Expandable implant assembly

Information

  • Patent Grant
  • 11602439
  • Patent Number
    11,602,439
  • Date Filed
    Thursday, April 16, 2020
    4 years ago
  • Date Issued
    Tuesday, March 14, 2023
    a year ago
Abstract
An expandable includes a base member having a top surface and a bottom surface opposite the top surface, and an adjustable member adjustably coupled to the base member and movable between a first, collapsed position, and a second, expanded position. The adjustable member has a top surface and a bottom surface opposite the top surface. The top surface of the adjustable member and the bottom surface of the base member form a first angle while the adjustable member is in the first, collapsed position, and the top surface of the adjustable member and the bottom surface of the base member form a second angle while the adjustable member is in the second, expanded position. The first angle is different from the second angle.
Description
BACKGROUND

The present disclosure relates to expandable implants and devices, including spinal interbody and intravertebral body devices, and vertebral interbody and intravertebral devices that are expandable after spinal placement thereof.


Many people contend with spine issues as a result of age, disease, and trauma, as well as congenital and acquired complications and conditions. While some of these issues can be alleviated without surgery, other issues necessitate surgery. Spinal fusion may be recommended for conditions such as spondylolistheses, degenerative disc disease, or recurrent disc herniation, and is designed to create solid bone between adjacent vertebrae, thereby eliminating any movement between the bones. A spinal fusion uses an implant or device known as an interbody cage or spacer along with bone graft and/or bone graft substitute that is inserted into the disc space between adjacent vertebrae from one side of the spine. Typically, additional surgical hardware (implants) such as pedicle screws and rods or plates are attached to the back of the vertebrae. As the bone graft heals, it fuses the adjacent vertebrae to form one long vertebra.


Fusion cages, as well as other types of implants, bodies and/or devices, are frequently utilized in spinal surgery inside a vertebra (intravertebral) and/or between vertebrae of a patient (interbody), or adjacent other bone bodies. With interbody devices, one or more such spinal bodies are placed between vertebrae to provide support and promote fusion between adjacent vertebrae where such is necessary due to disease, injury, general deterioration or congenital problem. With intravertebral devices, one or more spinal bodies are placed within a vertebra. Spinal devices, such as fusion cages and/or the like, are inserted into a spinal space either anteriorly, posteriorly, laterally or posterolaterally.


SUMMARY

In some embodiments, an expandable implant is disclosed. The expandable implant includes a base member having a top surface and a bottom surface opposite the top surface, and an adjustable member adjustably coupled to the base member and movable between a first, collapsed position, and a second, expanded position. The adjustable member has a top surface and a bottom surface opposite the top surface. The top surface of the adjustable member and the bottom surface of the base member form a first angle while the adjustable member is in the first, collapsed position, and the top surface of the adjustable member and the bottom surface of the base member form a second angle while the adjustable member is in the second, expanded position. The first angle is different from the second angle.


In further embodiments, an expandable implant is disclosed. The expandable implant includes a base member having a guide groove and an adjustable member adjustably coupled to the base member and movable between a first, collapsed position, and a second, expanded position, wherein the adjustable member has a guide rail. The guide groove is configured to receive the guide rail, such that the guide rail translates within the guide groove as the adjustable member is moved from the first, collapsed position to the second, expanded position. The guide rail has a curvature such that the adjustable member moves in a non-linear manner from the first, collapsed position to the second, expanded position.


In further embodiments, an expandable implant is disclosed. The expandable implant includes a plurality of anchoring members, a base member configured to receive an anchoring member, an adjustable member adjustably coupled to the base member and movable between a first, collapsed position, and a second, expanded position, wherein the adjustable member is configured to receive an anchoring member, and a control assembly including a control shaft. Rotation of the control shaft causes relative movement of the adjustable member relative to the base member.





BRIEF DESCRIPTION OF THE FIGURES

The features of the subject matter disclosed herein will be better understood by reference to the accompanying drawings which illustrate the subject matter disclosed herein, wherein:



FIG. 1 is a perspective view of an implant in a collapsed position according to an example embodiment.



FIG. 2 is another perspective view of the implant of FIG. 1 in a collapsed position according to an example embodiment.



FIG. 3 is a top view of the implant of FIG. 1 in a collapsed position according to an example embodiment.



FIG. 4 is a front view of the implant of FIG. 1 in a collapsed position according to an example embodiment.



FIG. 5 is a perspective view of the implant of FIG. 1 in an expanded position according to an example embodiment.



FIG. 6 is another perspective view of the implant of FIG. 1 in an expanded position according to an example embodiment.



FIG. 7 is another perspective view of the implant of FIG. 1 in an expanded position according to an example embodiment.



FIG. 8 is a rear view of the implant of FIG. 1 in an expanded position according to an example embodiment.



FIG. 9 is an exploded view of the implant of FIG. 1 according to an example embodiment.



FIG. 10 is a perspective view of an adjustable member of the implant of FIG. 1 according to an example embodiment.



FIG. 11 is another perspective view of the adjustable member of FIG. 10 according to an example embodiment.



FIG. 12 is a perspective view of the underside of the adjustable member of FIG. 10 according to an example embodiment.



FIG. 13 is a bottom view of the adjustable member of FIG. 10 according to an example embodiment.



FIG. 14 is a perspective view of a control shaft and two control members of the implant of FIG. 1 according to an example embodiment.



FIG. 15 is a perspective view of the control shaft of FIG. 14 according to an example embodiment.



FIG. 16 is a perspective view of a control member of the implant of FIG. 1 according to an example embodiment.



FIG. 17 is a perspective view of a control member of the implant of FIG. 1 according to an example embodiment.



FIG. 18 is a perspective view of a control shaft and control members within a base member of the implant of FIG. 1 according to an example embodiment.



FIG. 19 is a perspective view of a base member of the implant of FIG. 1 according to an example embodiment.



FIG. 20 is a rear perspective view of the base member of FIG. 19 according to an example embodiment.



FIG. 21 is a perspective view of an implant according to another example embodiment.



FIG. 22 is a perspective view of the implant of FIG. 21 according to an example embodiment.



FIG. 23 is a side view of the implant of FIG. 21 according to an example embodiment.



FIG. 24 is a front view of the implant of FIG. 21 according to an example embodiment.



FIG. 25 is a front view of a control shaft and cam screw according to an example embodiment.



FIG. 26 is a front view of a control shaft and cam screw of the implant of FIG. 21 according to an example embodiment.



FIGS. 27A-B are schematic representations of a control mechanism according to an example embodiment.





Corresponding reference characters indicate corresponding parts throughout the several views. Although the drawings represent embodiments of the disclosure, the drawings are not necessarily to scale and certain features may be exaggerated in order to better illustrate and explain the principles of the present disclosure. The exemplifications set out herein illustrate several embodiments, but the exemplifications are not to be construed as limiting the scope of the disclosure in any manner.


DETAILED DESCRIPTION

Before turning to the figures, which illustrate certain exemplary embodiments in detail, it should be understood that the present disclosure is not limited to the details or methodology set forth in the description or illustrated in the figures. It should also be understood that the terminology used herein is for the purpose of description only and should not be regarded as limiting.


The present disclosure relates to expandable and/or dynamic implants. In an example embodiment, the implant may be an interbody (between adjacent vertebrae), intravertebral-body (inside the vertebrae) and/or spinal stabilization devices that may or may not be used as interbody fusion cages or devices, interbody/intravertebral bodies/body stabilization devices and/or the like (e.g., spinal device(s)) for providing support, stabilization and/or promoting bone growth between or inside vertebrae or other portions of bone that have been destabilized or otherwise due to injury, illness and/or the like. Particularly, the present disclosure provides various versions of dynamic (expandable and/or expandable and retractable) interbody/intravertebral body devices that are usable in a spinal column or other areas of a human.


