1 |
20080243150 | Starksen et al. | Oct 2008 | A1 |
20080243245 | Thambar et al. | Oct 2008 | A1 |
20080255660 | Guyenot et al. | Oct 2008 | A1 |
20080255661 | Straubinger et al. | Oct 2008 | A1 |
20080281411 | Berreklouw | Nov 2008 | A1 |
20080288060 | Kaye et al. | Nov 2008 | A1 |
20080293996 | Evans et al. | Nov 2008 | A1 |
20090005863 | Goetz et al. | Jan 2009 | A1 |
20090048668 | Wilson et al. | Feb 2009 | A1 |
20090054968 | Bonhoeffer et al. | Feb 2009 | A1 |
20090054974 | McGuckin, Jr. et al. | Feb 2009 | A1 |
20090062908 | Bonhoeffer et al. | Mar 2009 | A1 |
20090076598 | Salahieh et al. | Mar 2009 | A1 |
20090082619 | De Marchena | Mar 2009 | A1 |
20090088836 | Bishop et al. | Apr 2009 | A1 |
20090099410 | De Marchena | Apr 2009 | A1 |
20090112309 | Jaramillo | Apr 2009 | A1 |
20090131849 | Maurer et al. | May 2009 | A1 |
20090132035 | Roth et al. | May 2009 | A1 |
20090137861 | Goldberg et al. | May 2009 | A1 |
20090138079 | Tuval et al. | May 2009 | A1 |
20090157175 | Benichou | Jun 2009 | A1 |
20090164005 | Dove et al. | Jun 2009 | A1 |
20090171432 | Von Segesser et al. | Jul 2009 | A1 |
20090171447 | Von Segesser et al. | Jul 2009 | A1 |
20090171456 | Kveen et al. | Jul 2009 | A1 |
20090177266 | Powell et al. | Jul 2009 | A1 |
20090192601 | Rafiee et al. | Jul 2009 | A1 |
20090210052 | Forster et al. | Aug 2009 | A1 |
20090216322 | Le et al. | Aug 2009 | A1 |
20090222076 | Figulla et al. | Sep 2009 | A1 |
20090224529 | Gill | Sep 2009 | A1 |
20090234318 | Loulmet et al. | Sep 2009 | A1 |
20090234435 | Johnson et al. | Sep 2009 | A1 |
20090234443 | Ottma et al. | Sep 2009 | A1 |
20090240320 | Tuval et al. | Sep 2009 | A1 |
20090248149 | Gabbay | Oct 2009 | A1 |
20090276040 | Rowe et al. | Nov 2009 | A1 |
20090281619 | Le et al. | Nov 2009 | A1 |
20090287299 | Tabor et al. | Nov 2009 | A1 |
20090292262 | Adams et al. | Nov 2009 | A1 |
20090319037 | Rowe et al. | Dec 2009 | A1 |
20090326575 | Galdonik et al. | Dec 2009 | A1 |
20100004740 | Seguin et al. | Jan 2010 | A1 |
20100016958 | St. Goar et al. | Jan 2010 | A1 |
20100021382 | Dorshow et al. | Jan 2010 | A1 |
20100023117 | Yoganathan et al. | Jan 2010 | A1 |
20100036479 | Hill et al. | Feb 2010 | A1 |
20100049313 | Alon et al. | Feb 2010 | A1 |
20100082094 | Quadri et al. | Apr 2010 | A1 |
20100121435 | Subramanian et al. | May 2010 | A1 |
20100121437 | Subramanian et al. | May 2010 | A1 |
20100161041 | Maisano et al. | Jun 2010 | A1 |
20100168839 | Braido et al. | Jul 2010 | A1 |
20100179641 | Ryan et al. | Jul 2010 | A1 |
20100185277 | Braido et al. | Jul 2010 | A1 |
20100185278 | Schankereli | Jul 2010 | A1 |
20100191326 | Alkhatib | Jul 2010 | A1 |
20100192402 | Yamaguchi et al. | Aug 2010 | A1 |
20100204781 | Alkhatib | Aug 2010 | A1 |
20100210899 | Schankereli | Aug 2010 | A1 |
20100217382 | Chau et al. | Aug 2010 | A1 |
20100249489 | Jarvik | Sep 2010 | A1 |
20100249923 | Alkhatib et al. | Sep 2010 | A1 |
20100280589 | Styrc | Nov 2010 | A1 |
20100280604 | Zipory et al. | Nov 2010 | A1 |
