Expandable implant assembly

Information

  • Patent Grant
  • 11602440
  • Patent Number
    11,602,440
  • Date Filed
    Thursday, June 25, 2020
    4 years ago
  • Date Issued
    Tuesday, March 14, 2023
    a year ago
Abstract
An implant includes a first support, a second support rotatably coupled to the first support along a distal end of the implant, and a control assembly configured to move the implant between at least a first, collapsed orientation and a second, expanded orientation, the control assembly includes a control driver coupled to the first support and comprising a head and a shaft, the control driver configured to control relative movement between the first support and the second support, a control member configured to move along the shaft of the control driver, and a first linkage hingedly coupled to the control member and the second support, wherein movement of the control member causes the first support to move relative to the second support.
Description
BACKGROUND

The present disclosure generally relates to implants. More specifically, the present application relates to expandable implants and devices, including spinal interbody and intravertebral body devices, and vertebral interbody and intravertebral devices that are expandable after spinal placement thereof.


Many people contend with spine or other issues as a result of age, disease, and trauma, as well as congenital and acquired complications and conditions. While some of these issues can be alleviated without surgery, other issues necessitate surgery. Spinal fusion may be recommended for conditions such as spondylolistheses, degenerative disc disease, or recurrent disc herniation, and is designed to create solid bone between adjacent vertebrae, thereby eliminating any movement between the bones. A spinal fusion uses an implant or device known as an interbody cage or spacer along with bone graft and/or bone graft substitute that is inserted into the disc space between adjacent vertebrae from one side of the spine. Typically, additional surgical hardware (implants) such as pedicle screws and rods or plates are attached to the back of the vertebrae. As the bone graft heals, it fuses the adjacent vertebrae to form one long vertebra.


Fusion cages, as well as other types of implants, bodies and/or devices, are frequently utilized in spinal surgery inside a vertebra (intravertebral) and/or between vertebrae of a patient (interbody), or adjacent other bone bodies. With interbody devices, one or more such spinal bodies are placed between vertebrae to provide support and promote fusion between adjacent vertebrae where such is necessary due to disease, injury, general deterioration or congenital problem. With intravertebral devices, one or more spinal bodies are placed within a vertebra. Spinal devices, such as fusion cages and/or the like, are inserted into a spinal space either anteriorly, posteriorly, laterally or posterolaterally.


SUMMARY

In some embodiments, an implant includes a first support, a second support rotatably coupled to the first support along a distal end of the implant, and a control assembly configured to move the implant between at least a first, collapsed orientation and a second, expanded orientation. The control assembly includes a control driver coupled to the first support and including a head and a shaft, the control driver configured to control relative movement between the first support and the second support, a control member configured to move along the shaft of the control driver, and a first linkage hingedly coupled to the control member and the second support, wherein movement of the control member causes the first support to move relative to the second support.


In some embodiments, an implant includes an upper support a lower support rotatably coupled to the upper support, and a control assembly configured to expand the implant between at least a first, collapsed orientation and a second, expanded orientation, the control assembly including a first linkage hingedly coupled to the lower support, wherein manipulation of the control assembly causes movement of the first linkage relative to the upper support and the lower support.


In some embodiments, an expandable implant includes an upper support having a top surface configured to engage a first portion of bone, a lower support having a bottom surface configured to engage a second portion of bone, the lower support hingedly coupled to the upper support at a rear portion of the expandable implant, wherein the top surface of the upper support and the bottom surface of the lower support define an angle, and a control assembly including a linkage coupled to at least one of the upper support and the lower support, the control assembly configured to control movement between the upper support and the lower support between at least a first, collapsed orientation and a second, expanded orientation, wherein manipulation of the control assembly causes the angle to change.





BRIEF DESCRIPTION OF THE FIGURES

The features of the subject matter disclosed herein will be better understood by reference to the accompanying drawings which illustrate the subject matter disclosed herein, wherein:



FIG. 1 is a perspective view of an implant in a first, collapsed position according to an example embodiment.



FIG. 2 is a perspective view of an implant in a first, collapsed position according to an example embodiment.



FIG. 3 is a side view of the implant of FIG. 1 according to an example embodiment.



FIG. 4 is a perspective view of the implant of FIG. 1 according to an example embodiment.



FIG. 5 is a perspective view of the implant of FIG. 1 in an expanded position according to an example embodiment.



FIG. 6 is a perspective view of the implant of FIG. 2 in an expanded position according to an example embodiment.



FIG. 7 is a side view of the implant of FIG. 1 in an expanded position according to an example embodiment.



FIG. 8 is an exploded view of the implant of FIG. 2 according to an example embodiment.



FIG. 9 is a perspective view of an upper support according to an example embodiment.



FIG. 10 is a perspective view of a lower support according to an example embodiment.



FIG. 11 is a perspective view of a control assembly according to an example embodiment.



FIG. 12 is a cross-sectional view of the implant of FIG. 2 according to an example embodiment.



FIG. 13 is a cross-sectional view of the implant of FIG. 6 according to an example embodiment.





Corresponding reference characters indicate corresponding parts throughout the several views. Although the drawings represent embodiments of the disclosure, the drawings are not necessarily to scale and certain features may be exaggerated in order to better illustrate and explain the principles of the present disclosure. The exemplifications set out herein illustrate several embodiments, but the exemplifications are not to be construed as limiting the scope of the disclosure in any manner.


DETAILED DESCRIPTION

Before turning to the figures, which illustrate certain exemplary embodiments in detail, it should be understood that the present disclosure is not limited to the details or methodology set forth in the description or illustrated in the figures. It should also be understood that the terminology used herein is for the purpose of description only and should not be regarded as limiting.


The present disclosure relates to expandable and/or dynamic implants. In an example embodiment, the implant may be an interbody (between adjacent vertebrae), intravertebral-body (inside the vertebrae) and/or spinal stabilization device that may or may not be used as an interbody fusion cage or device, interbody/intravertebral body stabilization device and/or the like (e.g., spinal device(s)) for providing support, stabilization and/or promoting bone growth between or inside vertebrae or other portions of bone that have been destabilized or otherwise due to injury, illness and/or the like. Particularly, the present disclosure provides various versions of dynamic (expandable and/or expandable and retractable) interbody/intravertebral body devices that are usable in a spinal column or other areas of a human.


Various embodiments disclosed herein are directed to expandable implants that are implantable between adjacent bodies of bone. For example, the implant may be implanted or inserted into a human spine adjacent upper and lower vertebrae of the spine. According to various exemplary embodiments, the components of the implants disclosed herein may be made of any suitable material(s), including a variety of metals, plastics, composites, or other suitable bio-compatible materials. In some embodiments, one or more components of the implants disclosed herein may be made of the same material, while in other embodiments, different materials may be used for different components of the various implants.


In some embodiments, the implant described herein may be used to restore vertical disc height and accommodate the patient anatomy. For example, the dimensions and functionality of the implant may be customized based on the patient's anatomy and desired use of the implant. Further, the implant may be used to correct lordosis of the spine by adjusting the angle in situ.


Referring to the Figures generally, an expandable implant is disclosed. For example, in some embodiments, the expandable implant may be an adjustable lordosis hinged expandable fixated spinal implant. In some embodiments, the implant may include two domed, curved, or flat endplates or supports. The implant may further include pin(s) used to rotatably (e.g., pivotally, hingedly, etc.) couple the two supports to each other. For example, the two supports may be coupled to each other via a hinge mechanism at the posterior or rear portion of the implant. The implant may further include a drive screw or control driver configured to control relative movement of the two supports. The implant may further include a control member (e.g., a sliding nut or control block) configured to translate along the control driver thereby causing relative movement of the two supports. The implant may further include a linkage member or multiple linkage members coupled to the control member and one or both of the supports to facilitate controlled expansion of the two supports. The first or upper support may be rotatably coupled to the second lower support. For example, the implant may further include a linkage connection pin or multiple connection pins used to pivotally (e.g., hingedly) couple the linkage members to the upper support or the lower support. Further, the implant may be configured to receive an anchoring member or multiple anchoring members used to secure the implant into a location within the patient. Further, the implant may include a retention screw or integrated cam screw used to prevent back out of the anchoring members.


Referring now to FIGS. 1-7, an implant or expandable implant 10 is shown according to an exemplary embodiment. The implant 10 is usable, for example, between and/or within vertebral bodies of the spine. It should be understood that the implant 10 may in some embodiments be usable in other portions of the body in addition to the spine, and all such applications are to be understood to be within the scope of the present disclosure. In certain embodiments, the implant 10 may include one or more anchoring members 22, such as bone screws or bone barbs. However, in other embodiments, the implant 10 does not include any anchoring members 22.