Various embodiments disclosed herein are directed to expandable implants that are implantable between adjacent bodies of bone. For example, the implant may be implanted or inserted into a human spine adjacent upper and lower vertebrae of the spine. According to various exemplary embodiments, the components of the implants disclosed herein may be made of any suitable material(s), including a variety of metals, plastics, composites, or other suitable bio-compatible materials. In some embodiments, one or more components of the implants disclosed herein may be made of the same material, while in other embodiments, different materials may be used for different components of the various implants.


Referring now to FIGS. 1-4, an expandable implant 10 is shown according to an exemplary embodiment. The implant 10 is usable, for example, between and/or within vertebral bodies of the spine. It should be understood that the implant 10 may in some embodiments be usable in other portions of the body in addition to the spine, and all such applications are to be understood to be within the scope of the present disclosure.


According to some embodiments, the implant 10 includes a base member 12 and an adjustable member 14 adjustably coupled to the base member 12. The implant 10 may further include a control shaft 16 received by the base member 12 retained by a cam screw 18 passing through a portion of the base member 12. A first control member 20 and a second control member 22 are received on the control shaft 16 and are movable along the control shaft 16 to adjust a position of the adjustable member 14 between a collapsed position, as shown in FIGS. 1-4, and an expanded position, as shown in FIGS. 5-8.


As shown in FIG. 18, the base member 12 includes a front or first end 24, a rear or second end 26, and a central cavity 36 disposed between the first end 24 and the second end 26. The base member 12 further includes a bottom surface 28 having ridges or projections 30 formed by corresponding grooves, a top surface 32 opposite the bottom surface 28, a first side 38, and a second side 40. The projections 30 are configured to engage adjacent portions of bone. In some embodiments, the front end 24 includes a first pin aperture 42 configured to receive a retention pin 19 and a second pin aperture 43 configured to receive a retention pin 19. In some embodiments, the first side 38 includes a third pin aperture, and the second side 40 includes a fourth pin aperture 45 configured to receive a retention pin 19. In some embodiments, such as the embodiment shown in FIG. 1, the first side 38 does not include a third pin aperture. The first pin aperture 42, second pin aperture 43, third pin aperture, and fourth pin aperture 45 may be configured to individually receive a retention pin 19 (e.g. in a press fit or other manner of retention). The first end 24 of the base member 12 includes a control bore 48 (see FIG. 9) configured to receive a first portion of the control shaft 16. The second end 26 includes a tip bore 50 (see FIG. 7) configured to receive a head 90 of the control shaft 16.


In further embodiments, the base member 12 includes a first support pin aperture 27, shown in FIG. 20, and a second support pin aperture 29, shown in FIG. 19. The first support pin aperture 27 and second support pin aperture 29 may be individually configured to receive a support pin 17 (e.g. in a press fit or other manner of retention). The support pin 17 may extend into the central cavity 36 and may support the control shaft 16 such that the control shaft 16 will not bottom out against the top surface 32 of the base member 12.


In further embodiments, the base member 12 may include a first front guide groove 52, a second front guide groove 53, a first rear guide groove 54, and a second rear guide groove 55. The first front guide groove 52, second front guide groove 53, first rear guide groove 54, and second rear guide groove 55 may be utilized to customize the expansion profile of the implant 10, as will be discussed in further detail.


In some embodiments, as shown in FIGS. 11 and 12, the adjustable member 14 includes a front or first end 62, a rear or second end 64, and a central recess or cavity 69 positioned between the first end 62 and the second end 64. The adjustable member 14 further includes a top surface 66 having ridges or projections 68 formed by corresponding grooves and a bottom surface 67. The adjustable member 14 also includes a first side portion 86, and a second side portion 88. In some embodiments, the first and second side portions 86, 88 have a shape generally corresponding to the shape of the first side 38 and the second side 40 of the base member 12. In other embodiments, the first and second side portions 86, 88 have shapes differing from the shapes of the first side 38 and second side 40 of the base member 12.


As shown in FIG. 5, in further embodiments, the adjustable member 14 may include a first front guide rail 78, a second front guide rail 79, a first rear guide rail 80, and a second rear guide rail 81. In some embodiments, the first front guide rail 78 is configured to be received by the first front guide groove 52, the second front guide rail 79 is configured to be received by the second front guide groove 53, the first rear guide rail 80 is configured to be received by the first rear guide groove 54, and the second rear guide rail 81 is configured to be received by the second rear guide groove 55. According to an example embodiment, when the implant 10 expands (e.g. the adjustable member 14 moves in a direction away from the base member 12), the guide rails 78, 79, 80, 81 will individually translate within each respective guide groove 52, 53, 54, 55.


In further embodiments, such as the embodiment shown in FIG. 10, the first front guide rail 78 may include a first pin slot 82 configured to receive a retention pin 19. Further, the second front guide rail 79 may include a second pin slot 83 configured to receive a retention pin 19. Further, the first rear guide rail 80 may include a third pin slot configured to receive a retention pin 19. In some embodiments, such as the embodiment shown in FIG. 1, the first guide rail 80 does not include a third pin slot. Further, the second rear guide rail 81 may include a fourth pin slot 84 configured to receive a retention pin 19.


Referring to FIGS. 10-13, in some embodiments, the adjustable member 14 includes one or more control channels, such as a first control channel 74 and a second control channel 76. The first control channel 74 receives the first control member 20, and the second control channel 76 receives the second control member 22. In some embodiments, the control members 20, 22 are received in the control channels 74, 76 in a sliding manner such that the control members 20, 22 are able to translate within the control channels 74, 76. In further embodiments, each control channel has a shape such that the control channel surrounds the control member and at least partially corresponds in shape to the control member.


Referring to FIGS. 14 and 15, the control shaft 16 includes a head portion 90, a tool port 92 disposed within the head portion 90, and a tip 98 located at an end opposite the head portion 90. In some embodiments, the tip 98 is flat, while in other embodiments, the tip 98 may be pointed or beveled. In some embodiments, the control shaft 16 further includes a first control thread 94 and a second control thread 96. A non-threaded portion 100 may be located between the first control thread 94 and the second control thread 96.


As shown in FIG. 16, the first control member 20 includes a top portion 220, one or more flat portions 104, and an internal thread 106. In some example embodiments, the first control member 20 is configured to be received by the first control channel 74, such that the flat portions 104 engage with the walls of the first control channel 74.


As shown in FIG. 17, the second control member 22 includes a top portion 220, one or more flat portions 111, and an internal thread 212. In some example embodiments, the second control member 22 is configured to be received by the second control channel 76, such that the flat portions 111 engage with the walls of the second control channel 76. In some example embodiments, the first control member 20 and the second control member 22 move or translate along the control shaft 16 and within or on the first control channel 74 and the second control channel 76, as will be described further herein.


Referring back to FIGS. 1-8, in some embodiments, the implant 10 is movable between at least a first, collapsed position, as shown in FIGS. 1-4, and a second, expanded position, shown in FIGS. 5-8. In the first position, the control shaft 16 is received by the control bore 48 and positioned within the central cavity 36 of the base member 12. In some embodiments, the first side 38 and the second side 40 of the base member 12 receive the first side 86 and the second side 88 of the adjustable member when the implant 10 is in the collapsed position, such that the projections and recesses have a relatively close fit to enable proper alignment between the adjustable member 14 and the base member 12, as shown in FIGS. 1-4. In other embodiments, the projections and recesses have a relatively loose fit to enable a desired angular offset between the adjustable member 14 and the base member 12.


In some embodiments, the control shaft 16 is received by the base member 12 such that the head 90 is positioned within the control bore 48 (see FIG. 9), the first control thread 94 and the second control thread 96 are positioned within the central cavity 36, and the head portion 90 is positioned within the tip bore 50 of the second end 26 of the base member 12. In some embodiments, the control shaft 16 is rotatable within the base member 12. The first control member 20 is received on the first control thread 94 of the control shaft 16, and the second control member 22 is received on the second control thread 96 of the control shaft 16.