20100286768 | Alkhatib | Nov 2010 | A1 |
20100298755 | McNamara et al. | Nov 2010 | A1 |
20100298931 | Quadri et al. | Nov 2010 | A1 |
20110004296 | Lutter et al. | Jan 2011 | A1 |
20110015616 | Straubinger et al. | Jan 2011 | A1 |
20110015728 | Jimenez et al. | Jan 2011 | A1 |
20110015729 | Jimenez et al. | Jan 2011 | A1 |
20110029072 | Gabbay | Feb 2011 | A1 |
20110066231 | Cartledge et al. | Mar 2011 | A1 |
20110066233 | Thornton et al. | Mar 2011 | A1 |
20110112632 | Chau et al. | May 2011 | A1 |
20110137397 | Chau et al. | Jun 2011 | A1 |
20110137408 | Bergheim | Jun 2011 | A1 |
20110213459 | Garrison et al. | Sep 2011 | A1 |
20110218619 | Benichou et al. | Sep 2011 | A1 |
20110224655 | Asirvatham et al. | Sep 2011 | A1 |
20110224678 | Gabbay | Sep 2011 | A1 |
20110224728 | Martin et al. | Sep 2011 | A1 |
20110224784 | Quinn | Sep 2011 | A1 |
20110245911 | Quill et al. | Oct 2011 | A1 |
20110251682 | Murray, III et al. | Oct 2011 | A1 |
20110264191 | Rothstein | Oct 2011 | A1 |
20110264206 | Tabor | Oct 2011 | A1 |
20110288637 | De Marchena | Nov 2011 | A1 |
20110319988 | Schankereli et al. | Dec 2011 | A1 |
20110319989 | Lane et al. | Dec 2011 | A1 |
20120010694 | Lutter et al. | Jan 2012 | A1 |
20120010700 | Spenser | Jan 2012 | A1 |
20120016468 | Robin et al. | Jan 2012 | A1 |
20120022640 | Gross et al. | Jan 2012 | A1 |
20120035703 | Lutter et al. | Feb 2012 | A1 |
20120035713 | Lutter et al. | Feb 2012 | A1 |
20120035722 | Tuval | Feb 2012 | A1 |
20120053686 | McNamara et al. | Mar 2012 | A1 |
20120059487 | Cunanan et al. | Mar 2012 | A1 |
20120089171 | Hastings et al. | Apr 2012 | A1 |
20120101571 | Thambar et al. | Apr 2012 | A1 |
20120101572 | Kovalsky et al. | Apr 2012 | A1 |
20120109079 | Asleson et al. | May 2012 | A1 |
20120116351 | Chomas et al. | May 2012 | A1 |
20120123529 | Levi et al. | May 2012 | A1 |
20120158129 | Duffy et al. | Jun 2012 | A1 |
20120165930 | Gifford et al. | Jun 2012 | A1 |
20120179244 | Schankereli et al. | Jul 2012 | A1 |
20120203336 | Annest | Aug 2012 | A1 |
20120215303 | Quadri et al. | Aug 2012 | A1 |
20120226348 | Lane et al. | Sep 2012 | A1 |
20120245678 | Solem | Sep 2012 | A1 |
20120283824 | Lutter et al. | Nov 2012 | A1 |
20120289945 | Segermark | Nov 2012 | A1 |
20130030522 | Rowe et al. | Jan 2013 | A1 |
20130053950 | Rowe et al. | Feb 2013 | A1 |
20130066341 | Ketai et al. | Mar 2013 | A1 |
20130079873 | Migliazza et al. | Mar 2013 | A1 |
20130103140 | Subramanian et al. | Apr 2013 | A1 |
20130131788 | Quadri et al. | May 2013 | A1 |
20130172978 | Vidlund et al. | Jul 2013 | A1 |
20130184811 | Rowe et al. | Jul 2013 | A1 |
20130190860 | Sundt, III | Jul 2013 | A1 |
20130190861 | Chau et al. | Jul 2013 | A1 |
20130197622 | Mitra et al. | Aug 2013 | A1 |
20130226288 | Goldwasser et al. | Aug 2013 | A1 |
20130226290 | Yellin et al. | Aug 2013 | A1 |
20130231735 | Deem et al. | Sep 2013 | A1 |
20130274874 | Hammer | Oct 2013 | A1 |
20130282101 | Eidenschink et al. | Oct 2013 | A1 |