As shown in FIG. 2, the first or upper support 18 may include one or more anchoring apertures 194 configured to individually receive the anchoring members 22. The anchoring members 22 may then be inserted into the anchoring apertures 194 to secure the upper support 18 in a desired location. Further, the second or lower support 20 may include one or more anchoring apertures 218 configured to individually receive the anchoring members 22. The anchoring members 22 may then be inserted into the anchoring apertures 218 to secure the lower support 20 in a desired location.


The anchoring members 22 may be bone screws, such as shown in FIG. 1. The anchoring members 22 may include a head 232, a threaded shaft 234, and a tip 236 opposite the head 234. The head 232 may further include an expansion tool interface 223 configured to receive a driver (e.g., a slotted screwdriver, a Phillips-head screwdriver, an Allen wrench screwdriver, a hexagonal drive, a torx drive, a Robertson drive, a tri-wing screwdriver, an Allen security driver, a torx security driver, a Pozidriv, a clutch drive, a spanner, a Schrader drive, a nut driver, a hex wrench, a node security driver) used to screw the anchoring members 22 into the vertebrae adjacent the implant 10.


In some embodiments, if the implant 10 includes one or more anchoring member 22 used to secure the implant 10, the implant 10 may include one or more retention members 28 used to prevent back out of the anchoring members 22. For example, as shown in FIG. 1, the upper support 18 may be configured to receive two retention members 28 and the lower support 20 may be configured to receive a retention member 28, as will be discussed further herein.


According to an exemplary embodiment, the implant 10 includes a first, or upper support 18 (e.g., an upper plate, support member, assembly, etc.) and a second, or lower support 20 (e.g., a lower plate, support member, assembly). The implant 10 may also include a control assembly 16 (see FIG. 11) that is configured to control relative movement between the upper support 18 and the lower support 20. The control assembly 16 may include one or more linkage members 162, a nut or control member 164 coupled to the linkage member(s) 162, a control retention member 26, and a control driver 166 configured to be received by the control member 164, as will be discussed further herein (see FIG. 11).


In some embodiments, such as the embodiments shown in FIGS. 1-4, the upper support 18 includes a front portion 181, a rear portion 183 opposite the front portion 181, a first lateral side 184, and a second lateral side 186 opposite the first lateral side 184. Similarly, the lower support 20 includes a front portion 201, a rear portion 203 opposite the front portion 201, a first lateral side 204, and a second lateral side 206 opposite the first lateral side 204.


According to an exemplary embodiment, the upper support 18 and the lower support 20 define a height of the implant 10 (e.g., a support height defined by the upper and lower grooved/toothed surfaces of the implant 10), wherein the height of the implant 10 is the vertical distance between the outer or top surface 182 of the upper support 18 and the outer or bottom surface 202 of the lower support 20. The height may vary throughout the implant 10. For example, if the top surface 182 of the upper support 18 and the bottom surface 202 lower support 20 are arched or curved in shape, such as shown in the example embodiment in FIG. 1, the height of the implant 10 may be smaller proximate a first lateral side 184 of the upper support 18 and a second lateral side 186 of the upper support 18 than the height proximate the lateral center of the implant 10. Further, the height may vary thought out the implant 10 due to a non-linear expansion profile. For example, as shown in FIGS. 5-7, the height proximate the front of the implant 10 (i.e., proximate the front portion 181 of the upper support 18 and proximate the front portion 201 of the lower support 20) is substantially greater than the height proximate the rear of the implant 10 (i.e., proximate the rear portion 183 of the upper support 18 and proximate the rear portion 203 of the lower support 20).


The implant 10 may include a first lateral window 30 (see FIG. 2) and a second lateral window 32 (see FIG. 1). After the implant 10 has been installed into a patient, the lateral windows 30, 32 may allow for visualization of the graft area within a central cavity of the implant 10. By aiming a medical imaging device (e.g., an x-ray machine, fluoroscope, ultrasound, MM, etc.) substantially parallel to the walls of the lateral windows 30, 32, a medical practitioner or other user is able to view the graft area through each lateral window 30, 32. Therefore, the medical practitioner can use a medical imaging device (e.g., an x-ray machine, fluoroscope, ultrasound, MM, etc.) to view the graft area through the lateral windows 30, 32. Further, the lateral windows 30, 32 reduce the overall weight of the implant 10 while still providing sufficient structural strength.


The implant 10 may be movable between at least a first, collapsed orientation and a second, expanded orientation. For example, the implant 10 is shown in the first, collapsed orientation in FIGS. 1-4. Further, the implant 10 is shown in the second, expanded orientation in FIGS. 5-7, according to an example embodiment. It should be appreciated that the first, collapsed orientation is not necessarily representative of the minimum height of the implant 10 (i.e., the first, collapsed orientation is not necessarily a fully collapsed orientation) and the second, expanded orientation is not necessarily representative of the maximum height of the implant 10 (i.e., the second, collapsed orientation is not necessarily a fully expanded orientation). Instead, the first, collapsed position may be any position wherein the average height throughout the implant 10 is less than the average height throughout the implant 10 in the second, expanded position.


Referring now to FIG. 8, an exploded view of an expandable implant 10 is shown according to an example embodiment. According to some embodiments, the implant 10 may include one or more hinge pins 12. For example, the hinge pins 12 may be used to rotatably couple (e.g., via a hinge mechanism) the upper support 18 to the lower support 20 at a distal end (e.g., proximate the rear portion 183) of the implant 10. For example, the rear portion 183 of the upper support 18 may interface with the rear portion 203 of the lower support 20 such that a first hinge pin aperture 212 of the lower support 20 (e.g., the hinge pin aperture 212 proximate the first lateral side 204 of the lower support 20) aligns with a first hinge pin aperture 188 of the upper support 18 (e.g., the hinge pin aperture 188 proximate the first lateral side 184 of the upper support 18) and a second hinge pin aperture 212 of the lower support 20 (e.g., the hinge pin aperture 212 proximate the second lateral side 206 of the lower support 20) aligns with a second hinge pin aperture 188 of the upper support 18 (e.g., the hinge pin aperture 188 proximate the second lateral side 186). A first hinge pin 12 and a second hinge pin 12 may then be inserted (e.g., pressure fit, friction fit, etc.) into the hinge pin apertures 188, 212 of the upper support 18 and the lower support 20, respectively, such that the upper support 18 is hingedly coupled to the lower support 20 (i.e., the upper support 18 and the lower support 20 may rotate about the hinge pins 12). It should be appreciated that the implant 10 includes two hinge pins 12 for additional stability, however, other implants may only include one hinge pin 12.


According to some embodiments, implant 10 may include one or more linkage pins 14. For example, the linkage pins 14 may be used to hingedly couple the linkage member(s) 162 to the lower support 20. For example, lower support 20 may include a first linkage pin aperture 214 (e.g., the linkage pin aperture 214 proximate the first lateral side 204 of the lower support 20) and a second linkage pin aperture 214 (e.g., the linkage pin aperture 214 proximate the second lateral side 206 of the lower support 20). The first linkage pin aperture 214 may align with a second linkage aperture 163 of a first linkage member 162, such that a first linkage pin 14 may be inserted (e.g., pressure fit, friction fit, etc.) into the first linkage pin aperture 214 and the second linkage aperture 163 of the first linkage member 162 to hingedly couple the first linkage member 162 to the lower support 20 so that the first linkage member 162 may rotate about the first linkage pin 14. Similarly, the second linkage pin aperture 214 may align with the second linkage aperture 163 of the second linkage member 162, such that a second linkage pin 14 may be inserted (e.g., pressure fit, friction fit, etc.) into the second linkage pin aperture 214 to hingedly couple the second linkage member 162 to the lower support 20 and the second linkage aperture 163 of the second linkage member 162 to hingedly couple the second linkage member 162 to the lower support 20 so that the second linkage member 162 may rotate about the second linkage pin 14. It should be appreciated that the implant 10 includes two linkage members 162 and two linkage pins 14 for additional stability, however, other implants may only include one linkage member 162 and one linkage pin 14.


According to some example embodiments, the implant 10 includes a control assembly 16. For example, the control assembly 16 may be configured to control relative movement between the upper support 18 and the lower support 20. The control assembly may include a control driver 166. The control driver 166 may include a head 167, a shaft 168, and a tip 169. The head 167 may include an expansion tool interface 177 configured to receive an expansion tool, such as shown in FIG. 8. In this example embodiment, an expansion tool, such as a torx driver, may be used to manipulate the control driver 166 to control relative movement between the upper support 18 and the lower support 20. While this example embodiment shows the expansion tool interface 177 as being a torx head socket, it should be appreciated that the expansion tool interface 177 can be designed to receive several different types of tools, including a slotted screwdriver, a Phillips-head screwdriver, an Allen wrench screwdriver, a hexagonal drive, a torx drive, a Robertson drive, a tri-wing screwdriver, an Allen security driver, a torx security driver, a Pozidriv, a clutch drive, a spanner, a Schrader drive, a nut driver, a hex wrench, a node security driver, any combination of the listed driver interfaces, and any other type of driver interface.


