The field of the invention is expandable high pressure and high temperature seals and more specifically design features to enhance pressure retaining capabilities.
High pressure metal to metal seals have been used as shown in U.S. Pat. No. 6,098,717. These seals are actuated by internal expansion and can be fitted with one or more seals. Another example is U.S. Pat. No. 5,333,692. In this patent the seal ring is expanded with a tapered swage and the outer surface of the ring has extending members initially covered with a seal. Radial expansion brings the fingers through the seal material for metal to metal contact with the surrounding tubular as the seal element is contained between the extending members. These designs have been reliable and have been in regular use for at least 10 years or more.
More recently the service pressure differentials have gotten larger as the wells have been drilled to greater depths. As a result the seal bodies exhibited limitations on seal containment due to the stresses they could tolerate with the needed amount of radial expansion and pressure differentials. Efforts were focused at seal configurations that would improve seal containment by reducing stress on the seal body at the anticipated differential pressures and the amount of radial expansion.
The present invention has focused on features of the seal body that improves seal containment with reducing the stresses by providing an exterior bump between exterior seal elements that is opposed to an interior seal and internal bumps opposed to spaced external seals. The bumps feature end transitional surfaces that provide an extrusion volume for the seal which allows effective seal containment at the anticipated differential pressures and the amount of radial expansion. The seal configuration can be reversed with one exterior seal and two axially offset interior seals. Another feature of the invention is stacks of seal rings can be deployed between end rings preferably made of high performance thermoplastics or metal so that not only can each seal ring back up other rings but the stack of seal rings can expand independently to deal with dimensional irregularities in the surrounding tubular or the mandrel being expanded, hence creates effective sealing. These and other aspects of the present invention will be more apparent to those skilled in the art from a review of the description of the preferred embodiment and associated drawings while recognizing that the full scope of the invention is to be determined from the appended claims.
An expandable seal features a ring structure with internal and external seal. The seals are mounted in grooves and extend beyond a base outer dimension on the ring on the inside and the outside surfaces. Bumps are positioned in axial alignment with the seals but in opposition to each seal so that the exterior seal has a bump axially aligned but on the inside of the ring and the inner seal has a bump axially aligned and on the outside surface of said ring. The bumps have end transitions to the base dimension to create a volume for the seal material to travel axially when radially expanded from a mandrel extending within. Seal rings can be stacked to adjust to dimensional irregularities in the surrounding tubular or the mandrel and to back each other up in the event of seal failure in any one seal ring.
Bumps 30 and 32 are preferably disposed opposite seals 14 and 18 is the sense of axial alignment. It is preferred that the axial length of the bumps in each case approximates the axial length of the seal that is directly opposed in a radial direction. Referring to bump 20 as a typical example, the axial ends of that bump have tapered end surfaces 34 that transition to surfaces 12 and 28. The taper angle is preferably gradual at about 3-45 degrees. When the bump 20 contacts a surrounding tubular there is a volume formed adjacent seal 14 for example that allows some of the seal material to move axially into that adjacent void opposite base surface 12. The same is true on the other side adjacent seal 18 where seal material can move axially over base surface 28. Although not shown in
Those skilled in the art will appreciate that
While all the assemblies 10 and the end rings 36 and 38 are assembled on a common mandrel that is not shown and expanded as a swage moves continuously through that mandrel the stacking of seal assemblies 10 provides several advantages. One advantage is that the assemblies 10 can move independently of each other so that if the surrounding tubular is out of round or has non-uniform wall thickness the independent movement can conform to such unevenness in the surrounding tubular or for that matter in the mandrel or even in the swage that moves through the mandrel. Another advantage is that the seals can back each other up on discrete assemblies 10 so that in the event of a seal failure on seals on one assembly 10 the seals on the next assembly 10 can take over.
Those skilled in the art will appreciate that the positioning of the bumps opposite the seal assemblies provides a nearly consistent wall thickness throughout the assembly 10. Where the wall is removed for a groove for a seal there is an offsetting bump on the opposite side of the wall. The structure of assembly is strengthened in the seal area and the stress is reduced making it possible to withstand greater pressure differentials, thus creates effective sealing through seal volume containment. The ability of some of the seal material to flow axially while being contained against the mandrel on the inside or the surrounding pipe on the outside allows for lower stress in the seal and a greater seal coverage area at the same time. Using an array of seal assemblies allows them to move independently to accommodate dimensional irregularities in the surrounding tubular or the mandrel inside the assembly. The seals extend radially adjacent base diameters on either side so that upon contact with a surrounding tubular for example the seal is compressed and some of that compressive stress is relieved in the adjacent void space in part defined by a bump that may be on one or opposed ends or the end ring as the case may be.
The above description is illustrative of the preferred embodiment and many modifications may be made by those skilled in the art without departing from the invention whose scope is to be determined from the literal and equivalent scope of the claims below:
Number | Name | Date | Kind |
---|---|---|---|
3885800 | Sievenpiper | May 1975 | A |
4488740 | Baugh et al. | Dec 1984 | A |
4540053 | Baugh et al. | Sep 1985 | A |
4597448 | Baugh | Jul 1986 | A |
4719971 | Owens | Jan 1988 | A |
4757860 | Reimert | Jul 1988 | A |
4911245 | Adamek et al. | Mar 1990 | A |
5098717 | Blackman | Mar 1992 | A |
5129660 | Taylor et al. | Jul 1992 | A |
5333692 | Baugh et al. | Aug 1994 | A |
5355961 | Gariepy et al. | Oct 1994 | A |
6446717 | White et al. | Sep 2002 | B1 |
6666276 | Yokley et al. | Dec 2003 | B1 |
7387170 | Doane et al. | Jun 2008 | B2 |
7784797 | Baugh et al. | Aug 2010 | B2 |
8205890 | Sundararajan | Jun 2012 | B2 |
8235396 | Keene et al. | Aug 2012 | B2 |
20050180869 | Ursan et al. | Aug 2005 | A1 |
20050189121 | Doane et al. | Sep 2005 | A1 |
20080203672 | Smith | Aug 2008 | A1 |
20100007097 | Sundararajan | Jan 2010 | A1 |
20100206575 | Theiss et al. | Aug 2010 | A1 |
20130140042 | Benson et al. | Jun 2013 | A1 |
20130140775 | Raynal et al. | Jun 2013 | A1 |
Number | Date | Country |
---|---|---|
201407351 | Feb 2010 | CN |
2273175 | Jan 2011 | EP |
Number | Date | Country | |
---|---|---|---|
20140319783 A1 | Oct 2014 | US |