20130304200 | McLean et al. | Nov 2013 | A1 |
20130310928 | Morriss et al. | Nov 2013 | A1 |
20130317603 | McLean et al. | Nov 2013 | A1 |
20130325041 | Annest et al. | Dec 2013 | A1 |
20130325110 | Khalil et al. | Dec 2013 | A1 |
20130338752 | Geusen et al. | Dec 2013 | A1 |
20130338764 | Thornton et al. | Dec 2013 | A1 |
20140005778 | Buchbinder et al. | Jan 2014 | A1 |
20140046433 | Kovalsky | Feb 2014 | A1 |
20140081323 | Hawkins | Mar 2014 | A1 |
20140094918 | Vishnubholta et al. | Apr 2014 | A1 |
20140142691 | Pouletty | May 2014 | A1 |
20140163668 | Rafiee | Jun 2014 | A1 |
20140194981 | Menk et al. | Jul 2014 | A1 |
20140194983 | Kovalsky et al. | Jul 2014 | A1 |
20140214159 | Vidlund et al. | Jul 2014 | A1 |
20140222142 | Kovalsky et al. | Aug 2014 | A1 |
20140243966 | Garde et al. | Aug 2014 | A1 |
20140257466 | Board et al. | Sep 2014 | A1 |
20140277419 | Garde et al. | Sep 2014 | A1 |
20140296969 | Tegels et al. | Oct 2014 | A1 |
20140296970 | Ekvall et al. | Oct 2014 | A1 |
20140296971 | Tegels et al. | Oct 2014 | A1 |
20140296972 | Tegels et al. | Oct 2014 | A1 |
20140296975 | Tegels et al. | Oct 2014 | A1 |
20140303718 | Tegels et al. | Oct 2014 | A1 |
20140309732 | Solem | Oct 2014 | A1 |
20140316516 | Vidlund et al. | Oct 2014 | A1 |
20140324160 | Benichou et al. | Oct 2014 | A1 |
20140324161 | Tegels et al. | Oct 2014 | A1 |
20140324164 | Gross et al. | Oct 2014 | A1 |
20140331475 | Duffy et al. | Nov 2014 | A1 |
20140358222 | Gorman, III et al. | Dec 2014 | A1 |
20140358224 | Tegels et al. | Dec 2014 | A1 |
20140364942 | Straubinger et al. | Dec 2014 | A1 |
20140364944 | Lutter et al. | Dec 2014 | A1 |
20140379076 | Vidlund et al. | Dec 2014 | A1 |
20150005874 | Vidlund et al. | Jan 2015 | A1 |
20150011821 | Gorman et al. | Jan 2015 | A1 |
20150025553 | Del Nido et al. | Jan 2015 | A1 |
20150057705 | Vidlund et al. | Feb 2015 | A1 |
20150073542 | Heldman | Mar 2015 | A1 |
20150073545 | Braido | Mar 2015 | A1 |
20150094802 | Buchbinder et al. | Apr 2015 | A1 |
20150105856 | Rowe et al. | Apr 2015 | A1 |
20150119936 | Gilmore et al. | Apr 2015 | A1 |
20150119978 | Tegels et al. | Apr 2015 | A1 |
20150127093 | Hosmer et al. | May 2015 | A1 |
20150127096 | Rowe et al. | May 2015 | A1 |
20150134050 | Solem et al. | May 2015 | A1 |
20150142100 | Morriss et al. | May 2015 | A1 |
20150142101 | Coleman et al. | May 2015 | A1 |
20150142103 | Vidlund | May 2015 | A1 |
20150142104 | Braido | May 2015 | A1 |
20150173897 | Raanani et al. | Jun 2015 | A1 |
20150196393 | Vidlund et al. | Jul 2015 | A1 |
20150196688 | James et al. | Jul 2015 | A1 |
20150202044 | Chau et al. | Jul 2015 | A1 |
20150216653 | Freudenthanl | Aug 2015 | A1 |
20150216660 | Pintor et al. | Aug 2015 | A1 |
20150223820 | Olson et al. | Aug 2015 | A1 |
20150223934 | Vidlund et al. | Aug 2015 | A1 |
20150223935 | Subramanian et al. | Aug 2015 | A1 |
20150238312 | Lashinski | Aug 2015 | A1 |
20150238729 | Jenson et al. | Aug 2015 | A1 |