In some example embodiments, the shaft 168 may be configured to be received by a control bore 165 within the control member 164. For example, the shaft 168 of the control driver 166 and the control bore 165 of the control member 164 are threaded such that manipulation (e.g., rotation) of the control driver 166 causes the control member 164 to translate along the shaft 168 of the control driver 166, thereby causing relative movement between the upper support 18 and the lower support 20, as will be discussed further herein. It should be appreciated that, while the Figures generally show the control bore 165 of the control member 164 threadingly engaging the shaft 168 of the control driver 166, in other embodiments, other adjustment mechanisms may be used (e.g., ratchet mechanisms, indents/detents, etc.). In these embodiments, the control driver 166 may be manipulated (e.g., urged, turned, pushed, rotated, etc.) to control relative movement between the upper support 18 and the lower support 20.


In certain embodiments, the control member 164 may include one or more linkage protrusions 170 that may be used to couple the control member 164 to the one or more linkage members 162. For example, the linkage members 162 may include a first linkage aperture 161 configured to receive the linkage protrusion 170. The linkage protrusion 170 may be inserted (e.g., pressure fit, friction fit, etc.) into the first linkage aperture 161 to hingedly couple the linkage member 162 to the control member 164 such that the linkage member 162 may rotate about the linkage protrusion 170. It should be appreciated that the implant 10 includes two linkage members 162 and two linkage protrusions 170 for additional stability, however, other implants may only include one linkage member 162 and one linkage protrusion 170.


In some embodiments, the control driver 166 may also include a tip 169. Further, the tip 169 may be configured to be received by a retention interface 260 of the control retention member 26. For example, as shown in FIG. 8, the tip 169 may include a shoulder that allows the control driver 166 to be coupled to the control retention member 26 via a shoulder slot in the retention interface 260. As shown, the retention interface 260 includes a horseshoe slot configured to receive the rounded shoulder of the tip 169 of the control driver 166. As will be discussed further below, the control retention member 26 may be secured to the implant 10. For example, the control retention member 26 may include a threaded shaft 264 that may engage a first bore 185 (e.g., a control retention aperture) (see FIG. 9) proximate the rear portion 183 of the upper support 18. In certain embodiments, the first bore 185 may be threaded. Thus, the tip 169 of the control diver 166 may be coupled to the retention interface 260 of the control retention member 26, and the control retention member 26 may be secured within the first bore 185 of the upper support 18, thereby securing the control assembly 16 within the implant 10.


As discussed above, the implant 10 may include one or more retention members 28 used to prevent back out of the anchoring members 22. As shown in FIG. 8, the retention members 28 include a head 282 and a shaft 286. The head 282 further includes an expansion tool interface 283, a rounded portion 284, and a cutout section 285. The expansion tool interface 283 may be configured to receive a tool that may be used to tighten and/or loosen the retention members 28. While the expansion tool interface 283 shown is configured to receive a specialized tool, the expansion tool interface 283 may be configured to receive several different types of tools, including a slotted screwdriver, a Phillips-head screwdriver, an Allen wrench screwdriver, a hexagonal drive, a torx drive, a Robertson drive, a tri-wing screwdriver, an Allen security driver, a torx security driver, a Pozidriv, a clutch drive, a spanner, a Schrader drive, a nut driver, a hex wrench, a node security driver, any combination of the listed driver interfaces, and any other type of driver interface.


In some example embodiments, the shaft 286 of the retention member 28 may by threaded such that it may be screwed into a threaded retention aperture 192 in the upper support 18 and/or a threaded retention aperture 216 of the lower support 20. In certain embodiments, the retention members 28 may be pre-threaded into the threaded retention apertures 192, 216 prior to inserting the implant 10 into a patient. For example, the retention members 28 may be pre-threaded into a first position, such as the position shown in FIG. 2. When the retention member 28 is in the first position, the cutout section 285 of the retention member 28 may provide sufficient clearance such that the anchoring member 22 may be inserted into the anchoring apertures 194, 218. Once the anchoring members 22 are inserted, the retention member 28 may be turned to a second position (e.g., screwed in using a specialized tool designed to engage the expansion tool interface 283) such that the rounded portion 284 reduces the clearance of the anchoring apertures 194, 218 to prevent back out of the anchoring members 22. For example, the rounded portion 284 may engage the head 282 of the anchoring member 22, thereby preventing back out of the anchoring member 22.


Referring now to FIG. 9, the upper support 18 is shown according to an example embodiment. According to an example embodiment, the upper support 18 includes a first bore 185 and a second bore 187 configured to secure the control assembly 16. For example, the control driver 166 may be inserted into the second bore 187 such that the shaft 168 may rotate within the second bore 187. Further, the tip 169 may be positioned within the first bore 185, such that the control retention member 26 may be used to secure the control driver 166 such that the tip 169 may rotate within the retention interface 260.


In some example embodiments, the upper support 18 and/or the lower support 20 may include one or more installation tool interfaces 193, 195. For example, as shown in FIG. 9, the implant 10 may include a first installation tool interface 193 proximate the first lateral side 184 (see FIG. 2). The implant 10 may further include a second installation tool interface 195 proximate the second lateral side 186. The first and second installation tool interfaces 193, 195 may be utilized with an installation tool to assist a medical practitioner or other user in inserting the implant 10 into a patient. For example, the installation tool may controllably grip (e.g., pinch, squeeze, etc.) the installation tool interfaces 193, 195 to secure the implant 10 to the installation tool. The installation tool may then be used to insert the implant 10 into a patient and once the implant 10 is in a desired location, the operator may controllably release the implant 10 from the installation tool.


Referring now to FIG. 10, the lower support 20 is shown according to an example embodiment. As discussed above, the lower support 20 includes a first hinge pin aperture 212 (e.g., the hinge pin aperture 212 proximate the first lateral side 204 of the lower support 20) and a second hinge pin aperture 212 (e.g., the hinge pin aperture 212 proximate the second lateral side 206 of the lower support 20). In this example embodiment, the hinge pin apertures 212 extend from the lateral sides 204, 206, through a first hinge portion 220 and into a second hinge portion 222. However, in other embodiments, the hinge pin apertures 212 may not extend into the second hinge portion 222.


As discussed above, the lower support 20 includes a first linkage hinge aperture 214 (e.g., the linkage hinge aperture 214 proximate the first lateral side 204 of the lower support 20) and a second linkage hinge aperture 214 (e.g., the linkage hinge aperture 214 proximate the second lateral side 206 of the lower support 20). In this example embodiment, the hinge pin apertures 212 extend from the lateral sides 204, 206 and a central portion 224 of the lower support 20. However, in other embodiments, the linkage hinge apertures 214 may not extend into the central portion 224.


Referring now to FIG. 11, the control assembly 16 is shown in an example embodiment. The control assembly 16 may include one or more linkage members 162, a nut or control member 164 coupled to the linkage member(s) 162, a control retention member 26, and a control driver 166 configured to be received by the control member 164. The control assembly 16 may include a control driver 166. The control driver 166 may include a head 167, a shaft 168, and a tip 169. The head 167 may include an expansion tool interface 177 configured to receive an expansion tool. In this example embodiment, an expansion tool, such as a torx driver, may be used to manipulate the control driver 166 to control relative movement between the upper support 18 and the lower support 20. While this example embodiment shows the expansion tool interface 177 as being a torx head socket, it should be appreciated that the expansion tool interface 177 can be designed to receive several different types of tools, including a slotted screwdriver, a Phillips-head screwdriver, an Allen wrench screwdriver, a hexagonal drive, a torx drive, a Robertson drive, a tri-wing screwdriver, an Allen security driver, a torx security driver, a Pozidriv, a clutch drive, a spanner, a Schrader drive, a nut driver, a hex wrench, a node security driver, any combination of the listed driver interfaces, and any other type of driver interface.