In some embodiments, such as the embodiment shown in FIG. 14, the first control thread 94 and the second control thread 96 are threaded in opposite manners (e.g., left-handed and right-handed), such that upon rotation of the control shaft 16, the control members 20, 22 move in opposite directions along the control shaft 16. For example, the control shaft 16 may be configured such that rotation of the control shaft 16 in a first direction (e.g., clockwise) causes the first and second control members 20, 22 to move toward each other, and rotation of the control shaft 16 in a second direction (e.g., counter-clockwise) causes the first and second control member 20, 22 to move away from each other.


As the control members 20, 22 move along the control shaft 16, the control members 20, 22 further move within the control channels 74, 76, thereby causing relative movement of the adjustable member 14 and the base member 12. As the control members 20, 22 translate along the control shaft 16, the adjustable member 14 is moved upward or downward due to the angled shape of the first and second control channels 74, 76. Assuming a constant turn rate of the control shaft 16, the rate of movement of the control members 20, 22, and therefore the adjustable member 14, can be adjusted by modifying the slope of the control channels 74, 76 relative to the control shaft 16.


For example, referring to FIGS. 27A-C, schematic representations of the control shaft 16, the first control channel 74, and the second control channel 76 are shown according to various alternative embodiments. The first control channel 74 extends at a first angle 116 relative to the control shaft 16, and the second control channel 76 extends at a second angle 118 relative to the control shaft 16. The first and second angles 116, 118 define the rate at which the first control member 20 and the second control member 22 cause corresponding movement (e.g., expansion) of the first and second ends 62, 64 of the adjustable member 14 relative to the base member 12. As shown in FIG. 27A, in some embodiments, the first angle 116 and second angle 118 are approximately the same, and the control channels 74, 76 define linear paths, such that the rates of movement of the first and second ends 62, 64 of the adjustable member 14 are substantially the same and constant (assuming a constant rate of rotation of the control shaft 16). As shown in FIG. 27B, in some embodiments, rather than being angled toward each other in an upward direction, the first and second control channels 74, 76 may extend in a parallel manner or be configured to extend upward at angles in the same general direction.


Providing differing configurations for the first control channel 74 and the second control channel 76 enables customization of the characteristics of the implant 10 in the second, expanded position. For example, the control channels 74, 76 may be configured such that in a fully expanded position of the implant 10, one of the first end 62 and the second end 64 of the adjustable member 14 is expanded to a greater degree than the opposing end. Other configurations of the first and second control channels 74, 76 are possible according to various alternative embodiments.


In further embodiments, characteristics of the implant 10 in the second, expanded position may be further customized using at least one guide rail. For example, the implant 10 according to the example embodiment shown in FIGS. 5-8 has an angular expansion profile, wherein the top surface 66 of the adjustable member 14 and the bottom surface 28 of the base member 12 are not substantially parallel, but instead form an angle. The angle that the top surface 66 of the adjustable member 14 and the bottom surface 28 of the base member 12 form when the implant 10 is in the expanded position may be customized based on patient needs. For example, when the implant 10 is installed into a patient's spine, the angle that the top surface 66 of the adjustable member 14 and the bottom surface 28 of the base member 12 form when the implant 10 is in the expanded position may vary depending on the curvature of the patient's spine at the location the implant 10 is installed.


According to an example embodiment, an angular expansion profile of the implant 10 may be achieved using at least one guide rail and at least one control member. For example, in the example embodiment shown in FIGS. 5-8, the control shaft 16 is received by the base member 12 such that the head 90 is positioned within the control bore 48, the first control thread 94 and the second control thread 96 are positioned within the central cavity 36, and the end portion 98 is positioned within the tip bore 50 of the second end 26 of the base member 12 (see FIG. 7). In this embodiment, the control shaft 16 is rotatable within the base member 12. The first control member 20 is received on the first control thread 94 of the control shaft 16, and the second control member 22 is received on the second control thread 96 of the control shaft 16.


In this example embodiment, the first control thread 94 and the second control thread 96 are threaded in opposite manners (e.g., left-handed and right-handed), such that upon rotation of the control shaft 16, the control members 20, 22 move in opposite directions along the control shaft 16. In this example embodiment, the control shaft 16 is configured such that rotation of the control shaft 16 in a first direction (e.g., clockwise) causes the first and second control members 20, 22 to move toward each other, and rotation of the control shaft 16 in a second direction (e.g., counter-clockwise) causes the first and second control member 20, 22 to move away from each other.


As the control members 20, 22 move along the control shaft 16, the control members 20, 22 further move within the control channels 74, 76, thereby causing relative movement of the adjustable member 14 and the base member 12. As the control members 20, 22 translate along the control shaft 16, the adjustable member 14 is moved upward or downward due to the angled shape of the first and second control channels 74, 76. The rate of movement of the control members 20, 22 and the adjustable member 14 can therefore be adjusted by modifying the slope of the control channels 74, 76 relative to the control shaft 16.


When the control shaft 16 is turned in a second direction (e.g. counter-clockwise), the control members 20, 22 translate along the control shaft 16 away from each other. In doing so, the control members 20, 22 also translate within the control channels 74, 76 causing the adjustable member 14 to generally move away from the base member 12. Further, when the adjustable member 14 moves away from the base member 12, the guide rails 78, 79, 80, 81 individually translate within each respective guide groove 52, 53, 54, 55. In some embodiments, the guide rails 78, 79, 80, 81 and the guide grooves 52, 53, 54, 55 may run perpendicular to the top surface 66 of the adjustable member 14, thereby causing the adjustable member 14 to move upwards in a linear manner. In these example embodiments, the top surface 66 of the adjustable member 14 will be substantially parallel to the bottom surface 28 of the base member 12 when the implant 10 is in a second, expanded position. In other embodiments, such as the embodiments shown in FIGS. 5-8, the guide rails 78, 79, 80, 81 and the guide grooves 52, 53, 54, 55 may have a curvature. The curvature of the guide rails 78, 79, 80, 81 and the guide grooves 52, 53, 54, 55 will cause the adjustable member 14 to move upwards in a non-linear manner. Therefore, the implant 10 will have an angular expansion profile (e.g. the top surface 66 of the adjustable member 14 and the bottom surface 28 of the base member 12 are not substantially parallel, but instead form an angle).


In some embodiments, the first front guide rail 78 may have a larger radius (e.g. the radius of the circular arc which best approximates the curve of the guide rail at that point) than the second front guide rail 78 and the first rear guide rail 80 may have a larger radius (e.g. the radius of the circular arc which best approximates the curve of the guide rail at that point) than the second rear guide rail 81.


In further embodiments, the guide rails may include a linear portion and a curved portion allowing the implant 10 to expand linearly and angularly while expanding from the collapsed position to the expanded position. The expansion profile of the implant 10 may be further customized by altering the shape of the guide rails and guide grooves as needed.


In further embodiments, the guide rails may be linear. In this embodiment, an angular expansion profile may be accomplished by altering the lengths of the pin slots 82, 83, 84. As discussed in further detail below, when a pin 19 is inserted into a pin aperture 42, 43, 45 and into a pin slot 82, 83, 84, the pin 19 may bottom out against the bottom of the pin slot 82, 83, 84, thereby preventing the implant 10 from over expanding. As shown in FIG. 10, in some embodiments, the first pin slot 82 is longer than the second pin slot 83. Therefore, when the pins 19 are bottomed out against the bottom of the pin slots 82, 83, such as the embodiment shown in FIG. 5, the first lateral side portion 86 will be expanded a greater distance than the second lateral side portion 88. Therefore, an implant may include a linear guide rail on a first lateral side having a pin slot and a linear guide rail on a second lateral side. In this embodiment, if the pin slot on the first lateral side is longer than the pin slot on the second lateral side, the first lateral side will be able to expand a further distance than the second lateral side before the pins bottom out in the pin slots, thereby creating an angular expansion profile.


