Face masks have found use in a variety of applications in which they are worn over the nose and the mouth of a user, for example to protect the user's respiratory system from particles suspended in the air and/or from unpleasant or noxious gases, to minimize the amount of material expelled from the user's respiratory system into the surrounding atmosphere, or both. Generally, such face masks have been provided in two basic designs—a molded cup-shaped form or a flat-folded form.
Herein is disclosed, in various aspects and embodiments, a face mask (“mask”) that is provided in a generally flat-folded configuration and is expandable to form a cup-shaped air chamber suitable to fit over the nose and mouth of a wearer. The mask comprises at least one porous layer that comprises at least one pleat and that is capable of being expanded from a smaller area to a larger area by at least partially unfolding the at least one pleat. The porous layer comprises a first major surface that is oriented toward the wearer when the mask is expanded to form a cup-shaped configuration, and a second major surface that is oriented away from the wearer when the mask is so expanded. The mask further comprises at least one stiffening element that is adjacent at least a portion of the first major surface of the porous layer, so as to be on the concave side of the mask when the mask is expanded to form a cup-shaped configuration. The stiffening element comprises at least one engaging feature that permits sliding movement, in a first direction, of a portion of the porous layer that is adjacent the engaging feature, while preventing sliding movement of the adjacent portion of the porous layer in a second direction opposite the first direction.
In one embodiment, at least one first engaging feature is positioned at a first location on the stiffening element and permits sliding movement of an adjacent portion of the porous layer, in a first direction, while preventing the adjacent portion from slidably moving in a second direction opposite the first direction. Additionally, at least one second engaging feature is positioned at a second location on the stiffening element and permits sliding movement of an adjacent portion of the porous layer in a direction that is different from the direction permitted by the first engaging feature, while preventing the adjacent portion from slidably moving in a direction that is different from the direction prevented by the first engaging features.
In a further embodiment, the stiffening element comprises a sheetlike material comprising at least an interior area bounded at least in part by a perimeter, wherein engaging features are provided at least at two locations on the perimeter of the stiffening element, with each engaging feature permitting sliding movement of an adjacent portion of a porous layer in a direction generally outward away from the interior area of the stiffening element, while preventing sliding movement of the adjacent portion of the porous layer generally inward toward the interior area of the stiffening element.
The ability of the engaging feature(s) of the stiffening element to permit sliding movement of an adjacent porous layer past the engaging feature in a first direction, and to prevent sliding movement of the adjacent porous layer past the engaging feature in a second direction that is opposite the first direction, may permit the desired expanding of the mask while also providing the expanded mask with an enhanced ability to resist deforming or collapsing.
Thus in one aspect, herein is disclosed a flat-folded, pleated face mask that is expandable into a cup shape for fitting over the mouth and nose of a person, comprising:
at least one porous layer that comprises first and second major surfaces and that comprises at least one pleat and that is capable of being expanded by at least partially unfolding the at least one pleat; and, at least one stiffening element adjacent at least a portion of the first major surface of the porous layer, the stiffening element comprising a sheet-like material comprising an interior area bounded by a perimeter, and wherein engaging features are provided at least at two locations on the perimeter of the stiffening element, wherein each engaging feature is arranged to allow sliding movement of an adjacent portion of the porous layer in a direction generally outward from the interior area of the stiffening element and to prevent sliding movement of the adjacent portion of the porous layer in a direction generally inward toward the interior area of the stiffening element.
Thus in another aspect, herein is disclosed a flat-folded, pleated face mask that is expandable into a cup shape for fitting over the mouth and nose of a person, comprising:
at least one porous layer that comprises at least one pleat and that is capable of being expanded by at least partially unfolding the at least one pleat; and, at least one stiffening element adjacent at least a portion of the porous layer, the stiffening element comprising at least one engaging feature in a first location on the stiffening element, arranged to allow a portion of the porous layer that is adjacent the engaging feature to slidably move past the engaging feature in a first direction and to prevent the adjacent portion of the porous layer from slidably moving past the engaging feature in a second direction opposite the first direction.