As discussed above, the shaft 168 of the control driver 166 may be received by the control member 164. For example, the shaft 168 may threadingly engage a central bore 165 (see FIG. 8) of the control member 164. For example, the shaft 168 of the control driver 166 and the control bore 165 of the control member 164 are threaded such that manipulation (e.g., rotation) of the control driver 166 causes the control member 164 to translate along the shaft 168 of the control driver 166. In use, as the control member 164 translates along the shaft 168, the upper support 18 and the lower support 20 will move relative to one another due to the linkage members 162 being hingedly attached to the control member 164, the linkage members 162 also being hingedly attached to the lower support 20, and the control driver 166 being coupled to the upper support 18 via the first bore 185 and the second bore 187 (see FIG. 9). For example, as the control member 164 translates towards the front portion 181 of the upper support 18 (see FIG. 1), the upper support 18 may expand away from the lower support 20.


Referring now to FIGS. 12 and 13, cross-sectional views of the implant 10 are shown according to an example embodiment. In this example embodiment, the implant 10 is shown without anchoring members 22, however, in other embodiments, the implant 10 may include one or more anchoring members 22. FIG. 12 shows the implant 10 in a first, collapsed orientation and FIG. 13 shows the implant 10 in a second, expanded orientation. In these example embodiments, the control driver 166 may be used to control relative movement between the upper support 18 and the lower support 20. The tip 169 of the control driver 166 is positioned within the control retention interface 260 of the control retention member 26, such that the tip 169 may rotate within the control retention interface 260. As the control driver 166 is manipulated (e.g., rotated using a torx head driver), the control member 164 may translate along the shaft 168 of the control driver 166. As the control member 164 translates from the position shown in FIG. 12 to the position shown in FIG. 13, the angle formed by the top surface 182 of the upper support 18 and the bottom surface 202 of the lower support 20 increases. Further, the average height throughout the implant 10 (i.e., the height of the implant 10 is the vertical distance between the outer or top surface 182 of the upper support 18 and the outer or lower surface 202 of the lower support 20) increases as the control member 164 translates from the position shown in FIG. 12 to the position shown in FIG. 13. However, due to the hinged connection proximate the rear portion 183 of the upper support 18 and the rear portion 203 of the lower support 20, the height at the rear of the implant 10 remains substantially the same relative to the change in height near the front of the implant 10 (i.e., proximate the front portion 181 of the upper support 18 and the front portion 201 of the lower support 20). Therefore, as the control driver 166 is manipulated and the control member 164 translates towards the front of the implant 10, the rate of change of the height is greater proximate the front of the implant 10 than proximate the rear of the implant 10.


Referring now to the Figures generally, the various embodiments disclosed herein provide expandable implants including a lower support and an upper support adjustably coupled to the lower support and movable between a first, collapsed position, and a second, expanded position.


In some embodiments, one or both of the lower support and the upper support include projections/grooves to provide a gripping surface intended to facilitate gripping adjacent portions of bone. In further embodiments, one or both of the lower support and the upper support include one or more apertures and/or cavities configured to promote bone growth in and around the lower support and the upper support. In some embodiments, the apertures extend from a top, bottom, and/or side surface of the lower support and the upper support and to a central cavity of the implant.


According to any of the embodiments disclosed herein, one or more bone screws may be included and positioned to extend through one or both of the lower support and the upper support and into adjacent portions of bone. In some embodiments, multiple bone screws are used. A first bone screw may extend through the adjustable member and into a first portion of bone, and a second bone screw may extend through the base member and into a second portion of bone. In further embodiments, multiple bone screws are accessible and manipulatable by way of the front face of the implant defined by one or both of the adjustable member and the base member. A head and expansion tool interface of the control shaft may further be accessible by way of the front face of the implant.


In various embodiments, any suitable configuration of the control shaft/control member(s)/control channel(s) may be utilized. In some embodiments, an at least partially spherical control member threadingly engages a threaded control shaft and translates both along the control shaft. In other embodiments, the control member is non-spherical.


As utilized herein, the terms “approximately,” “about,” “substantially”, and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of some features described and claimed without restricting the scope of these features to the precise numerical ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and claimed are considered to be within the scope of the application as recited in the appended claims.


It should be noted that the term “exemplary” as used herein to describe various embodiments is intended to indicate that such embodiments are possible examples, representations, and/or illustrations of possible embodiments (and such term is not intended to connote that such embodiments are necessarily extraordinary or superlative examples).


The terms “coupled,” “connected,” and the like as used herein mean the joining of two members directly or indirectly to one another. Such joining may be stationary (e.g., permanent) or moveable (e.g., removable or releasable). Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate members being attached to one another.


References herein to the positions of elements (e.g., “top,” “bottom,” “above,” “below,” “upper,” “lower,” etc.) are merely used to describe the orientation of various elements in the FIGURES. It should be noted that the orientation of various elements may differ according to other exemplary embodiments, and that such variations are intended to be encompassed by the present disclosure.


Although the figures and description may illustrate a specific order of method steps, the order of such steps may differ from what is depicted and described, unless specified differently above. Also, two or more steps may be performed concurrently or with partial concurrence, unless specified differently above. Such variations may depend, for example, on hardware systems chosen and on designer choice. All such variations are within the scope of the disclosure.


It is important to note that the construction and arrangement of the various exemplary embodiments are illustrative only. Although only a few embodiments have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter described herein. For example, elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes and omissions may also be made in the design, operating conditions and arrangement of the various exemplary embodiments without departing from the scope of the present application.


It should be appreciated that dimensions of the components, structures, and/or features of the present implants and installation instruments may be altered as desired within the scope of the present disclosure.