In this example embodiment, the angular expansion profile may be customized based on how many radians the control shaft 16 is turned in the second direction (e.g. counter-clockwise). As the control shaft 16 is turned in the second direction (e.g. counter-clockwise), the magnitude of the angle that the top surface 66 of the adjustable member 14 and the bottom surface 28 of the base member 12 will increase. Therefore, according to this example embodiment, there is a direct relationship between the number of radians the control shaft 16 is turned in the second direction (e.g. counter-clockwise) and the magnitude of the angle between the top surface 66 of the adjustable member 14 and the bottom surface 28 of the base member 12 of the implant 10 when the implant 10 is in a second, expanded position.


The magnitude of the angle that the top surface 66 of the adjustable member 14 and the bottom surface 28 of the base member 12 may also be customized by changing the curvature of the guide rails 78, 79, 80, 81 and the curvature of the guide grooves 52, 53, 54, 55. For example, adjusting the radii (e.g. the radius of the circular arc which best approximates the curve of the guide groove at that point) of the guide grooves 52, 53, 54, 55 and the radii (e.g. the radius of the circular arc which best approximates the curve of the guide rail at that point) of the guide rails 78, 79, 80, 81 will cause a change in the angular expansion profile of the implant 10. For example, decreasing the radii (e.g. the radius of the circular arc which best approximates the curve of the guide groove at that point) of the guide grooves 52, 53, 54, 55 and the radii (e.g. the radius of the circular arc which best approximates the curve of the guide rail at that point) of the guide rails 78, 79, 80, 81 will result in a larger angle between the top surface 66 of the adjustable member 14 and the bottom surface 28 of the base member 12. Therefore, according to this example embodiment, there is an inverse relationship between magnitude of the radii of the guide rails 78, 79, 80, 81 and the magnitude of the angle between the top surface 66 of the adjustable member 14 and the bottom surface 28 of the base member 12 of the implant 10 when the implant 10 is in a second, expanded position.


In an example embodiment, as the implant 10 expands in an angular fashion, as shown in FIGS. 5-8, the control shaft 16 will not necessarily be centered in the implant 10. For example, as shown in FIG. 3, the tip 98 is centered in the tip bore 50 when the implant 10 is in the collapsed position. However, as shown in FIG. 7, when the implant 10 is in the expanded position, the tip 98 of the control shaft 16 is no longer centered in the tip bore 50, but is instead offset.


In use, the implant 10 is positioned within a desired space (e.g., between adjacent portions of bone) while in the first, collapsed position, as shown in FIG. 1. To position the implant 10, an appropriate tool may be used to engage tool recesses 56 and to manipulate the implant 10 into a desired position. Once in a desired position, a subsequent tool may be utilized to engage the tool port 92 and to rotate the control shaft 16 to move the adjustable member 14 to a desired degree of expansion. It should be noted that based on a particular application, the adjustable member 14 may be utilized in a fully collapsed position, a fully expanded position, or any intermediate position therebetween. Once the implant 10 is properly positioned and expanded to a desired height, bone graft material may be inserted into the central cavity 36. The various apertures in and through the base member 12 and the adjustable member 14 may in some embodiments facilitate the growth of bone material in and around the implant 10 to further stabilize the device.


Once the implant 10 is positioned within a desired space and expanded to a desired degree of expansion, the control shaft 16 can be secured using a cam screw 18. The cam screw 18 includes a threaded shaft 181 and a head 182, as shown in FIG. 9. The threaded shaft 181 allows the cam screw 18 to be screwed into the base member 12. The head 182 includes a tool port 184. The tool port 184 allows the cam screw to be tightened or loosened using a tool, such as a hex head driver. While this example embodiment shows the hex head tool port 184, it should be appreciated that the tool port 184 can be designed to receive several different types of hand tools, including a slotted screw driver, a Phillips-head screwdriver, an Allen wrench screwdriver, a hexagonal drive, a torx drive, a Robertson drive, a tri-wing screwdriver, an Allen security driver, a torx security driver, a Pozidriv, a clutch drive, a spanner, a Schrader drive, a nut driver, a hex wrench, a node security driver, any combination of the listed driver interfaces, and any other type of driver interface.


The head 182 further includes a flat portion 186 and a cam portion 188, as shown in FIGS. 25 and 26. The flat portion 186 includes a flat edge at the edge of the head 182, and the cam portion 188 includes a rounded edge with an increasing radius (e.g. the radius of the circular arc which best approximates the curve of the guide groove at that point) in the counter-clockwise direction.


In an example embodiment, when the implant 10 is in a collapsed position, the flat portion 186 of the cam screw 18 may be proximate to the control shaft 16, as shown in FIG. 25. Once the implant 10 is positioned within a desired space and expanded to a desired degree of expansion, the control shaft 16 may be locked into position by turning the cam screw 18. For example, the cam screw 18 may be tightened such that the cam portion 188 engages, and is in contact with, the head 90 of the control shaft, as shown in FIG. 26. In doing so, the force applied by the cam portion 188 of the cam screw 18 to the head 90 of the control shaft 16 may assist in preventing the control shaft 16 from rotating, thereby locking the control shaft 16 into position.


In some example embodiments, the cam screw 18 may further be configured to lock the control shaft 16 into place. In one example, after the implant 10 is installed, the implant 10 may be prone to over-expanding. In this example, as the implant 10 expands, the control shaft 16, as shown in FIG. 26, will turn in a counter-clockwise direction. In this example, the cam screw 18 may be threaded using a right-hand configuration, wherein turning the cam screw 18 in a clockwise direction will tighten the cam screw 18 into the base member 12 of the implant 10. In this example, the cam portion 188 is engaged with the head 90 of the control shaft 16. If the control shaft 16 begins to rotate in a counter-clockwise direction, the friction between the cam portion 188 and the head 90 will cause the cam screw 18, as shown in FIG. 25, to turn in a clockwise direction, further tightening the cam screw 18, which will further lock the control shaft 16 into position.


Additionally, in the example that the implant 10 is prone to over-expanding, a plurality of retention pins 19 may be utilized to prevent over-expansion. For example, as shown in FIG. 1, a retention pin 19 may be press fit into the first pin aperture 42, extending into the first pin slot 82 (see FIG. 10). In this example, when the implant 10 is in the fully expanded position, the retention pin 19 may bottom out against the bottom of the first pin slot 82, preventing the implant 10 from further expanding. Similarly, a retention pin 19 may be press fit into the second pin aperture 43, extending into the second pin slot 83. In this example, when the implant 10 is in the fully expanded position, the retention pin 19 may bottom out against the bottom of the second pin slot 83, preventing the implant 10 from further expanding. Further, a retention pin 19 may be press fit into the third pin aperture, extending into the third pin slot. In this example, when the implant 10 is in the fully expanded position, the retention pin 19 may bottom out against the bottom of the third pin slot, preventing the implant 10 from further expanding. Additionally, a retention pin 19 may be press fit into the fourth pin aperture 45, extending into the fourth pin slot 84. In this example, when the implant 10 is in the fully expanded position, the retention pin 19 may bottom out against the bottom of the third pin slot, preventing the implant 10 from further expanding.


Additionally, the expansion profile of the implant 10 may be further customized by varying the length of the pin slots 82, 83, 84. As discussed above, when a pin 19 is inserted into a pin aperture 42, 43, 45 and into a pin slot 82, 83, 84, the pin 19 may bottom out against the bottom of the pin slot 82, 83, 84, thereby preventing the implant 10 from over expanding. As shown in FIG. 10, the first pin slot 82 is longer than the second pin slot 83. Therefore, when the pins 19 are bottomed out against the bottom of the pin slots 82, 83, such as the embodiment shown in FIG. 5, the first lateral side portion 86 will be able to expanded a greater distance than the second lateral side portion 88.