20150272731 | Racchini et al. | Oct 2015 | A1 |
20150305860 | Wang et al. | Oct 2015 | A1 |
20150305864 | Quadri et al. | Oct 2015 | A1 |
20150305868 | Lutter et al. | Oct 2015 | A1 |
20150327995 | Morin et al. | Nov 2015 | A1 |
20150328001 | McLean et al. | Nov 2015 | A1 |
20150335424 | McLean et al. | Nov 2015 | A1 |
20150335429 | Morriss et al. | Nov 2015 | A1 |
20150342717 | O'Donnell et al. | Dec 2015 | A1 |
20150351903 | Morriss et al. | Dec 2015 | A1 |
20150351906 | Hammer et al. | Dec 2015 | A1 |
20160000562 | Siegel | Jan 2016 | A1 |
20160008131 | Christianson et al. | Jan 2016 | A1 |
20160067042 | Murad et al. | Mar 2016 | A1 |
20160074160 | Christianson et al. | Mar 2016 | A1 |
20160106537 | Christianson et al. | Apr 2016 | A1 |
20160113764 | Sheahan et al. | Apr 2016 | A1 |
20160143736 | Vidlund et al. | May 2016 | A1 |
20160151155 | Lutter et al. | Jun 2016 | A1 |
20160206280 | Vidlund et al. | Jul 2016 | A1 |
20160242902 | Morriss et al. | Aug 2016 | A1 |
20160262879 | Meiri et al. | Sep 2016 | A1 |
20160262881 | Schankereli et al. | Sep 2016 | A1 |
20160278955 | Liu et al. | Sep 2016 | A1 |
20160317290 | Chau et al. | Nov 2016 | A1 |
20160324635 | Vidlund et al. | Nov 2016 | A1 |
20160331527 | Vidlund et al. | Nov 2016 | A1 |
20160346086 | Solem | Dec 2016 | A1 |
20160367365 | Conklin | Dec 2016 | A1 |
20160367367 | Maisano et al. | Dec 2016 | A1 |
20160367368 | Vidlund et al. | Dec 2016 | A1 |
20170079790 | Vidlund et al. | Mar 2017 | A1 |
20170100245 | Subramanian et al. | Apr 2017 | A1 |
20170100248 | Tegels et al. | Apr 2017 | A1 |
20170128208 | Christianson et al. | May 2017 | A1 |
20170181854 | Christianson et al. | Jun 2017 | A1 |
20170196688 | Christianson et al. | Jul 2017 | A1 |
20170252153 | Chau et al. | Sep 2017 | A1 |
20170266001 | Vidlund et al. | Sep 2017 | A1 |
20170281343 | Christianson et al. | Oct 2017 | A1 |
20170312076 | Lutter et al. | Nov 2017 | A1 |
20170312077 | Vidlund et al. | Nov 2017 | A1 |
20170319333 | Tegels et al. | Nov 2017 | A1 |
20180028314 | Ekvall et al. | Feb 2018 | A1 |
20180078368 | Vidlund et al. | Mar 2018 | A1 |
20180078370 | Kovalsky et al. | Mar 2018 | A1 |
20180147055 | Vidlund et al. | May 2018 | A1 |
20180193138 | Vidlund | Jul 2018 | A1 |
20180296212 | Jimenez | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
1486161 | Mar 2004 | CN |
1961845 | May 2007 | CN |
2902226 | May 2007 | CN |
101146484 | Mar 2008 | CN |
101180010 | May 2008 | CN |
101984938 | Mar 2011 | CN |
102791223 | Nov 2012 | CN |
102869317 | Jan 2013 | CN |
102869318 | Jan 2013 | CN |
102869321 | Jan 2013 | CN |
103220993 | Jul 2013 | CN |
103974674 | Aug 2014 | CN |
102639179 | Oct 2014 | CN |
2246526 | Mar 1973 | DE |
19532846 | Mar 1997 | DE |
19546692 | Jun 1997 | DE |
19857887 | Jul 2000 | DE |
19907646 | Aug 2000 | DE |
10049812 | Apr 2002 | DE |
10049813 | Apr 2002 | DE |
10049815 | Apr 2002 | DE |
102006052564 | Dec 2007 | DE |
102006052710 | May 2008 | DE |
102007043830 | Apr 2009 | DE |
102007043831 | Apr 2009 | DE |