Claims
  • 1. An implant, comprising: a first support;a second support coupled to the first support; anda control assembly configured to move the implant between at least a first, collapsed orientation and a second, expanded orientation, the control assembly comprising: a control driver coupled to the first support and comprising a head and a shaft, the control driver configured to control relative movement between the first support and the second support;a control member configured to move along the shaft of the control driver; anda first linkage comprising a first end pivotally coupled to the control member and a second end pivotally coupled to the second support such that the first end rotates about a first axis extending through the control member and the second end rotates about a different second axis extending through the second support and the second end of the first linkage, wherein movement of the control member causes the first support to rotate relative to the second support;wherein a distance between the first axis and the second axis remains constant as the first and second ends rotate about the first and second axes.
  • 2. The implant of claim 1, wherein the first support is pivotally coupled to the second support via a hinge.
  • 3. The implant of claim 1, wherein the control member comprises a first protrusion, and translation of the control member along the shaft of the control driver further causes the first linkage to rotate about the first protrusion.
  • 4. The implant of claim 3, further comprising a second linkage comprising a second end pivotally coupled to the second support and a first end pivotally coupled to a second protrusion of the control member, wherein translation of the control member along the shaft of the control driver further causes the second linkage to rotate about the second protrusion.
  • 5. The implant of claim 1, wherein the first support is configured to receive a first anchoring member and the second support is configured to receive a second anchoring member.
  • 6. The implant of claim 1, wherein the first support comprises a top surface and the second support comprises a bottom surface; wherein a distance between the top surface and the bottom surface defines a height; andwherein translation of the control member causes a greater change in height proximate a front portion of the implant than a rear portion of the implant.
  • 7. The implant of claim 6, wherein the first support further comprises a control retention aperture configured to receive a control retention member, wherein the control retention member includes a retention interface configured to receive a tip of the control driver.
  • 8. The expandable implant of claim 1, wherein the control driver is translationally fixed relative to the first support.
  • 9. The expandable implant of claim 1, wherein movement of the control driver relative to the first support is limited to rotation of the control driver about a longitudinal axis of the control driver.
  • 10. An implant, comprising: an upper support;a lower support coupled to the upper support and configured to rotate relative to the upper support; anda control assembly configured to expand the implant between at least a first, collapsed orientation and a second, expanded orientation, the control assembly comprising a control member and a first linkage coupling the control member to the lower support, the first linkage comprising a first end configured to rotate about a first axis extending through the control member, and a second end configured to rotate about a second axis different from the first axis and extending through the lower support and the second end of the first linkage, wherein manipulation of the control assembly causes movement of the first linkage relative to the upper support and the lower support;wherein a distance between the first axis and the second axis remains constant as the first and second ends rotate about the first and second axes.
  • 11. The implant of claim 10, wherein the control member comprises a first protrusion, and translation of the control member along a shaft of a control driver further causes the first linkage to rotate about the first protrusion.
  • 12. The implant of claim 11, further comprising a second linkage coupled to the lower support and a second protrusion of the control member, the second linkage comprising a first end configured to rotate about the first axis, and a second end configured to rotate about the second axis, wherein the translation of the control member along the shaft of the control driver further causes the second linkage to rotate about the second protrusion.
  • 13. The implant of claim 11, wherein the upper support is configured to receive a first anchoring member and the lower support is configured to receive a second anchoring member.
  • 14. The implant of claim 11, further comprising: a front portion and a rear portion,wherein the upper support comprises a top surface and the lower support comprises a bottom surface;wherein a distance between the top surface and the bottom surface defines a height; andwherein the height in the second, expanded position proximate the front portion of the implant is substantially greater than the height in the first, collapsed position proximate the front portion of the implant.
  • 15. The implant of claim 11, further comprising: a front portion and a rear portion;wherein the upper support comprises a top surface and the lower support comprises a bottom surface;wherein a distance between the top surface and the bottom surface defines a height; andwherein translation of the control member causes a greater change in height proximate the front portion of the implant than the rear portion of the implant.
  • 16. The implant of claim 15, wherein the upper support further comprises a control retention aperture configured to receive a control retention member, wherein the control retention member includes a retention interface configured to receive a tip of the control driver.
  • 17. An expandable implant comprising: an upper support having a top surface configured to engage a first portion of bone;a lower support having a bottom surface configured to engage a second portion of bone, the lower support hingedly coupled to the upper support at a rear portion of the expandable implant, wherein the top surface of the upper support and the bottom surface of the lower support define an angle; anda control assembly comprising a control driver, a linkage, and a control member, the linkage rotating about a first axis extending through the control member and a second axis different from the first axis and extending through the lower support and the linkage, the control assembly configured to control movement between the upper support and the lower support between at least a first, collapsed orientation and a second, expanded orientation, wherein manipulation of the control assembly causes the angle to change and the linkage to rotate relative to the control member and the lower support;wherein a distance between the first axis and the second axis remains constant as the linkage rotates.
  • 18. The expandable implant of claim 17, wherein a distance between the top surface of the upper support and the bottom surface of the lower support defines a height, wherein the manipulation of the control assembly causes a change in height proximate a front portion of the expandable implant without causing a substantial change in height proximate the rear portion of the expandable implant.
  • 19. The expandable implant of claim 18, wherein: the control driver is configured to be received by a first aperture in the upper support; andthe control member is configured to translate along a shaft of the control driver.