In another example embodiment, after the implant 10 is installed, the implant 10 may be prone to collapsing. In this example, as the implant 10 collapses, the control shaft 16, as shown in FIG. 25, will turn in a clockwise direction. In this example, a cam screw 18 may be threaded using a left-hand configuration, wherein turning the cam screw 18 in a counter-clockwise direction will tighten the cam screw 18 into the base member 12 of the implant 10. Further, the cam screw 18 will include a cam portion 188 that will increase in radius (e.g. the radius of the circular arc which best approximates the curve of the guide groove at that point) in the clockwise direction. In this example, the cam portion 188 is engaged with the head 90 of the control shaft 16. If the control shaft 16 begins to rotate in a clockwise direction, the friction between the cam portion 188 and the head 90 will cause the cam screw 18 to turn in a counter-clockwise direction, further tightening the cam screw 18, which will further lock the control shaft 16 into position.


It should be noted that the implant 10 may share various features with the other implants described herein, and be made of the same, similar, or different materials. For example, various components of the implant 10 may be made of metal, plastic, composites, or other suitable bio-compatible materials. Further, the implant 10 may be usable in connection with the spine or other parts of the body.


Referring now to FIGS. 21-23, in some embodiments, one or both of a base member 112 and an adjustable member 114 of an implant 110 may be configured to receive an anchoring member to further secure the implant 110 to adjacent portions of bone. In an example embodiment, the anchoring member may be a bone screw 150. For example, as shown in FIGS. 21 and 22, an implant 110 includes a base member 112 and an adjustable member 114 adjustably coupled to the base member 112. A control shaft 216 is received by the base member 112 and is retained by a cam screw 218 passing through a portion of the base member 112. A first control member 120 and a second control member 122 are received on the control shaft 216 and are movable along the control shaft 216 to adjust a position of the adjustable member 114 between a collapsed position, as shown in FIG. 21 and an expanded position, as shown in FIGS. 22 and 23. Bone screws 150 extend through base member 112 and adjustable member 114.


In some embodiments, implant 110 may share any combination of the features disclosed herein with respect to the other implants, and all such combinations of features are to be understood to be within the scope of the present disclosure. In some embodiments, the implant 110 is substantially similar to implant 10, except as described herein. In an example embodiment, the base member 112 includes a first bone screw bore 152 configured to receive bone screw 150. Similarly, the adjustable member 114 includes a second bone screw bore 254 configured to receive bone screw 150. In some embodiments, the first bone screw bore 152 is integrated into the base member 112. In some embodiments, the second bone screw bore 254 is integrated into the adjustable member 114.


According to the example embodiment shown in FIGS. 21-23, the bone screw 150 includes a linear, externally threaded shaft 252, a head 154 at a first end, and a tip 156 at a second end opposite the first end. In some embodiments, the tip 156 is pointed. In some embodiments, the diameter of the bone screw 416 remains constant from the head 154 to the tip 156. The head 154 further includes a socket 158 that is configured to receive an installation tool. While this example embodiment has a torx drive socket 158, it should be appreciated that the socket 158 can be designed to receive several different types of hand tools, including a slotted screw driver, a Phillips-head screwdriver, an Allen wrench screwdriver, a hexagonal drive, a torx drive, a Robertson drive, a tri-wing screwdriver, an Allen security driver, a torx security driver, a Pozidriv, a clutch drive, a spanner, a Schrader drive, a nut driver, a hex wrench, a node security driver, any combination of the listed driver interfaces, and any other type of driver interface.


Once the bone screw 150 is inserted into a bone, a retention screw 160 may be used to prevent a back-out of the bone screw 150. In an example embodiment, such as the embodiment shown in FIG. 24, the retention screw 160 may include a head 282, a tool port 284, and a threaded shaft. The threaded shaft may be screwed into a first threaded bore 260 in the base member 112 or into a second threaded bore 261 in the adjustable member 114, as shown in FIGS. 21-24. In some embodiments, the first threaded bore 260 is integrated into the base member 112. In some embodiments, the second threaded bore 261 is integrated into the adjustable member 114.


The head 282 further includes a flat portion 286 and a rounded shoulder portion 288. In some embodiments, when the flat portion 286 is proximate the head 154 of the bone screw, the retention screw 160 is not in contact with the bone screw 150, as shown in FIG. 24. However, the retention screw 160 may be tightened into the first threaded bore 260 or the second threaded bore 261, such that the rounded shoulder portion 228 is proximate to the bone screw 150. In some embodiments, when the retention screw 160 is tightened into the first threaded bore 260 or second threaded bore 261, the underside of the rounded shoulder portion 228 is in contact with the head 154 of the bone screw 150. In doing so, the retention screw 160 may be used to prevent back out of the bone screw 150.


In the example embodiment shown in FIGS. 21-24, the retention screw 160 includes a tool port 284 configured to receive a hex head driver. It should be appreciated that the tool port 284 can be designed to receive several different types of hand tools, including a slotted screw driver, a Phillips-head screwdriver, an Allen wrench screwdriver, a hexagonal drive, a torx drive, a Robertson drive, a tri-wing screwdriver, an Allen security driver, a torx security driver, a Pozidriv, a clutch drive, a spanner, a Schrader drive, a nut driver, a hex wrench, a node security driver, any combination of the listed driver interfaces, and any other type of driver interface.


Referring now to the Figures generally, the various embodiments disclosed herein provide expandable implants including a base member, an adjustable member adjustably coupled to the base member and movable between a first, collapsed position, and a second, expanded position, and a control shaft rotatably received by the base member, where rotation of the control shaft causes relative movement of the adjustable member relative to the base member. At least one control member is received on the control shaft and by the control channel, and rotation of the control shaft causes the control member to translate along the control shaft and along the control channel.


In some embodiments, the top surface of the upper support and the bottom surface of the bottom support are parallel when the implant is in the first, collapsed position (see e.g., FIG. 1). However, in other embodiments, the top surface of the upper support and the bottom surface of the lower support may form an angle when the implant is in the first, collapsed position. In this example embodiment, the implant will have a larger height (i.e., the distance between the top surface of the upper support and the bottom surface of the lower support) on one lateral side of the implant than the other lateral side of the implant. In this embodiment, the implant may expand linearly (i.e., the angle remains constant as the implant expands), or the implant may angularly expand (i.e., the angle increases as the implant expands).


In some embodiments, the adjustable member moves in a linear fashion relative to the base member. In other embodiments, the adjustable member moves in a non-linear fashion relative to the base member. In further embodiments, the adjustable member pivots about a pivot axis relative to the base member. The pivot axis may be provided by a pivot pin extending through one or both of the adjustable member and the base member.


In some embodiments, a single control member and control channel are utilized. In other embodiments, multiple (e.g., 2) control members and control channels are utilized. In some embodiments, the multiple control channels are parallel and straight. In other embodiments, the control channels are non-parallel and straight (e.g., angled toward each other). In further embodiments, the control channels are non-parallel and non-straight such that the adjustable member moves in a non-linear fashion relative to the base member.


In some embodiments, the control shaft includes a control thread corresponding to each control member. As such, while in some embodiments the control shaft includes a single control thread, in other embodiments the control shaft includes multiple (e.g., first and second) control threads. In some embodiments, the control threads are like-threaded. In other embodiments, the control threads have different threads. For example, in some embodiments, a first control thread is opposite-handed from a second control thread. In further embodiments, a first control thread has a different pitch from a second control thread. In yet further embodiments, a first control thread is different handed and has a different pitch from a second control thread.


In some embodiments, one or both of the adjustable member and the base member include projections/grooves to provide a gripping surface intended to facilitate gripping adjacent portions of bone. In further embodiments, one or both of the adjustable member and the base member include one or more apertures and/or cavities configured to promote bone growth in and around the adjustable member and the base member. In some embodiments, the apertures extend from a top, bottom, and/or side surface of the adjustment member or the base member and to a central cavity of the implant.