0103546 | May 1988 | EP |
1057460 | Dec 2000 | EP |
1088529 | Apr 2001 | EP |
1469797 | Nov 2005 | EP |
2111800 | Oct 2009 | EP |
2193762 | Jun 2010 | EP |
2747707 | Apr 2015 | EP |
2918248 | Sep 2015 | EP |
2278944 | Mar 2016 | EP |
2788217 | Jul 2000 | FR |
2815844 | May 2002 | FR |
2003-505146 | Feb 2003 | JP |
2005515836 | Jun 2005 | JP |
2009-514628 | Apr 2009 | JP |
2009519783 | May 2009 | JP |
2013512765 | Apr 2013 | JP |
1017275 | Aug 2002 | NL |
1271508 | Nov 1986 | SU |
WO 9217118 | Oct 1992 | WO |
WO 9301768 | Feb 1993 | WO |
WO 9829057 | Jul 1998 | WO |
WO 9940964 | Aug 1999 | WO |
WO 9947075 | Sep 1999 | WO |
WO 2000018333 | Apr 2000 | WO |
WO 2000030550 | Jun 2000 | WO |
WO 2000041652 | Jul 2000 | WO |
WO 2000047139 | Aug 2000 | WO |
WO 2001035878 | May 2001 | WO |
WO 2001049213 | Jul 2001 | WO |
WO 2001054624 | Aug 2001 | WO |
WO 2001054625 | Aug 2001 | WO |
WO 2001056512 | Aug 2001 | WO |
WO 2001061289 | Aug 2001 | WO |
WO 2001076510 | Oct 2001 | WO |
WO 2001082840 | Nov 2001 | WO |
WO 2002004757 | Jan 2002 | WO |
WO 2002022054 | Mar 2002 | WO |
WO 2002028321 | Apr 2002 | WO |
WO 2002036048 | May 2002 | WO |
WO 2002041789 | May 2002 | WO |
WO 2002043620 | Jun 2002 | WO |
WO 2002049540 | Jun 2002 | WO |
WO 2002076348 | Oct 2002 | WO |
WO 2003003943 | Jan 2003 | WO |
WO 2003030776 | Apr 2003 | WO |
WO 2003047468 | Jun 2003 | WO |
WO 2003049619 | Jun 2003 | WO |
WO 2004019825 | Mar 2004 | WO |
WO 2005102181 | Nov 2005 | WO |
WO 2006014233 | Feb 2006 | WO |
WO 2006034008 | Mar 2006 | WO |
2006064490 | Jun 2006 | WO |
WO 2006070372 | Jul 2006 | WO |
2006105009 | Oct 2006 | WO |
WO 2006113906 | Oct 2006 | WO |
WO 2006127756 | Nov 2006 | WO |
WO 2007081412 | Jul 2007 | WO |
2007100408 | Sep 2007 | WO |
WO 2008005405 | Jan 2008 | WO |
WO 2008035337 | Mar 2008 | WO |
WO 2008091515 | Jul 2008 | WO |
WO 2008125906 | Oct 2008 | WO |
WO 2008147964 | Dec 2008 | WO |
WO 2009024859 | Feb 2009 | WO |
WO 2009026563 | Feb 2009 | WO |
WO 2009045338 | Apr 2009 | WO |
WO 2009132187 | Oct 2009 | WO |
WO 2010090878 | Aug 2010 | WO |
WO 2010098857 | Sep 2010 | WO |
WO 2010121076 | Oct 2010 | WO |
WO 2011017440 | Feb 2011 | WO |
WO 2011022658 | Feb 2011 | WO |
WO 2011069048 | Jun 2011 | WO |
WO 2011072084 | Jun 2011 | WO |
WO 2011106735 | Sep 2011 | WO |
WO 2011109813 | Sep 2011 | WO |
WO 2011159342 | Dec 2011 | WO |
WO 2011163275 | Dec 2011 | WO |
WO 2012027487 | Mar 2012 | WO |
WO 2012036742 | Mar 2012 | WO |
WO 2012095116 | Jul 2012 | WO |
WO 2012177942 | Dec 2012 | WO |
WO 2013028387 | Feb 2013 | WO |
WO 2013045262 | Apr 2013 | WO |
WO 2013059747 | Apr 2013 | WO |
2013096757 | Jun 2013 | WO |
WO 2013096411 | Jun 2013 | WO |
2013116785 | Aug 2013 | WO |
WO 2013175468 | Nov 2013 | WO |
WO 2014121280 | Aug 2014 | WO |
2014144020 | Sep 2014 | WO |
WO 2014144937 | Sep 2014 | WO |
WO-2014138284 | Sep 2014 | WO |
WO 2014162306 | Oct 2014 | WO |
WO 2014189974 | Nov 2014 | WO |
2014194178 | Dec 2014 | WO |
WO 2014210124 | Dec 2014 | WO |
WO 2015051430 | Apr 2015 | WO |