  • 20. The expandable implant of claim 19, further comprising a control retention member configured to be threadingly received by a second aperture in the upper support, wherein the control retention member includes a retention interface configured to receive a tip of the control driver.
US Referenced Citations (499)
Number Name Date Kind
904434 Huff Nov 1908 A
1925385 Humes Sep 1933 A
3846846 Fischer Nov 1974 A
4466426 Blackman Aug 1984 A
4636217 Ogilvie et al. Jan 1987 A
4743256 Brantigan May 1988 A
4863476 Shepperd Sep 1989 A
5098435 Stednitz et al. Mar 1992 A
5192327 Brantigan Mar 1993 A
5236460 Barber Aug 1993 A
5390683 Pisharodi Feb 1995 A
5522899 Michelson Jun 1996 A
5609635 Michelson Mar 1997 A
5645599 Samani Jul 1997 A
5658335 Allen Aug 1997 A
5658337 Kohrs et al. Aug 1997 A
5776199 Michelson Jul 1998 A
5836948 Zucherman et al. Nov 1998 A
5860977 Zucherman et al. Jan 1999 A
5876404 Zucherman et al. Mar 1999 A
6045579 Hochshuler et al. Apr 2000 A
6048342 Zucherman et al. Apr 2000 A
6068630 Zucherman et al. May 2000 A
6074390 Zucherman et al. Jun 2000 A
6080193 Hochshuler et al. Jun 2000 A
6113638 Williams et al. Sep 2000 A
6126689 Brett Oct 2000 A
6176882 Biedermann et al. Jan 2001 B1
6183471 Zucherman et al. Feb 2001 B1
6190387 Zucherman et al. Feb 2001 B1
6235030 Zucherman et al. May 2001 B1
6290724 Marino Sep 2001 B1
6375682 Fleischmann et al. Apr 2002 B1
6409766 Brett Jun 2002 B1
6443989 Jackson Sep 2002 B1
6443990 Aebi et al. Sep 2002 B1
6447544 Michelson Sep 2002 B1
6451019 Zucherman et al. Sep 2002 B1
6491724 Ferree Dec 2002 B1
6494883 Ferree Dec 2002 B1
6537320 Michelson Mar 2003 B1
6576016 Hochshuler et al. Jun 2003 B1
6613091 Zdeblick et al. Sep 2003 B1
6641614 Wagner et al. Nov 2003 B1
6648917 Gerbec et al. Nov 2003 B2
6685742 Jackson Feb 2004 B1
6695842 Zucherman et al. Feb 2004 B2
6699246 Zucherman et al. Mar 2004 B2
6699247 Zucherman et al. Mar 2004 B2
6706070 Wagner et al. Mar 2004 B1
6752832 Neumann Jun 2004 B2
6773460 Jackson Aug 2004 B2
6796983 Zucherman et al. Sep 2004 B1
7001385 Bonutti Feb 2006 B2
7048736 Robinson et al. May 2006 B2
7087055 Lim et al. Aug 2006 B2
7101375 Zucherman et al. Sep 2006 B2
7214243 Taylor May 2007 B2
7217291 Zucherman et al. May 2007 B2
7220280 Kast et al. May 2007 B2
7250055 Vanderwalle Jul 2007 B1
7473276 Aebi Jan 2009 B2
7503933 Michelson Mar 2009 B2
7621950 Globerman et al. Nov 2009 B1
7695513 Zucherman et al. Apr 2010 B2
7727280 McLuen Jun 2010 B2
7731751 Butler et al. Jun 2010 B2
7789914 Michelson Sep 2010 B2
D626233 Cipoletti et al. Oct 2010 S
7824427 Perez-Cruet et al. Nov 2010 B2
7828849 Lim Nov 2010 B2
7837734 Zucherman et al. Nov 2010 B2
7850733 Baynham et al. Dec 2010 B2
7854766 Moskowitz et al. Dec 2010 B2
7867277 Tohmeh Jan 2011 B1
7879098 Simmons, Jr. Feb 2011 B1
7942903 Moskowitz et al. May 2011 B2
7959675 Gately Jun 2011 B2
7972363 Moskowitz et al. Jul 2011 B2
8016861 Mitchell et al. Sep 2011 B2
8021430 Michelson Sep 2011 B2
8048117 Zucherman et al. Nov 2011 B2
8062375 Glerum et al. Nov 2011 B2
8071007 Teoh et al. Dec 2011 B1
8105382 Olmos et al. Jan 2012 B2
8187332 Mcluen May 2012 B2
8231656 Lee et al. Jul 2012 B2
8241330 Lamborne et al. Aug 2012 B2
8241364 Hansell et al. Aug 2012 B2
8252060 Hansell et al. Aug 2012 B2
8257370 Moskowitz et al. Sep 2012 B2
8267939 Cipoletti et al. Sep 2012 B2
8303663 Jimenez et al. Nov 2012 B2
8308804 Krueger Nov 2012 B2
8343190 Mueller et al. Jan 2013 B1
8353913 Moskowitz et al. Jan 2013 B2
8353963 Glerum Jan 2013 B2
8366777 Matthis et al. Feb 2013 B2
8382801 Lamborne et al. Feb 2013 B2
8382842 Greenhalgh et al. Feb 2013 B2
8388686 Aebi et al. Mar 2013 B2
8394129 Morgenstern Lopez Mar 2013 B2
8398713 Weiman Mar 2013 B2
8425607 Waugh et al. Apr 2013 B2
8435298 Weiman May 2013 B2
8444696 Michelson May 2013 B2
8454706 De Beaubien Jun 2013 B2
8491659 Weiman Jul 2013 B2
8506629 Weiland Aug 2013 B2
8518120 Glerum et al. Aug 2013 B2
8529628 Marino et al. Sep 2013 B2
8535380 Greenhalgh et al. Sep 2013 B2
8551173 Lechmann et al. Oct 2013 B2
8556979 Glerum et al. Oct 2013 B2
8568481 Olmos et al. Oct 2013 B2
8597360 Mcluen et al. Dec 2013 B2
8628578 Miller et al. Jan 2014 B2
8632595 Weiman Jan 2014 B2
8641764 Gately Feb 2014 B2
8641766 Donner et al. Feb 2014 B2
8679183 Glerum et al. Mar 2014 B2
8685098 Glerum et al. Apr 2014 B2
8690883 Collins et al. Apr 2014 B2
8702798 Matthis et al. Apr 2014 B2
8709086 Glerum Apr 2014 B2
8734516 Moskowitz et al. May 2014 B2
8795366 Varela Aug 2014 B2
8821506 Mitchell Sep 2014 B2
8845728 Abdou Sep 2014 B1
8845731 Weiman Sep 2014 B2
8845732 Weiman Sep 2014 B2
8845734 Weiman Sep 2014 B2
8852279 Weiman Oct 2014 B2
8858638 Michelson Oct 2014 B2
8864833 Glerum et al. Oct 2014 B2
8888853 Glerum et al. Nov 2014 B2
8888854 Glerum et al. Nov 2014 B2
8894711 Varela Nov 2014 B2
8894712 Varela Nov 2014 B2
8906095 Christensen et al. Dec 2014 B2
8926704 Glerum et al. Jan 2015 B2
8936641 Cain Jan 2015 B2
8940052 Lechmann et al. Jan 2015 B2
8974505 Sawa et al. Mar 2015 B2
9005293 Moskowitz et al. Apr 2015 B2
9034041 Wolters et al. May 2015 B2
9034045 Davenport et al. May 2015 B2
9039771 Glerum et al. May 2015 B2
9044284 Sweeney Jun 2015 B2
9060876 To et al. Jun 2015 B1
9101487 Petersheim Aug 2015 B2
9119730 Glerum et al. Sep 2015 B2
9125757 Weiman Sep 2015 B2
9149367 Davenport et al. Oct 2015 B2
9186258 Davenport et al. Nov 2015 B2
9186262 Mcluen et al. Nov 2015 B2
9198772 Weiman Dec 2015 B2
9204922 Hooven Dec 2015 B2
9204972 Weiman et al. Dec 2015 B2
9204974 Glerum et al. Dec 2015 B2
9211196 Glerum et al. Dec 2015 B2
9216095 Glerum et al. Dec 2015 B2
9216098 Trudeau et al. Dec 2015 B2
9226836 Glerum Jan 2016 B2
9233009 Gray et al. Jan 2016 B2
9278008 Perloff et al. Mar 2016 B2
9295562 Lechmann et al. Mar 2016 B2
9301854 Moskowitz et al. Apr 2016 B2
9358123 Mcluen et al. Jun 2016 B2
9358126 Glerum et al. Jun 2016 B2
9358128 Glerum et al. Jun 2016 B2
9358129 Weiman Jun 2016 B2
9370434 Weiman Jun 2016 B2
9402733 To et al. Aug 2016 B1
9402738 Niemiec et al. Aug 2016 B2
9402739 Weiman et al. Aug 2016 B2
9408708 Greenhalgh Aug 2016 B2
9414932 Errico et al. Aug 2016 B2
9421111 Baynham Aug 2016 B2
9433510 Lechmann et al. Sep 2016 B2
9445919 Palmatier et al. Sep 2016 B2
9452063 Glerum et al. Sep 2016 B2
9456903 Glerum et al. Oct 2016 B2
9456906 Gray et al. Oct 2016 B2
9474622 Mclaughlin et al. Oct 2016 B2
9480579 Davenport et al. Nov 2016 B2
9486325 Davenport et al. Nov 2016 B2
9486326 Gahman et al. Nov 2016 B2
9492286 Biedermann et al. Nov 2016 B2
9492287 Glerum et al. Nov 2016 B2
9492289 Davenport et al. Nov 2016 B2
9510954 Glerum et al. Dec 2016 B2
9517144 Mcatamney et al. Dec 2016 B2
9532821 Moskowitz et al. Jan 2017 B2
9532883 Mcluen et al. Jan 2017 B2
9539103 Mclaughlin et al. Jan 2017 B2
9539108 Glerum et al. Jan 2017 B2
9554918 Weiman Jan 2017 B2
9561116 Weiman et al. Feb 2017 B2
9561117 Lechmann et al. Feb 2017 B2
9572677 Davenport et al. Feb 2017 B2
9579124 Gordon et al. Feb 2017 B2
9585765 Niemiec et al. Mar 2017 B2
9597197 Lechmann et al. Mar 2017 B2
9597200 Glerum et al. Mar 2017 B2
9603713 Moskowitz et al. Mar 2017 B2
9610174 Wang et al. Apr 2017 B2
9622875 Moskowitz et al. Apr 2017 B2
9622879 Taylor et al. Apr 2017 B2
9655737 Perloff et al. May 2017 B2
9655747 Glerum et al. May 2017 B2
9662223 Matthis et al. May 2017 B2
9662224 Weiman et al. May 2017 B2
9707092 Davenport et al. Jul 2017 B2
9770343 Weiman Sep 2017 B2
9782265 Weiman et al. Oct 2017 B2
9801733 Wolters et al. Oct 2017 B2
9814601 Moskowitz et al. Nov 2017 B2
9833336 Davenport et al. Dec 2017 B2
9839528 Weiman et al. Dec 2017 B2
9848993 Moskowitz et al. Dec 2017 B2
9848997 Glerum et al. Dec 2017 B2