According to any of the embodiments disclosed herein, one or more bone screws may be included and positioned to extend through one or both of the adjustable member and the base member and into adjacent portions of bone. In some embodiments, multiple bone screws are used. A first bone screw may extend through the adjustable member and into a first portion of bone, and a second bone screw may extend through the base member and into a second portion of bone. In further embodiments, multiple bone screws are accessible and manipulatable by way of the front face of the implant defined by one or both of the adjustable member and the base member. A head and tool port of the control shaft may further be accessible by way of the front face of the implant.


In various embodiments, any suitable configuration of the control shaft/control member(s)/control channel(s) may be utilized. In some embodiments, an at least partially spherical control member threadingly engages a threaded control shaft and translates both along the control shaft and within the control channel. In other embodiments, the control member is non-spherical and is received at least partially on or in a control rail or control channel provided by the adjustable member, such that the control member translates along both the control shaft and the control channel or control rail.


It is important to note that the construction and arrangement of the elements of the various implants and implant components as shown in the exemplary embodiments are illustrative only. Although a few embodiments have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited in the various embodiments. Accordingly, all such modifications are intended to be included within the scope of the present disclosure as defined in the appended claims. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes, and/or omissions may be made in the design, operating conditions, and arrangement of the exemplary embodiments without departing from the spirit of the present disclosure.


As utilized herein, the terms “approximately,” “about,” “substantially”, and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of some features described and claimed without restricting the scope of these features to the precise numerical ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and claimed are considered to be within the scope of the application as recited in the appended claims.


It should be noted that the term “exemplary” as used herein to describe various embodiments is intended to indicate that such embodiments are possible examples, representations, and/or illustrations of possible embodiments (and such term is not intended to connote that such embodiments are necessarily extraordinary or superlative examples).


The terms “coupled,” “connected,” and the like as used herein mean the joining of two members directly or indirectly to one another. Such joining may be stationary (e.g., permanent) or moveable (e.g., removable or releasable). Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate members being attached to one another.


References herein to the positions of elements (e.g., “top,” “bottom,” “above,” “below,” etc.) are merely used to describe the orientation of various elements in the FIGURES. It should be noted that the orientation of various elements may differ according to other exemplary embodiments, and that such variations are intended to be encompassed by the present disclosure.


Although the figures and description may illustrate a specific order of method steps, the order of such steps may differ from what is depicted and described, unless specified differently above. Also, two or more steps may be performed concurrently or with partial concurrence, unless specified differently above. Such variation may depend, for example, on hardware systems chosen and on designer choice. All such variations are within the scope of the disclosure.


It is important to note that the construction and arrangement of the various exemplary embodiments are illustrative only. Although only a few embodiments have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter described herein. For example, elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes and omissions may also be made in the design, operating conditions and arrangement of the various exemplary embodiments without departing from the scope of the present application.


It should be appreciated that dimensions of the components, structures, and/or features of the present implants and installation instruments may be altered as desired within the scope of the present disclosure.