WO 2015058039 | Apr 2015 | WO |
WO 2015063580 | May 2015 | WO |
WO 2015065646 | May 2015 | WO |
WO 2015120122 | Aug 2015 | WO |
WO 2015138306 | Sep 2015 | WO |
WO 2015173609 | Nov 2015 | WO |
WO 2016112085 | Jul 2016 | WO |
WO 2016126942 | Aug 2016 | WO |
WO 2016168609 | Oct 2016 | WO |
WO 2016196933 | Dec 2016 | WO |
WO 2017096157 | Jun 2017 | WO |
WO 2017132008 | Aug 2017 | WO |
WO 2017218375 | Dec 2017 | WO |
WO 2018005779 | Jan 2018 | WO |
WO 2018013515 | Jan 2018 | WO |
Entry |
---|
US 9,155,620 B2, 10/2015, Gross et al. (withdrawn) |
Cullen, et al., “Transvenous, Antegrade Melody Valve-in-Valve Implantation for Bioprosthetic Mitral and Tricuspid Valve Dysfunction”, JACC: Cardiovascular Interventions, vol. 6, No. 6, Jun. 2013, pp. 598-605. |
International Search Report and Written Opinion for International Application No. PCT/US2016/016567, dated Aug. 3, 2016, 17 pages. |
Al Zaibag, M. et al., “Percutaneous Balloon Valvotomy in Tricuspid Stenosis,” British Heart Journal, Jan. 1987, 57(1):51-53. |
Al-Khaja, N. et al., “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications,” European Journal of Cardiothoracic Surgery, Jun. 30, 1989, 3:305-311. |
Almagor, Y. et al., “Balloon Expandable Stent Implantation in Stenotic Right Heart Valved Conduits,” Journal of the American College of Cardiology, Nov. 1, 1990, 16(6):1310-1314. |
Andersen, H. R. et al., “Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs,” European Heart Journal, 1992, 13(5):704-708. |
Andersen, H. R., “History of Percutaneous Aortic Valve Prosthesis,” Herz, Aug. 2009, 34(5):343-346. |
Andersen, H. R., “Transluminal catheter implanted prosthetic heart valves,” International Journal of Angiology, 1998, 7(2):102-106. |
Ashton, R. C., Jr. et al., “Development of an Intraluminal Device for the Treatment of Aortic Regurgitation: Prototype and in Vitro Testing System,” Journal of Thoracic and Cardiovascular Surgery, 1996, 112:979-983. |
Benchimol, A. et al., “Simultaneous Left Ventricular Echocardiography and Aortic Blood Velocity During Rapid Right Ventricular Pacing in Man,” The American Journal of the Medical Sciences, Jan.-Feb. 1977, 273(1):55-62. |
Bernacca, G. M. et al., “Polyurethane heart valves: Fatigue failure, calcification, and polyurethane structure,” Journal of Biomedical Materials Research, Mar. 5, 1997, 34(3):371-379. |
Boudjemline, Y. et al., “Steps Toward the Percutaneous Replacement of Atrioventricular Valves: An Experimental Study,” Journal of the American College of Cardiology, Jul. 2005, 46(2):360-365. |
Buckberg, G. et al., “Restoring Papillary Muscle Dimensions During Restoration In Dilated Hearts,” Interactive CardioVascular and Thoracic Surgery, 2005, 4:475-477. |
Chamberlain, G., “Ceramics Replace Body Parts,” Design News, Jun. 9, 1997, Issue 11, vol. 52, 5 pages. |
Choo, S. J. et al., “Aortic Root Geometry: Pattern of Differences Between Leaflets and Sinuses of Valsava,” The Journal of Heart Valve Disease, Jul. 1999, 8:407-415. |