9848998 Moskowitz et al. Dec 2017 B2
9855151 Weiman Jan 2018 B2
9867719 Moskowitz et al. Jan 2018 B2
9889022 Moskowitz et al. Feb 2018 B2
9895238 Moskowitz et al. Feb 2018 B2
9907673 Weiman et al. Mar 2018 B2
9907674 Moskowitz et al. Mar 2018 B2
9931226 Kurtaliaj et al. Apr 2018 B2
9943418 Davenport et al. Apr 2018 B2
9956087 Seifert et al. May 2018 B2
9962272 Daffinson et al. May 2018 B1
9968462 Weiman May 2018 B2
9974665 Mcluen et al. May 2018 B2
9980822 Perloff et al. May 2018 B2
9980823 Matthis et al. May 2018 B2
9987143 Robinson et al. Jun 2018 B2
10004607 Weiman et al. Jun 2018 B2
10016283 Mcluen et al. Jul 2018 B2
10028740 Moskowitz et al. Jul 2018 B2
10028842 Gray et al. Jul 2018 B2
10034772 Glerum et al. Jul 2018 B2
10034773 Mclaughlin et al. Jul 2018 B2
10052213 Glerum et al. Aug 2018 B2
10058433 Lechmann et al. Aug 2018 B2
10064742 Taylor et al. Sep 2018 B2
10076367 Moskowitz et al. Sep 2018 B2
10076423 Miller et al. Sep 2018 B2
10080669 Davenport et al. Sep 2018 B2
10085844 Perloff et al. Oct 2018 B2
10085849 Weiman et al. Oct 2018 B2
10092417 Weiman et al. Oct 2018 B2
10092422 Mcluen et al. Oct 2018 B2
10098757 Logan et al. Oct 2018 B2
10098758 Matthews et al. Oct 2018 B2
10098759 Weiman Oct 2018 B2
10105239 Niemiec et al. Oct 2018 B2
10111760 Knapp et al. Oct 2018 B2
10117754 Davenport et al. Nov 2018 B2
10137001 Weiman Nov 2018 B2
10137007 Dewey Nov 2018 B2
10143500 Niemiec et al. Dec 2018 B2
10143569 Weiman et al. Dec 2018 B2
10154911 Predick Dec 2018 B2
10159583 Dietzel et al. Dec 2018 B2
10213321 Knapp et al. Feb 2019 B2
10219913 Matthews et al. Mar 2019 B2
10226359 Glerum et al. Mar 2019 B2
10251643 Moskowitz et al. Apr 2019 B2
10285819 Greenhalgh May 2019 B2
10285820 Greenhalgh May 2019 B2
10292828 Greenhalgh May 2019 B2
10292830 Mcluen et al. May 2019 B2
10299934 Seifert et al. May 2019 B2
10307268 Moskowitz et al. Jun 2019 B2
10350085 Glerum et al. Jul 2019 B2
10376386 Moskowitz et al. Aug 2019 B2
10383741 Butler et al. Aug 2019 B2
10420654 Logan et al. Sep 2019 B2
10426632 Butler et al. Oct 2019 B2
10426633 Moskowitz et al. Oct 2019 B2
10433977 Lechmann et al. Oct 2019 B2
10449058 Lechmann et al. Oct 2019 B2
10470894 Foley et al. Nov 2019 B2
10478319 Moskowitz et al. Nov 2019 B2
10512550 Bechtel et al. Dec 2019 B2
10531895 Weiman et al. Jan 2020 B2
10575966 Logan et al. Mar 2020 B2
10617533 Glerum et al. Apr 2020 B2
10624761 Davenport et al. Apr 2020 B2
10639166 Weiman et al. May 2020 B2
10682240 Mcluen et al. Jun 2020 B2
10702393 Davenport et al. Jul 2020 B2
10709569 Mclaughlin et al. Jul 2020 B2
10709571 Iott et al. Jul 2020 B2
10709573 Weiman et al. Jul 2020 B2
10709574 Mcluen et al. Jul 2020 B2
10722379 Mclaughlin et al. Jul 2020 B2
10729560 Baker et al. Aug 2020 B2
10729562 Knapp et al. Aug 2020 B2
10736754 Mcluen et al. Aug 2020 B2
10758367 Weiman et al. Sep 2020 B2
10765528 Weiman et al. Sep 2020 B2
10772737 Gray et al. Sep 2020 B2
10779957 Weiman et al. Sep 2020 B2
10786364 Davenport et al. Sep 2020 B2
10799368 Glerum et al. Oct 2020 B2
10835387 Weiman et al. Nov 2020 B2
10842644 Weiman et al. Nov 2020 B2
10869768 Weiman et al. Dec 2020 B2
10874522 Weiman Dec 2020 B2
10874523 Weiman et al. Dec 2020 B2
10925752 Weiman Feb 2021 B2
10940014 Greenhalgh Mar 2021 B2
10973649 Weiman et al. Apr 2021 B2
11020239 Miller Jun 2021 B2
11051951 Robinson et al. Jul 2021 B2
11065128 Zappacosta et al. Jul 2021 B2
20020010472 Kuslich et al. Jan 2002 A1
20020029084 Paul et al. Mar 2002 A1
20020128716 Cohen et al. Sep 2002 A1
20020143343 Castro Oct 2002 A1
20020143399 Sutcliffe Oct 2002 A1
20030004576 Thalgott Jan 2003 A1
20030040746 Mitchell et al. Feb 2003 A1
20030040802 Errico et al. Feb 2003 A1
20030176926 Boehm et al. Sep 2003 A1
20030236520 Lim et al. Dec 2003 A1
20040073213 Serhan et al. Apr 2004 A1
20040153156 Cohen et al. Aug 2004 A1
20040167625 Beyar et al. Aug 2004 A1
20040204747 Kemeny et al. Oct 2004 A1
20040225292 Sasso et al. Nov 2004 A1
20040254643 Jackson Dec 2004 A1
20050033437 Bao et al. Feb 2005 A1
20050070911 Carrison et al. Mar 2005 A1
20050107800 Frankel et al. May 2005 A1
20050119747 Fabris Monterumici Jun 2005 A1
20050131536 Eisermann et al. Jun 2005 A1
20050143827 Globerman et al. Jun 2005 A1
20050177235 Baynham et al. Aug 2005 A1
20050177236 Mathieu et al. Aug 2005 A1
20050222681 Richley et al. Oct 2005 A1
20050228391 Levy et al. Oct 2005 A1
20050261769 Moskowitz et al. Nov 2005 A1
20050278036 Leonard et al. Dec 2005 A1
20060030943 Peterman Feb 2006 A1
20060036258 Zucherman et al. Feb 2006 A1
20060084988 Kim Apr 2006 A1
20060089715 Truckai et al. Apr 2006 A1
20060089718 Zucherman et al. Apr 2006 A1
20060095136 McLuen May 2006 A1
20060189999 Zwirkoski Aug 2006 A1
20060241601 Trautwein et al. Oct 2006 A1
20060253201 McLuen Nov 2006 A1
20060264938 Zucherman et al. Nov 2006 A1
20060265077 Zwirkoski Nov 2006 A1
20070072475 Justin et al. Mar 2007 A1
20070142915 Altarac et al. Jun 2007 A1
20070244485 Greenhalgh et al. Oct 2007 A1
20070270968 Baynham et al. Nov 2007 A1
20080114367 Meyer May 2008 A1
20080114453 Francis May 2008 A1
20080114456 Dewey et al. May 2008 A1
20080140085 Gately et al. Jun 2008 A1
20080140207 Olmos et al. Jun 2008 A1
20080147193 Matthis et al. Jun 2008 A1
20080161818 Kloss et al. Jul 2008 A1
20080177391 Mitchell et al. Jul 2008 A1
20080183211 Lamborne et al. Jul 2008 A1
20080288077 Reo et al. Nov 2008 A1
20080312741 Lee et al. Dec 2008 A1
20090005872 Moumene et al. Jan 2009 A1
20090062915 Kohm et al. Mar 2009 A1
20090105832 Allain et al. Apr 2009 A1
20090192553 Maguire et al. Jul 2009 A1
20090198339 Kleiner et al. Aug 2009 A1
20090222099 Liu et al. Sep 2009 A1
20090312837 Eisermann et al. Dec 2009 A1
20100103344 Wang et al. Apr 2010 A1
20100179655 Hansell et al. Jul 2010 A1
20100204795 Greenhalgh Aug 2010 A1
20100211176 Greenhalgh Aug 2010 A1
20100241167 Taber et al. Sep 2010 A1
20100249937 Blain et al. Sep 2010 A1
20100286777 Errico et al. Nov 2010 A1
20110022090 Gordon et al. Jan 2011 A1
20110066186 Boyer et al. Mar 2011 A1
20110071635 Zhang et al. Mar 2011 A1
20110077738 Ciupik et al. Mar 2011 A1
20110144692 Saladin et al. Jun 2011 A1
20110144755 Baynham et al. Jun 2011 A1
20110166654 Gately Jul 2011 A1
20110172709 Lyons et al. Jul 2011 A1
20110172774 Varela Jul 2011 A1
20110178599 Brett Jul 2011 A1
20110184468 Metcalf et al. Jul 2011 A1
20110196494 Yedlicka et al. Aug 2011 A1
20110224731 Smisson et al. Sep 2011 A1
20110282453 Greenhalgh et al. Nov 2011 A1
20110301711 Palmatier et al. Dec 2011 A1
20110319997 Glerum et al. Dec 2011 A1
20120010717 Spann Jan 2012 A1
20120016418 Chin et al. Jan 2012 A1
20120022652 Berger et al. Jan 2012 A1
20120035730 Spann Feb 2012 A1
20120046748 Weiman Feb 2012 A1
20120059472 Weiman Mar 2012 A1
20120059474 Weiman Mar 2012 A1
20120071978 Suedkamp et al. Mar 2012 A1
20120109203 Dryer et al. May 2012 A1
20120185049 Varela Jul 2012 A1
20120221051 Robinson Aug 2012 A1
20120226357 Varela Sep 2012 A1
20120330422 Weiman Dec 2012 A1
20130023993 Weiman Jan 2013 A1
20130023994 Glerum Jan 2013 A1
20130085572 Glerum et al. Apr 2013 A1
20130103156 Packer et al. Apr 2013 A1
20130116793 Kloss May 2013 A1
20130158663 Miller et al. Jun 2013 A1
20130158664 Palmatier Jun 2013 A1
20130158668 Nichols et al. Jun 2013 A1
20130158669 Sungarian et al. Jun 2013 A1
20130197647 Wolters et al. Aug 2013 A1
20130211526 Alheidt et al. Aug 2013 A1
20140067071 Weiman et al. Mar 2014 A1
20140148904 Robinson May 2014 A1
20140163683 Seifert et al. Jun 2014 A1
20140188224 Dmuschewsky Jul 2014 A1
20140236296 Wagner et al. Aug 2014 A1
20140249629 Moskowitz et al. Sep 2014 A1
20140277461 Nebosky et al. Sep 2014 A1
20140277473 Perrow Sep 2014 A1
20140277500 Logan et al. Sep 2014 A1
20140288653 Chen Sep 2014 A1
20140343678 Suddaby Nov 2014 A1