Thus in still another aspect, herein is disclosed a flat-folded, pleated face mask that is expandable into a cup shape for fitting over the mouth and nose of a person, comprising:
at least one porous layer that comprises at least one pleat and that is capable of being expanded by at least partially unfolding the at least one pleat; and, at least one stiffening element adjacent at least a portion of the porous layer, the stiffening element comprising: at least a first engaging feature in a first location on the stiffening element, arranged to allow a portion of the porous layer that is adjacent to the first engaging feature to slidably move past the first engaging feature in a first direction and to prevent the adjacent portion of the porous layer from slidably moving past the first engaging feature in a second direction opposite the first direction; and, at least a second engaging feature in a second location on the stiffening element, arranged to allow a portion of the porous layer that is adjacent to the second engaging feature to slidably move past the second engaging feature in a first direction and to prevent the adjacent portion of the porous layer from slidably moving past the second engaging feature in a second direction opposite the first direction; wherein the direction in which the first engaging feature prevents slidable movement of the portion of the porous layer adjacent to the first engaging feature, is different from the direction in which the second engaging feature prevents slidable movement of the portion of the porous layer adjacent to the second engaging feature.
These and other aspects of the invention will be apparent from the detailed description below. In no event, however, should the above summaries be construed as limitations on the claimed subject matter, which subject matter is defined solely by the attached claims, as may be amended during prosecution.
a is a plan view of an exemplary stiffening element.
b is a plan view of the exemplary stiffening element of
a is a plan view of an exemplary stiffening element.
b is a plan view of the exemplary stiffening element of
Like reference symbols in the various figures indicate like elements. Unless otherwise indicated, all figures and drawings in this document are not to scale and are chosen for the purpose of illustrating different embodiments of the invention. In particular the dimensions of the various components are depicted in illustrative terms only, and no relationship between the dimensions of the various components should be inferred from the drawings, unless so indicated. Although terms such as “top”, bottom”, “upper”, lower”, “under”, “over”, “front”, “back”, “outward”, “inward”, “up” and “down”, and “first” and “second” may be used in this disclosure, it should be understood that those terms are used in their relative sense only unless otherwise noted.
Shown in
Mask 1 also comprises at least one stiffening element 200, at least a portion of which is adjacent to at least a portion of surface 101 of porous layer 100 (such that stiffening element 200 is positioned on the concave side of mask 1 upon expansion of mask 1 into a cup-shaped configuration). Stiffening element 200 may comprise first major surface 230, which faces away from porous layer 100, and second major surface 220, which faces toward, and may or may not be in contact with, porous layer 100. Stiffening element 200 may be sheet-like (that is, with a thickness substantially less than its length and breadth). Stiffening element 200 may comprise edge 210, which may be continuous or discontinuous, as discussed later herein.
Stiffening element 200 comprises at least one engaging feature 205. At least a portion of porous layer 100 is slidably movable, with respect to an adjacent portion of stiffening element 200, in the direction indicated by the arrow in
In the exemplary illustration of
The at least one pleat 110 of porous layer 100 of
In the configuration shown in
The disclosures herein are now further illustrated with reference to the exemplary illustration of
As disclosed herein, “flat-folded” means that porous layer 100 comprises a plurality of pleats arranged such that at least certain portions of porous layer 100 are arranged in at least partially overlapping relation (e.g., as shown in
As disclosed herein, “expanding” means to at least partially unfold at least some of the pleats of porous layer 100 so that porous layer 100 presents a larger area for passage of air, such that, over a majority of the area of mask 1, it is only necessary for air to pass through a single thickness of porous layer 100 to pass through mask 1.
In the embodiment exemplified in
Stiffening element 200 comprises an interior area 235 bounded by a perimeter with a perimeter edge 210. Interior area 235 and/or perimeter edge 210 may be continuous or discontinuous as described later herein. With mask 1 in a flat-folded configuration, mask 1 and porous layer 100 thereof comprise a generally flat configuration as described above, with stiffening element 200 adjacent porous layer 100 and oriented generally parallel to the plane of mask 1. At least a portion of stiffening element 200 may be in contact with at least a portion of surface 101 of porous layer 100.
In one embodiment, a plurality of engaging features 205 is provided at least at or near (e.g., within a few mm of) perimeter edge 210 of stiffening element 200. In the specific embodiment shown in
As mentioned, various engaging features 205 can be differently (e.g., oppositely) oriented. In the exemplary embodiment shown in
Engaging features 205 can be present at least at two locations generally on the perimeter of stiffening element 200. In further embodiments, engaging features can be present at least on a portion of, a majority of, or the entirety of, the perimeter of stiffening element 200. The design shown in
The disclosures herein are now further illustrated with reference to the exemplary illustration of
The result of this operation is the expansion of mask 1 from a flat-folded configuration into the concave, cup-shaped configuration of
Stiffening element 200 may assume a somewhat arcuate (i.e., bowed) shape (e.g., as shown in
The amount of bowing undergone by stiffening element 200 may impact how much of surface area 220 of stiffening element 200 is in contact with porous layer 100 when mask 1 is in an expanded configuration. In various embodiments, when mask 1 is in an expanded configuration, greater than about 50%, greater than about 70%, or greater than about 90%, of the area of surface 220 of stiffening element 200 is in contact with porous layer 100. In various alternative embodiments, when mask 1 is in an expanded configuration, less than about 30%, less than about 20%, or less than about 10%, of the area of surface 220 of stiffening element 200 is in contact with porous layer 100. In a further embodiment, only perimeter edge 210 of stiffening element 200 is in contact with porous layer 100, when mask 1 is so expanded.