Declaration of Malcolm J. R. Dalrymple-Hay, Nov. 9, 2012, pp. 1-11; with Curriculum Vitae, Oct. 4, 2012. |
Dotter, C. T. et al., “Transluminal Treatment of Arteriosclerotic Obstruction. Description of a New Technic and a Preliminary Report of its Application,” Circulation, Nov. 1964, 30:654-670. |
Drawbaugh, K., “Feature—Heart Surgeons Explore Minimally Invasive Methods,” Reuters Limited, Jul. 16, 1996, 3 pages. |
Gray, H., The Aorta, Anatomy of the Human Body, 1918, Retrieved from the Internet <http://www.bartleby.com/107/142.html> , Dec. 10, 2012, 5 pages. |
Gray, H., The Heart, Anatomy of the Human Body, 1918, Retrieved from the Internet <http://education.yahoo.com/reference/gray/subjects/subject/138> , Aug. 10, 2012, 9 pages. |
Greenhalgh, E. S., “Design and characterization of a biomimetic prosthetic aortic heart valve,” 1994, ProQuest Dissertations and Theses, Department of Fiber and Polymer Science, North Carolina State University at Raleigh, 159 pages. |
Inoue, K. et al., “Clinical Application of Transvenous Mitral Commissurotomy by a New Balloon Catheter,” The Journal of Thoracic and Cardiovascular Surgery, 1984, 87:394-402. |
Jin, X. Y. et al., “Aortic Root Geometry and Stentless Porcine Valve Competence,” Seminars in Thoracic and Cardiovascular Surgery, Oct. 1999, 11(4):145-150. |
Knudsen, L. L. et al., “Catheter-implanted prosthetic heart valves. Transluminal catheter implantation of a new expandable artificial heart valve in the descending thoracic aorta in isolated vessels and closed chest pigs,” The International Journal of Artificial Organs, 1993, 16(5):253-262. |
Kolata, G., “Device That Opens Clogged Arteries Gets a Failing Grade in a New Study,” New York Times [online], <http://www.nytimes.com/1991/01/03/health/device-that-opens-clogged-arteries-gets-a-faili . . . ,>, published Jan. 3, 1991, retrieved from the Internet on Feb. 5, 2016, 3 pages. |
Lawrence, D. D., “Percutaneous Endovascular Graft: Experimental Evaluation,” Radiology, 1987, 163:357-360. |
Lozonschi, L., et al. “Transapical mitral valved stent implantation: A survival series in swine,” The Journal of Thoracic and Cardiovascular Surgery, 140(2):422-426 (Aug. 2010) published online Mar. 12, 2010, 1 page. |
Lutter, G. et al., “Mitral Valved Stent Implantation,” European Journal of Cardio-Thoracic Surgery, 2010, 38:350-355, 2 pages. |
Ma, L. et al., “Double-crowned valved stents for off-pump mitral valve replacement,” European Journal of Cardio-Thoracic Surgery, Aug. 2005, 28(2):194-198. |
Moazami, N. et al., “Transluminal aortic valve placement: A feasibility study with a newly designed collapsible aortic valve,” ASAIO Journal, Sep./Oct. 1996, 42(5):M381-M385. |
Orton, C., “Mitralseal: Hybrid Transcatheter Mitral Valve Replacement,” Retrieved from the Internet: <http:/www.acvs.org/symposium/proceedings2011/data/papers/102.pdf>, pp. 311-312. |
Pavcnik, D. et al. “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Radiology, 1992; 183:151-154. |