20150012097 Ibarra et al. Jan 2015 A1
20150066145 Rogers et al. Mar 2015 A1
20150100128 Glerum et al. Apr 2015 A1
20150112438 Mclean Apr 2015 A1
20150173917 Radcliffe et al. Jun 2015 A1
20150230931 Greenhalgh Aug 2015 A1
20150351928 Butler et al. Dec 2015 A1
20150374507 Wolters et al. Dec 2015 A1
20160051377 Weiman et al. Feb 2016 A1
20160089247 Nichols et al. Mar 2016 A1
20160120660 Melkent et al. May 2016 A1
20160242927 Seifert et al. Aug 2016 A1
20160310291 Greenhalgh Oct 2016 A1
20160361177 Biedermann et al. Dec 2016 A1
20160367377 Faulhaber Dec 2016 A1
20170014244 Seifert et al. Jan 2017 A1
20170056197 Weiman et al. Mar 2017 A1
20170172756 Faulhaber Jun 2017 A1
20170216036 Cordaro Aug 2017 A1
20170224504 Butler et al. Aug 2017 A1
20170224505 Butler et al. Aug 2017 A1
20170246006 Carnes Aug 2017 A1
20170258605 Blain et al. Sep 2017 A1
20170281432 Glerum et al. Oct 2017 A1
20170296352 Richerme et al. Oct 2017 A1
20170333198 Robinson Nov 2017 A1
20170333199 Sharifi-Mehr et al. Nov 2017 A1
20170333200 Arnin Nov 2017 A1
20170348116 Weiman Dec 2017 A1
20170367842 Predick et al. Dec 2017 A1
20180014947 Baynham Jan 2018 A1
20180042732 Seifert et al. Feb 2018 A1
20180049885 Weiman et al. Feb 2018 A1
20180055652 Davenport et al. Mar 2018 A1
20180243107 Foley et al. Aug 2018 A1
20180256359 Greenhalgh Sep 2018 A1
20180303621 Brotman et al. Oct 2018 A1
20180318101 Engstrom Nov 2018 A1
20180325693 Weiman et al. Nov 2018 A1
20180360616 Luu Dec 2018 A1
20190021871 Baynham Jan 2019 A1
20190133779 Mclaughlin et al. May 2019 A1
20190133784 Gunn et al. May 2019 A1
20190201210 Besaw et al. Jul 2019 A1
20190254836 Cowan et al. Aug 2019 A1
20190254838 Miller et al. Aug 2019 A1
20190298524 Lauf et al. Oct 2019 A1
20190307577 Predick et al. Oct 2019 A1
20190314168 Faulhaber Oct 2019 A1
20190328540 Seifert et al. Oct 2019 A1
20190374348 Butler et al. Dec 2019 A1
20190388232 Purcell et al. Dec 2019 A1
20190388238 Lechmann et al. Dec 2019 A1
20200054461 Marrocco et al. Feb 2020 A1
20200360153 Weiman et al. Nov 2020 A1
20210015627 Weiman et al. Jan 2021 A1
20210045892 Rogers et al. Feb 2021 A1
20210113349 Weiman et al. Apr 2021 A1
20210137699 Jang et al. May 2021 A1
20210259849 Robinson et al. Aug 2021 A1
20220133495 Glerum et al. May 2022 A1
Foreign Referenced Citations (40)
Number Date Country
102427769 Apr 2012 CN
205866898 Jan 2017 CN
94 07 806 Jul 1994 DE
20314708 Nov 2003 DE
2 777 633 Sep 2014 EP
3 031 424 Jun 2016 EP
3 245 982 Nov 2017 EP
3 479 799 May 2019 EP
2717068 Apr 1996 FR
2727003 Apr 1997 FR
0 284 462 Feb 1928 GB
200290058 Sep 2002 KR
100905962 Jul 2009 KR
WO-9531158 Nov 1995 WO
WO-9926562 Jun 1999 WO
WO-0044319 Aug 2000 WO
WO-0244319 Jun 2002 WO
WO-2004052245 Jun 2004 WO
WO-2005009299 Feb 2005 WO
WO-2006102485 Sep 2006 WO
WO-20061 05437 Oct 2006 WO
WO-2009124269 Oct 2009 WO
WO-2010148112 Dec 2010 WO
WO-2012121726 Sep 2012 WO
WO-2014134590 Sep 2014 WO
WO-2014165319 Oct 2014 WO
WO-2015009793 Jan 2015 WO
WO-2015063721 May 2015 WO
WO-2015085111 Jun 2015 WO
WO-201 6077610 May 2016 WO
WO-201 6127139 Aug 2016 WO
WO-201 7027873 Feb 2017 WO
WO-2017027277 Feb 2017 WO
WO-201 7066463 Apr 2017 WO
WO-2018049227 Mar 2018 WO
WO-2018200507 Nov 2018 WO
WO-2018200530 Nov 2018 WO
WO20190014139 Jan 2019 WO
WO-2019014139 Jan 2019 WO
WO-2019241687 Dec 2019 WO
Non-Patent Literature Citations (36)
Entry
Bacfuse® Spinous Process Fusion Plate Surgical Technique, 2011, Pioneer Surgical, 12 pages.
Extended European Search Report for European Application No. 14159101.6, dated Jun. 18, 2014, 6 pages.
Extended European Search Report for European Application No. 16169890.7, dated Oct. 21, 2016, 7 pages.
Foreign Action other than Search Report on EP 06740268.5 dated Jan. 2, 2020.
Foreign Action other than Search Report on PCT PCT/US2018/029120 dated Nov. 7, 2019.
Foreign Action other than Search Report on PCT PCT/US2018/029149 dated Nov. 7, 2019.
Foreign Action other than Search Report on PCT PCT/US2018/041306 dated Jan. 23, 2020.
Foreign Search Report on PCT PCT/US2019/037275 dated Sep. 24, 2019.
International Preliminary Report on Patentability for Application No. PCT/US06/12060 dated Sep. 30, 2007, 3 pages.
International Search Report and Written Opinion for International Application No. PCT/US2006/012060, dated Apr. 5, 2007, 4 pages.
International Search Report and Written Opinion for International Application No. PCT/US2012/057324, dated Dec. 20, 2012, 10 pages.
International Search Report for International Application No. PCT/US2018/029120, dated Jun. 28, 2018, 17 pages.
International Search Report for International Application No. PCT/US2018/029149, dated Jun. 25, 2018, 13 pages.
Search Report for International Application No. PCT/US2018/041306, dated Sep. 28, 2018, 12 pages.
Written Opinion of the International Searching Authority for Application No. PCT/US06/12060, dated Apr. 5, 2007, 3 pages.
International Search Report and Written Opinion in PCT/US2021/033832 dated Sep. 17, 2021.
International Search Report and Written Opinion in PCT PCT/US2021/030261 dated Aug. 31, 2021 (18 pages).
International Search Report and Written Opinion in PCT/US2021/031596 dated Sep. 28, 2021 (12 pages).
International Search Report and Written Opinion on PCT/US2020/036809 dated Sep. 14, 2020, 12 pages.
International Search Report and Written Opinion received for Life Spine, Inc. for PCT app. PCT/US2021/026606 dated Jul. 15, 2021, 20 pages.
International Search Report and Written Opinion received for Life Spine, Inc., for PCT app. No. PCT/US2021026610 dated Jul. 20, 2021, 18 pages.
International Search Report on PCT/US2020/037020, dated Sep. 29, 2020, 20 pages.
“MectaLIF Oblique & Posterior Intervertebral Body Fusion Device.” Brochure. 2004, Medacta International, San Pietro, Switzerland.
“Webster's II New College Dictionary.” Excerpts. 2005, Houghton Mifflin Co., p. 992.
“Wedge.” Encyclopedia Brittanica. Aug. 14, 2008. britannica.com/print/article/638734.
Folman, et al., “Posterior Lumbar Interbody Fusion for Degenerative Disc Disease Using a Minimally Invasive B-Twin Expandable Spinal Spacer.” Journal of Spinal Disorders & Techniques. 2003, vol. 16, No. 5, pp. 455-460.
Kambin, P., et al., “Arthroscopic Discectomy of the Lumbar Spine.” Clinical Orthopaedics and Related Research. Apr. 1997, No. 337, pp. 49-57.
Kim, D., et al. “Posterior Lumbar Interbody Fusion Using a Unilateral Single Cage and a Local Morselized Bone Graft in the Degenerative Lumbar Spine.” Clinics in Orthopedic Surgery. 2009, vol. 1, No. 4, pp. 214-221.
Kim, Y, et al., “Clinical Applications of the Tubular Retractor on Spinal Disorders.” Journal of Korean Neurosurgery, Nov. 2007, No. 42, pp. 244-250.
Moore, J., et al., “Mechanics Map—Wedges.” Aug. 20, 2022, mechanicsmap.psu.edu/websites/7_friction/7-3_wedges/wedges.
Peltier, L. “Orthopedics: A History and Iconography” 1993, Norman Publishing, San Francisco, CA.
Sasso, R., et al., “Anterior Lumbar Interbody Fusion.” Surgical Management of Low Back Pain. 2009, Chapter 10, pp. 87-95.
Schizas, C., “Spinal Fusion: Techniques Results and Limitations.” European Cells and Materials. 2005, vol. 10, Suppl. 3, p. 1.
Tsuang, Y., et al., “Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation—A finite element study.” Medical Engineering & Physics 31. 2009, pp. 565-570.
Virk, S., et al. “History of Spinal Fusion: Where We Came from and Where We Are Going.” Current Concepts in Spinal Fusion. HSS Journal, 2020, No. 16, pp. 137-142.
Xiao, Y, et al., “Unilateral Transforaminal Lumbar Interbody Fusion: a Review of the Technique, Indications and Graft Materials.” The Journal of International Medical Research. 2009, No. 37, pp. 908-917.
Related Publications (1)
Number Date Country
20210401586 A1 Dec 2021 US