In one embodiment (e.g., in the exemplary illustrations of
The embodiments illustrated in
Thus in various embodiments, it may be advantageous to provide engaging features so as to prevent motion (e.g., retrograde motion) of various portions of porous layer 100 toward interior area 235 of stiffening element 200, along both major axes (e.g., long and short) of mask 1. In fact it may be advantageous to provide engaging features so as to prevent retrograde motion of porous layer 100 in all directions toward the interior area 235 of stiffening element 200. This can be achieved by a stiffening element 200 with engaging features 205 that are provided at multiple locations on the perimeter of stiffening element 200; e.g., of the general design shown in
The disclosures herein are now further illustrated with reference to the exemplary illustration of
Regardless of its specific construction, porous layer 100 may comprise a relatively low pressure drop (for example, less than about 195 to 295 Pascals at a face velocity of 13.8 centimeters per second, when measured such that the air passes only through a single thickness of porous layer 100). In specific embodiments, porous layer comprises a pressure drop of less than about 100 Pascals, or less than about 50 Pascals.
Filtration layer 140 may comprise any suitable layer or layers of material capable of performing filtration. Examples of suitable filter material may include microfiber webs, fibrillated film webs, woven or nonwoven webs (e.g., airlaid or carded staple fibers), solution-blown fiber webs, or combinations thereof. Fibers useful for forming such webs include, for example, polyolefins such as polypropylene, polyethylene, polybutylene, poly(4-methyl-1-pentene) and blends thereof, halogen substituted polyolefins such as those containing one or more chloroethylene units, or tetrafluoroethylene units, and which may also contain acrylonitrile units, polyesters, polycarbonates, polyurethanes, rosin-wool, glass, cellulose or combinations thereof. In a specific embodiment, filtration layer 140 comprises at least one layer of blown microfibers.
Filtration layer 140 may comprise such features as electrically charged fibers, staple fibers, bicomponent staple fibers, oil-resistant treatments (e.g., fluorinated surfaces), and the like. Filtration layer 140 (and/or porous layer 100 as a whole) may be primarily intended for the filtration of particulates; or, (for example by the inclusion of specific reagents, sorbent materials, etc.) may be also or instead intended for the removal of gaseous and/or vaporous substances and the like.
Outside cover layer 150, if present, may serve to protect filtration layer 140. If porous layer 100 comprises outside cover layer 150, surface 152 of outside cover layer 150 may comprise surface 102 of porous layer 100. Outside cover layer 150 may for example be comprised of a relatively lightweight and highly porous nonwoven material such as a spunbonded polyolefin. Or, outside cover layer 150 may be comprised of a reinforcing netting (e.g., comprised at least in part of intersecting, interconnected strands or filaments) that is laminated to porous layer 100. Or, outside cover layer 150 may comprise a layer of lightweight and highly porous nonwoven material with a reinforcing netting laminated to the nonwoven material. Masks comprising such reinforcing netting are described in further detail in U.S. patent application Ser. No. 12/338,091, filed on the same day as this patent application, entitled EXPANDABLE FACE MASK WITH REINFORCING NETTING, herein incorporated by reference.
Inside cover layer 130, if present, may also serve to protect filtration layer 140 and/or to provide a comfortable surface in case of contact with the wearer. If porous layer 100 comprises inside cover layer 130, surface 131 of inside cover layer 130 may comprise surface 101 of porous layer 100 that is engaged by engaging features 205 of stiffening element 200. If so, inside cover layer 130 should be chosen so as to be engageable by engaging feature(s) 205. Within this limitation, inside cover layer 130 can be chosen from any suitable material (e.g., such as a relatively lightweight and highly porous non-woven material such as a spunbonded polyolefin).