Porstmann, W. et al., “Der Verschluß des Ductus Arteriosus Persistens ohne Thorakotomie,” Thoraxchirurgie Vaskuläre Chirurgie, Band 15, Heft 2, Stuttgart, Apr. 1967, pp. 199-203. |
Rashkind, W. J., “Creation of an Atrial Septal Defect Without Thoracotomy,” The Journal of the American Medical Association, Jun. 13, 1966, 196(11):173-174. |
Rashkind, W. J., “Historical Aspects of Interventional Cardiology: Past, Present, Future,” Texas Heart Institute Journal, Dec. 1986, 13(4):363-367. |
Reul, H. et al., “The Geometry of the Aortic Root in Health, at Valve Disease and After Valve Replacement,” J. Biomechanics, 1990, 23(2):181-191. |
Rosch, J. et al., “The Birth, Early Years and Future of Interventional Radiology,” J Vasc Interv Radiol., Jul. 2003, 4:841-853. |
Ross, D. N., “Aortic Valve Surgery,” Guy's Hospital, London, 1968, pp. 192-197. |
Rousseau, E. P. M. et al., “A mechanical analysis of the closed Hancock heart valve prosthesis,” Journal of Biomechanics, 1988, 21(7):545-562. |
Sabbah, A. N. et al., “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview,” Dec. 1989, Journal of Cardiac Surgery, 4(4):302-309. |
Selby, J. B., “Experience with New Retrieval Forceps for Foreign Body Removal in the Vascular, Urinary, and Biliary Systems,” Radiology, 1990, 176:535-538. |
Serruys, P. W. et al., “Stenting of Coronary Arteries. Are we the Sorcerer's Apprentice?,” European Heart Journal , Sep. 1989, 10(9):774-782. |
“Shape Memory Alloys,” Retrieved from the Internet: <http://webdocs.cs.ualberta.ca/˜database/MEMS/sma.html>, Feb. 5, 2016, 3 pages. |
Sigwart, U., “An Overview of Intravascular Stents: Old and New,” Chapter 48, Interventional Cardiology, 2nd Edition, W.B. Saunders Company, Philadelphia, PA, © 1994, 1990, pp. 803-815. |
Tofeig, M. et al., “Transcatheter Closure of a Mid-Muscular Ventricular Septal Defect with an Amplatzer VSD Occluder Device,” Heart, 1999, 81:438-440. |
Uchida, B. T. et al., “Modifications of Gianturco Expandable Wire Stents,” Am. J. Roentgenol., May 1988, 150(5):1185-1187. |
Watt, A. H. et al., “Intravenous Adenosine in the Treatment of the Supraventricular Tachycardia; a Dose-Ranging Study and Interaction with Dipyridamole,” British Journal of Clinical Pharmacology, 1986, 21:227-230. |
Webb, J. G. et al., “Percutaneous Aortic Valve Implantation Retrograde from the Femoral Artery,” Circulation, 2006, 113:842-850. |
Wheatley, D. J., “Valve Prostheses,” Rob & Smith's Operative Surgery, Fourth Edition, 1986, pp. 415-424, Butterworths. |
Yoganathan, A. P. et al., “The Current Status of Prosthetic Heart Valves,” In Polymetric Materials and Artificial Organs, American Chemical Society, 1984, pp. 111-150. |
Number | Date | Country | |
---|---|---|---|
20170312077 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
62212803 | Sep 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2016/016567 | Feb 2016 | US |
Child | 15654374 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2015/014572 | Feb 2015 | US |
Child | PCT/US2016/016567 | US |