Claims
  • 1. An expandable implant, comprising: a base member having a top surface and a bottom surface opposite the top surface;an adjustable member adjustably coupled to the base member in a non-hinged manner and movable between a first, collapsed position, and a second, expanded position, wherein the adjustable member has a top surface and a bottom surface opposite the top surface;a control assembly coupled to the base member and the adjustable member and configured to cause relative movement between the base member and the adjustable member, wherein the control assembly comprises a control shaft and at least one control member threadingly received on the control shaft, wherein the at least one control member is rotatably fixed relative to the adjustable member and rotates relative to the base member as the adjustable member moves from the first, collapsed position to the second, expanded position;a first lateral side extending along a length of the implant;a second lateral side, opposite the first lateral side, extending along the length of the implant;wherein the top surface of the adjustable member and the bottom surface of the base member define a height;wherein movement of the of the adjustable member from the first position to the second position results in a change in height at the first lateral side and a change in height at the second lateral side, wherein the change in the height at the first lateral side is different than the change in the height at the second lateral side when the implant is moved from the first position to the second position;wherein a vertical distance between the control shaft and the bottom surface of the base member remains constant during movement of the adjustable member between the first, collapsed position to the second, expanded position.
  • 2. The expandable implant of claim 1, wherein the implant height at the first lateral side is substantially equal to the implant height at the second lateral side when the implant is in the first, collapsed position.
  • 3. The expandable implant of claim 1, wherein rotation of the control shaft causes relative movement of the adjustable member relative to the base member.
  • 4. The expandable implant of claim 3, wherein the at least one control member comprises a first control member received on the control shaft and configured to be received within a first control channel on the adjustable member and a second control member received on the control shaft and configured to be received within a second control channel on the adjustable member.
  • 5. The expandable implant of claim 4, wherein the first control member moves towards the second control member along the control shaft in response to the control shaft being turned in a first direction; and wherein the first control member moves away from the second control member along the control shaft in response to the control shaft being turned in a second direction.
  • 6. The expandable implant of claim 3, wherein the control shaft is secured using a cam screw; wherein the cam screw has a cam portion configured to engage the control shaft.
  • 7. The expandable implant of claim 1, wherein the control shaft is translationally fixed relative to the base member.
  • 8. An expandable implant, comprising: a base member comprising a top surface, a bottom surface opposite the top surface, and a guide groove;an adjustable member comprising a top surface, a bottom surface opposite the top surface, the adjustable member adjustably coupled to the base member and movable between a first, collapsed position, and a second, expanded position, the adjustable member comprising a guide rail slidably received by the guide groove such that the guide rail moves within the guide groove as the adjustable member is moved from the first, collapsed position to the second, expanded position, wherein the guide rail and the guide groove are arcuate and elongated in shape and have substantially the same radii of curvature along their respective lengths;a control assembly including a control shaft, wherein rotation of the control shaft causes relative movement of the adjustable member relative to the base member, wherein a vertical distance between the control shaft and the bottom surface of the base member remains constant during movement of the adjustable member between the first, collapsed position to the second, expanded position wherein the adjustable member moves in a non-linear manner relative to the base member from the first, collapsed position to the second, expanded position.
  • 9. The expandable implant of claim 8, wherein the bottom surface of the base member is substantially parallel to the top surface of the adjustable member in the first, collapsed position.
  • 10. The expandable implant of claim 9, wherein the bottom surface of the base member forms a first angle with the top surface of the adjustable member in the second, expanded position, wherein the first angle is greater than 0 degrees.
  • 11. The expandable implant of claim 8, further comprising a control assembly including a first control member received on a control shaft, wherein rotation of the control shaft causes relative movement of the adjustable member relative to the base member; wherein the first control member does not rotate relative to the adjustable member;wherein the control member is configured to rotate relative to the base member; andwherein the adjustable member is coupled to the base member in a non-hinged manner.
  • 12. The expandable implant of claim 11, wherein the first control member is configured to be received within a first control channel on the adjustable member.
  • 13. The expandable implant of claim 12, wherein the control assembly includes a second control member received on the control shaft and configured to be received within a second control channel on the adjustable member.
  • 14. The expandable implant of claim 13, wherein the first control member moves towards the second control member along the control shaft in response to the control shaft being turned in a first direction; and wherein the first control member moves away from the second control member along the control shaft in response to the control shaft being turned in a second direction.
  • 15. The expandable implant of claim 8, wherein the guide rail comprises at least one first guide rail positioned on a front of one of the base member and the adjustable member and at least one second guide rail positioned on a rear of the one of the base member and the adjustable member, and wherein the guide groove comprises at least one first guide groove positioned on a front of the other of the base member and the adjustable member and at least one second guide groove positioned on a rear of the other of the base member and the adjustable member.
  • 16. An expandable implant, comprising: a base member comprising a top surface, a bottom surface opposite the top surface, a first body portion and a first transverse plate portion configured to receive a first anchoring member; an adjustable member comprising a top surface, a bottom surface opposite the top surface, a second body portion and a second transverse plate portion configured to receive a second anchoring member, wherein the adjustable member is adjustably coupled to the base member in a non-hinged manner and moves non-linearly with respect to the base member between a first, collapsed position, and a second, expanded position, wherein during movement of the adjustable member relative to the base member a first height at a first lateral side of the implant changes and a second height at a second lateral side of the implant changes; anda control assembly comprising a control shaft and a control member threadingly received on the control shaft, wherein rotation of the control shaft causes relative movement of the adjustable member relative to the base member;wherein the control member is received within a control channel in the adjustable member such that the control member is rotatably fixed relative to the adjustable member, and wherein the control member is configured to rotate relative to the base member wherein a vertical distance between the control shaft and the bottom surface of the base member remains constant during movement of the adjustable member between the first, collapsed position to the second, expanded position.
  • 17. The expandable implant of claim 16, wherein the first lateral side extends along a length of the implant; wherein the second lateral side is opposite the first lateral side, and extends along the length of the implant;wherein the top surface of the adjustable member and the bottom surface of the base member define an implant height; wherein the implant height at the first lateral side is greater than the implant height at the second lateral side when the implant is in the second, expanded position.
  • 18. The expandable implant of claim 17, wherein the top surface of the adjustable member and the bottom surface of the base member are substantially parallel in the first, collapsed position.
  • 19. The expandable implant of claim 16, further comprising a plurality of anchoring members, including the anchoring member.
  • 20. The expandable implant of claim 16, further comprising the anchoring member, wherein the anchoring member is secured using a retention screw, wherein the retention screw has a flat portion and a rounded shoulder portion.