Porous layer 100 can comprise other layers as desired. For example (e.g. for use in surgical applications) porous layer 100 can comprise one or more layers that are chosen or treated for enhanced resistance to penetration by liquid water.
The disclosures herein are now further illustrated with reference to the exemplary illustrations of
Stiffening element 200 may be comprised of a solid sheet. Or, it may be comprised of a porous material (for example, a nonwoven material, a woven or knitted fabric, and the like). While it might be useful in certain instances for stiffening element 200 to be porous (e.g., in order to ensure that stiffening element 200 does not unacceptably interfere with the airflow through mask 1), this may not be necessary for example if stiffening element 200 is sufficiently small, and/or if sufficient leakage of air around the perimeter of stiffening element 200 occurs, such that the airflow through mask 1 is satisfactory. In a particular embodiment (and whether or not stiffening element 200 is made of a porous material) stiffening element 200 can comprise one or more perforations (i.e., through-holes) 253, as in the exemplary illustration of
In various embodiments, stiffening element 200 may comprise a nonwoven sheet material, e.g., a spunbonded, spunlaced, flashbonded, carded, SMS, thermally-bonded spunlaid, or any other of the well known nonwoven materials, that comprises suitable properties for the purposes disclosed herein. In various specific embodiments, stiffening element 200 may comprise a nonwoven material with a basis weight of from about 20 grams per square meter to about 100 grams per square meter, from about 40 grams per square meter to about 100 grams per square meter, or from about 60 grams per square meter to about 90 grams per square meter. In a specific embodiment, outside cover layer 150 is comprised at least in part of a spunbonded polypropylene.
Suitable nonwoven materials may include for example the material available from Colbond Corp. of Arnhem, Netherlands, under the trade designation Colback Fabric, Type WHD 75, and the material available from Midwest Filtration, Cincinnati, Ohio, under the trade designation Unipro 260 FX, and the like.
Stiffening element 200 comprises at least one engaging feature 205 that is capable of engaging with porous layer 100. In a specific embodiment, stiffening element 200 comprises a plurality of engaging features 205. In this embodiment, engaging features 205 may be discrete (e.g., a set of individually discernable barbs, protrusions, etc.). Or, the plurality of engaging features 205 may not comprise discrete (e.g., distinguishable from each other) engaging features, but may nevertheless function as a plurality of engaging features. For example, in the exemplary embodiments of
While in the exemplary embodiments of
In the exemplary embodiment illustrated in
In still another embodiment, stiffening element 200 may be comprised of an assembly of one or more strands. In the specific exemplary embodiment illustrated in
Nettings that may be used as described herein include for example those materials available from Conwed Corp. of Minneapolis, Mn, under the trade designations 5103, RO3470-007, X01678, and X04410.
In certain above-described embodiments, engaging features 205 are provided primarily by edge (e.g., perimeter edge) 210 of stiffening element 200 and/or by features (e.g., slits, protrusions, etc.) that are provided on or in perimeter edge 210, and that face outward from stiffening element 200 generally in the plane of stiffening element 200. In an alternate embodiment, at least some engaging features 205 may be provided on at least some portion of surface 220 (that is, the surface that faces porous layer 100) of stiffening element 200. For example, engaging features 205 can comprise a plurality of protrusions 254 (e.g., posts, stems, barbs, or the like), located on surface 220 of stiffening element 200. In one embodiment, protrusions 254 are located at least near (e.g., within a few mm of) perimeter edge 210 of stiffening element 200. In a specific embodiment (e.g., as shown in the exemplary embodiment of
The shape and size of protrusions 254, the angle at which they protrude, and/or the spacing therebetween, may be chosen such that protrusions 254 allow sliding movement of an adjacent porous layer 100 past protrusions 254 in a desired first direction, but (individually and/or collectively) prevent such sliding movement in a second, opposite direction. One exemplary design is shown in generic representation in
In the specific embodiment shown in
In one embodiment, engaging feature(s) 205 may comprise pressure sensitive adhesive, as long as such pressure sensitive adhesive does not unacceptably restrict the desired ability of the engaging feature to permit the slidable movement of an adjacent portion of porous layer 100 in the desired direction. In an alternative embodiment, engaging feature(s) 205 does not comprise pressure sensitive adhesive.
Stiffening element 200 (whether a solid material, a netting, a porous web, etc.) can be made of any desired material (e.g., metal, wood, plastic, ceramic, etc.). In many cases, it may be desirable to use plastic materials, due to their low cost and compatibility with other components of mask 1. In a particular embodiment, stiffening element 200 may be comprised at least partially of a polymeric material of a same or similar composition as a material that is present in porous layer 100, or is compatible with melt-bonding to a material that is present in porous layer 100, such that melt-bonding can be used to bond stiffening element 200 to porous layer 100 if desired.
The materials of construction and the thickness of stiffening element 200 can be chosen as desired to provide the desired stiffness. For example, stiffening element 200 should be at least stiff enough to enhance the ability of mask 1 to maintain its expanded cup-shaped configuration. That is, the engaged combination of stiffening element 200 and porous layer 100 should provide enhanced ability of mask 1 to resist forces that would tend to deform cup-shaped mask 1 toward a more flat configuration (e.g., forces applied generally normal to porous layer 100). It should be noted that the inventor has discovered that, possibly due to the fact that when stiffening element 200 is engaged with porous layer 100, stiffening element 200 and porous layer 100 may provide mutual reinforcement to each other, the combined, engaged layers may provide more ability to resist deforming than the two layers exhibit when not so engaged. Thus, in certain embodiments, it may be possible to use a surprisingly lightweight, flexible, and/or porous material for stiffening element 200. In various embodiments, stiffening element 200 can have a basis weight of at most about 50 grams per square meter, about 35 grams per square meter, or about 22 grams per square meter. In specific embodiments, stiffening element 200 comprises a netting (e.g., such as those available from Conwed, as mentioned above) with a basis weight of at most about 50 grams per square meter, about 35 grams per square meter, or about 22 grams per square meter.
In one embodiment stiffening element 200 is provided in a generally flat, unpleated configuration. However, in various embodiments, stiffening element 200 can be pleated (either alone or in combination with porous layer 100); however, such pleating of stiffening element 200 should not detract from the herein-described ability of stiffening element 200 to allow certain portions of porous layer 100 to slidably move past certain portions of stiffening element 200 and to prevent these portions of porous layer 100 from slidably moving past those portions of stiffening element 200 in a second direction generally opposite to the first direction.
Stiffening element 200 can optionally be bonded to a portion of porous layer 100, as long as such bonding does not unacceptably restrict the expansion of porous layer 100. (such bonding may be performed before or after the pleating of porous layer 100). For example, stiffening element 200 can be attached (e.g., bonded, such as by ultrasonic bonding) to porous layer 100 by a spot-bond, or by a line bond (e.g., positioned near the center of porous layer 100 and oriented generally parallel to the long axis of porous layer 100). Other configurations are possible. For example, in various embodiments, stiffening element 200 can be bonded to porous layer 100 at or near lower edge 320 or upper edge 310, or side edge 330 or 340 (as shown in
In one embodiment, stiffening element 200 can be removably attached to mask 1 (e.g., to porous layer 100 of mask 1). That is, rather than using e.g. an ultrasonic bond, stiffening element 200 may comprise a removable attachment mechanism so as to be removably attachable to porous layer 100. Such removable attachment might take advantage of the fibrous nature of porous layer 100, for example by providing stiffening element 200 with a hook patch (e.g., near the center of stiffening element 200) by which stiffening element 200 can be removably attached to porous layer 100 by the well-known methods used by so-called hook-and-loop fasteners. (In such a design, the removable attachment mechanism should of course not interfere with the ability to expand porous layer 100 to the desired extent).
In one embodiment, stiffening element 200 is not attached to any components or layers of mask 1 (other than the above-mentioned optional attachment to porous layer 100) or attached or connected to any other external item or structure.
In one embodiment, one or more secondary layers of porous material (not shown in any figure, and which may comprise a filtration layer and/or or a cover web layer) may be present on the other side of stiffening element 200 from porous layer 100 (e.g., facing the user's face when worn). Such a sandwiched configuration may serve to help hold stiffening element 200 in place and/or to negate the need to bond stiffening element 200 to porous layer 100.
Most of the above-discussed embodiments have shown stiffening element 200 as a single piece (e.g., generally rectangular or oblong in shape). However, rather than being provided as a single piece, multiple stiffening elements 200 can be provided. For example, in the exemplary embodiment shown in
Rather than being of a generally oblong or rectangular perimeter, stiffening element 200 can comprise one or more “fingerlike” portions (e.g., as shown in generic representation in
In various embodiments, stiffening element 200 may be provided in a shape that promotes and/or controls the bending (bowing) of stiffening element 200 into an arcuate shape when mask 1 is in an expanded, cup-shaped configuration.
Notches 261 may be e.g. relatively small such that stiffening element 200 comprises a generally oblong configuration, as in the exemplary illustration of
In one embodiment, in the production of mask 1a continuous strip of stiffening element 200 can be positioned adjacent porous layer 100 (e.g., generally aligned with the long axis of porous layer 100) and bonded to porous layer 100 at least at edges 310, 320, 330 and/or 340 (with any excess stiffening element material being removed, e.g., by die cutting). Such a configuration may allow for ease of manufacturing mask 1. In such a configuration, the continuous strip may have features (e.g., slits, cut-out sections, etc.) for enhanced performance.
Stiffening element 200 (of any exemplary embodiment described above) can be configured and/or treated as desired for the comfort of the user. For example, (wearer-facing) surface 230 of stiffening element 200 can be partially or completely covered with fibrous material or the like, if it is desired to provide a surface which may be perceived as softer to the touch. It is possible to provide mask 1 with a second porous layer such that stiffening element 200 is partially or complete sandwiched between the second porous layer and porous layer 100, such that any skin contact with the inner portion of mask 1 will be with the second porous layer. While in most cases stiffening element 200 may not provide any filtration capability (with all such capability being supplied e.g., by filtration layer 140 of porous layer 100), it would be possible to impart stiffening element 200 with some filtration capability, sorption capacity, etc., if desired.
Although the discussions herein have primarily used the term “mask”, it is understood that this term is used broadly to encompass devices that may be designated by terms such as respirator, personal respiratory protection device, surgical mask, operating room mask, clean room mask, dust mask, breath warming mask, face shield, and the like, in applications including e.g., industrial operations, consumer, home and outdoor use, health care operations, and the like. Such uses may include those in which the mask may be intended primarily for protection of a user's respiratory system, those in which the mask may be intended primarily to prevent material expelled from the user's respiratory system from reaching and/or contaminating the external environment, and uses that encompass both purposes. Masks as disclosed herein 1 can comprise other features and functionalities as desired. These might include, for example, one or more exhalation valves, nose clips, face seals, eye shields, neck coverings, and the like.
The present invention has now been described with reference to several embodiments thereof. It will be apparent to those skilled in the art that changes can be made in the embodiments described without departing from the scope of the invention. Thus, the scope of the present invention should not be limited to the exact details and structures described herein, but rather by the structures described by the language of the claims, and the equivalents of those structures.
This application is a divisional of U.S. Ser. No. 12/337,842, filed Dec. 18, 2008, now issued as U.S. Pat. No. 8,074,660, the disclosure of which is incorporated by reference in its entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
1946334 | Schwartz | Feb 1934 | A |
RE24549 | Haliczer | Oct 1958 | E |
3985132 | Boyce | Oct 1976 | A |
4300549 | Parker | Nov 1981 | A |
4635628 | Hubbard | Jan 1987 | A |
4688566 | Boyce | Aug 1987 | A |
4850347 | Skov | Jul 1989 | A |
4920960 | Hubbard | May 1990 | A |
4966140 | Herzberg | Oct 1990 | A |
5540673 | Thomas | Jul 1996 | A |
5553608 | Reese | Sep 1996 | A |
5699791 | Sukiennik | Dec 1997 | A |
5701893 | Kern | Dec 1997 | A |
5706804 | Baumann | Jan 1998 | A |
5803077 | Gazzara | Sep 1998 | A |
5934275 | Gazzara | Aug 1999 | A |
6123077 | Bostock | Sep 2000 | A |
6394090 | Chen | May 2002 | B1 |
6427693 | Blackstock | Aug 2002 | B1 |
7036507 | Jensen | May 2006 | B2 |
20060130841 | Spence | Jun 2006 | A1 |
20060201513 | Chu | Sep 2006 | A1 |
20060266364 | Turdjian | Nov 2006 | A1 |
20080011303 | Angadjivand | Jan 2008 | A1 |
20080105261 | Harold | May 2008 | A1 |
20090320848 | Steindorf | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
559064 | Jul 1942 | GB |
889933 | Oct 1959 | GB |
2007-061536 | Mar 2007 | JP |
2007-260110 | Oct 2007 | JP |
20-0433854 | Dec 2006 | KR |
WO 9628216 | Sep 1996 | WO |
WO 2007058442 | May 2007 | WO |
WO 2008085546 | Jul 2008 | WO |
Entry |
---|
International Search Report PCT/US2009/065609, Jun. 28, 2009, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20120047627 A1 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12337842 | Dec 2008 | US |
Child | 13291528 | US |