US Referenced Citations (529)
Number Name Date Kind
904434 Huff Nov 1908 A
1925385 Humes Sep 1933 A
3846846 Fischer Nov 1974 A
4466426 Blackman Aug 1984 A
4636217 Ogilvie et al. Jan 1987 A
4743256 Brantigan May 1988 A
4863476 Shepperd Sep 1989 A
5098435 Stednitz et al. Mar 1992 A
5192327 Brantigan Mar 1993 A
5236460 Barber Aug 1993 A
5390683 Pisharodi Feb 1995 A
5522899 Michelson Jun 1996 A
5609635 Michelson Mar 1997 A
5645599 Samani Jul 1997 A
5658335 Allen Aug 1997 A
5658337 Kohrs et al. Aug 1997 A
5776199 Michelson Jul 1998 A
5836948 Zucherman et al. Nov 1998 A
5860977 Zucherman et al. Jan 1999 A
5876404 Zucherman et al. Mar 1999 A
6045579 Hochshuler et al. Apr 2000 A
6048342 Zucherman et al. Apr 2000 A
6068630 Zucherman et al. May 2000 A
6074390 Zucherman et al. Jun 2000 A
6080193 Hochshuler et al. Jun 2000 A
6113638 Williams et al. Sep 2000 A
6126689 Brett Oct 2000 A
6129763 Chauvin et al. Oct 2000 A
6176882 Biedermann et al. Jan 2001 B1
6183471 Zucherman et al. Feb 2001 B1
6190387 Zucherman et al. Feb 2001 B1
6235030 Zucherman et al. May 2001 B1
6290724 Marino Sep 2001 B1
6302914 Michelson Oct 2001 B1
6375682 Fleischmann et al. Apr 2002 B1
6409766 Brett Jun 2002 B1
6443989 Jackson Sep 2002 B1
6443990 Aebi et al. Sep 2002 B1
6447544 Michelson Sep 2002 B1
6451019 Zucherman et al. Sep 2002 B1
6491724 Ferree Dec 2002 B1
6494883 Ferree Dec 2002 B1
6537320 Michelson Mar 2003 B1
6576016 Hochshuler et al. Jun 2003 B1
6613091 Zdeblick et al. Sep 2003 B1
6641614 Spinal Nov 2003 B1
6648917 Gerbec et al. Nov 2003 B2
6685742 Jackson Feb 2004 B1
6695842 Zucherman et al. Feb 2004 B2
6699246 Zucherman et al. Mar 2004 B2
6699247 Zucherman et al. Mar 2004 B2
6706070 Wagner et al. Mar 2004 B1
6752832 Neumann Jun 2004 B2
6773460 Jackson Aug 2004 B2
6796983 Zucherman et al. Sep 2004 B1
6800092 Williams et al. Oct 2004 B1
6849093 Michelson Feb 2005 B2
7001385 Bonutti Feb 2006 B2
7048736 Robinson et al. May 2006 B2
7087055 Lim et al. Aug 2006 B2
7101375 Zucherman et al. Sep 2006 B2
7214243 Taylor May 2007 B2
7217291 Zucherman et al. May 2007 B2
7220280 Kast et al. May 2007 B2
7250055 Vanderwalle Jul 2007 B1
7473276 Aebi et al. Jan 2009 B2
7503933 Michelson Mar 2009 B2
7621950 Globerman et al. Nov 2009 B1
7695513 Zucherman et al. Apr 2010 B2
7722674 Grotz May 2010 B1
7727280 Mcluen Jun 2010 B2
7731751 Butler et al. Jun 2010 B2
7789914 Michelson Sep 2010 B2
D626233 Cipoletti et al. Oct 2010 S
7824427 Perez-Cruet et al. Nov 2010 B2
7828849 Lim Nov 2010 B2
7837734 Zucherman et al. Nov 2010 B2
7846188 Moskowitz et al. Dec 2010 B2
7850733 Baynham et al. Dec 2010 B2
7854766 Moskowitz et al. Dec 2010 B2
7867277 Tohmeh Jan 2011 B1
7879098 Simmons, Jr. Feb 2011 B1
7942903 Moskowitz et al. May 2011 B2
7959675 Gately Jun 2011 B2
7972363 Moskowitz et al. Jul 2011 B2
8016861 Mitchell et al. Sep 2011 B2
8021430 Michelson Sep 2011 B2
8048117 Zucherman et al. Nov 2011 B2
8062375 Glerum et al. Nov 2011 B2
8070817 Gradl et al. Dec 2011 B2
8071007 Teoh et al. Dec 2011 B1
8105382 Olmos et al. Jan 2012 B2
8187332 Mcluen May 2012 B2
8231656 Lee et al. Jul 2012 B2
8241330 Lamborne et al. Aug 2012 B2
8241364 Hansell et al. Aug 2012 B2
8252060 Hansell et al. Aug 2012 B2
8257370 Moskowitz et al. Sep 2012 B2
8267939 Cipoletti et al. Sep 2012 B2
8303663 Jimenez et al. Nov 2012 B2
8308804 Krueger Nov 2012 B2
8343190 Mueller et al. Jan 2013 B1
8353913 Moskowitz et al. Jan 2013 B2
8353963 Glerum Jan 2013 B2
8366777 Matthis et al. Feb 2013 B2
8382801 Lamborne et al. Feb 2013 B2
8382842 Greenhalgh et al. Feb 2013 B2
8388686 Aebi et al. Mar 2013 B2
8394129 Morgenstern Lopez Mar 2013 B2
8398713 Weiman Mar 2013 B2
8425607 Waugh et al. Apr 2013 B2
8435298 Weiman May 2013 B2
8444696 Michelson May 2013 B2
8454706 De Beaubien Jun 2013 B2
8491659 Weiman Jul 2013 B2
8506629 Weiland Aug 2013 B2
8518120 Glerum et al. Aug 2013 B2
8529628 Marino et al. Sep 2013 B2
8535380 Greenhalgh et al. Sep 2013 B2
8551173 Lechmann et al. Oct 2013 B2
8556979 Glerum et al. Oct 2013 B2
8568481 Olmos et al. Oct 2013 B2
8597360 Mcluen et al. Dec 2013 B2
8628578 Miller et al. Jan 2014 B2
8632595 Weiman Jan 2014 B2
8641764 Gately Feb 2014 B2
8641766 Donner et al. Feb 2014 B2
8663332 To et al. Mar 2014 B1
8679183 Glerum et al. Mar 2014 B2
8685098 Glerum et al. Apr 2014 B2
8690883 Collins et al. Apr 2014 B2
8702798 Matthis et al. Apr 2014 B2
8709086 Glerum Apr 2014 B2
8734516 Moskowitz et al. May 2014 B2
8795366 Varela Aug 2014 B2
8821506 Mitchell Sep 2014 B2
8845728 Abdou Sep 2014 B1
8845731 Weiman Sep 2014 B2
8845732 Weiman Sep 2014 B2
8845734 Weiman Sep 2014 B2
8852279 Weiman Oct 2014 B2
8858638 Michelson Oct 2014 B2
8864833 Glerum et al. Oct 2014 B2
8888853 Glerum et al. Nov 2014 B2
8888854 Glerum et al. Nov 2014 B2
8894711 Varela Nov 2014 B2
8894712 Varela Nov 2014 B2
8906095 Christensen et al. Dec 2014 B2
8926704 Glerum et al. Jan 2015 B2
8936641 Cain Jan 2015 B2
8940052 Lechmann et al. Jan 2015 B2
8974505 Sawa et al. Mar 2015 B2
9005293 Moskowitz et al. Apr 2015 B2
9034041 Wolters et al. May 2015 B2
9034045 Davenport et al. May 2015 B2
9039771 Glerum et al. May 2015 B2
9044284 Sweeney Jun 2015 B2
9060876 To et al. Jun 2015 B1
9101487 Petersheim Aug 2015 B2
9119730 Glerum et al. Sep 2015 B2
9125757 Weiman Sep 2015 B2
9149367 Davenport et al. Oct 2015 B2
9186258 Davenport et al. Nov 2015 B2
9186262 Mcluen et al. Nov 2015 B2
9198772 Weiman Dec 2015 B2
9204922 Hooven Dec 2015 B2
9204972 Weiman et al. Dec 2015 B2
9204974 Glerum et al. Dec 2015 B2
9211196 Glerum et al. Dec 2015 B2
9216095 Glerum et al. Dec 2015 B2
9216098 Trudeau et al. Dec 2015 B2
9226836 Glerum Jan 2016 B2
9233009 Gray et al. Jan 2016 B2
9278008 Perloff et al. Mar 2016 B2
9295562 Lechmann et al. Mar 2016 B2
9301854 Moskowitz et al. Apr 2016 B2
9333092 To et al. May 2016 B2
9358123 Mcluen et al. Jun 2016 B2
9358126 Glerum et al. Jun 2016 B2
9358128 Glerum et al. Jun 2016 B2
9358129 Weiman Jun 2016 B2
9370434 Weiman Jun 2016 B2
9402733 To et al. Aug 2016 B1
9402738 Niemiec et al. Aug 2016 B2
9402739 Weiman et al. Aug 2016 B2
9408708 Greenhalgh Aug 2016 B2
9414932 Errico et al. Aug 2016 B2
9421111 Baynham Aug 2016 B2
9433510 Lechmann et al. Sep 2016 B2
9445919 Palmatier et al. Sep 2016 B2
9452063 Glerum et al. Sep 2016 B2
9456903 Glerum et al. Oct 2016 B2
9456906 Gray et al. Oct 2016 B2
9474622 Mclaughlin et al. Oct 2016 B2
9480579 Davenport et al. Nov 2016 B2
9486325 Davenport et al. Nov 2016 B2
9486326 Gahman et al. Nov 2016 B2
9492286 Biedermann et al. Nov 2016 B2
9492287 Glerum et al. Nov 2016 B2
9492289 Davenport et al. Nov 2016 B2
9510954 Glerum et al. Dec 2016 B2
9517144 Mcatamney et al. Dec 2016 B2
9532821 Moskowitz et al. Jan 2017 B2
9532883 Mcluen et al. Jan 2017 B2
9539103 Mclaughlin et al. Jan 2017 B2
9539108 Glerum et al. Jan 2017 B2
9554918 Weiman Jan 2017 B2
9561116 Weiman et al. Feb 2017 B2
9561117 Lechmann et al. Feb 2017 B2
9572677 Davenport et al. Feb 2017 B2
9579124 Gordon et al. Feb 2017 B2
9585765 Niemiec et al. Mar 2017 B2
9597197 Lechmann et al. Mar 2017 B2
9597200 Glerum et al. Mar 2017 B2
9603713 Moskowitz et al. Mar 2017 B2
9610174 Wang et al. Apr 2017 B2
9622875 Moskowitz et al. Apr 2017 B2
9622879 Taylor et al. Apr 2017 B2
9655737 Perloff et al. May 2017 B2
9655747 Glerum et al. May 2017 B2
9662223 Matthis et al. May 2017 B2
9662224 Weiman et al. May 2017 B2
9707092 Davenport et al. Jul 2017 B2
9770343 Weiman Sep 2017 B2
9782265 Weiman et al. Oct 2017 B2
9801733 Wolters et al. Oct 2017 B2
9814601 Moskowitz et al. Nov 2017 B2
9833336 Davenport et al. Dec 2017 B2
9839528 Weiman et al. Dec 2017 B2
9848993 Moskowitz et al. Dec 2017 B2
9848997 Glerum et al. Dec 2017 B2
9848998 Moskowitz et al. Dec 2017 B2
9855151 Weiman Jan 2018 B2
9867719 Moskowitz et al. Jan 2018 B2
9889022 Moskowitz et al. Feb 2018 B2
9895238 Moskowitz et al. Feb 2018 B2
9907673 Weiman et al. Mar 2018 B2
9907674 Moskowitz et al. Mar 2018 B2
9931226 Kurtaliaj et al. Apr 2018 B2
9943418 Davenport et al. Apr 2018 B2
9956087 Seifert et al. May 2018 B2
9962272 Daffinson et al. May 2018 B1
9968462 Weiman May 2018 B2
9974665 Mcluen et al. May 2018 B2
9980822 Perloff et al. May 2018 B2
9980823 Matthis et al. May 2018 B2
9987143 Robinson et al. Jun 2018 B2
10004607 Weiman et al. Jun 2018 B2
10016283 Mcluen et al. Jul 2018 B2
10028740 Moskowitz et al. Jul 2018 B2
10028842 Gray et al. Jul 2018 B2
10034772 Glerum et al. Jul 2018 B2
10034773 Mclaughlin et al. Jul 2018 B2
10052213 Glerum et al. Aug 2018 B2
10058433 Lechmann et al. Aug 2018 B2
10064742 Taylor et al. Sep 2018 B2
10076367 Moskowitz et al. Sep 2018 B2
10076423 Miller et al. Sep 2018 B2
10080669 Davenport et al. Sep 2018 B2
10085844 Perloff et al. Oct 2018 B2
10085849 Weiman et al. Oct 2018 B2
10092417 Weiman et al. Oct 2018 B2
10092422 Mcluen et al. Oct 2018 B2
10098757 Logan et al. Oct 2018 B2
10098758 Matthews et al. Oct 2018 B2
10098759 Weiman Oct 2018 B2
10105239 Niemiec et al. Oct 2018 B2
10111760 Knapp et al. Oct 2018 B2
10117754 Davenport et al. Nov 2018 B2
10137001 Weiman Nov 2018 B2
10137007 Dewey et al. Nov 2018 B2
10143500 Niemiec et al. Dec 2018 B2
10143569 Weiman et al. Dec 2018 B2
10154911 Predick et al. Dec 2018 B2
10159583 Dietzel et al. Dec 2018 B2
10213321 Knapp et al. Feb 2019 B2
10219913 Matthews et al. Mar 2019 B2
10226359 Glerum et al. Mar 2019 B2
10251643 Moskowitz et al. Apr 2019 B2
10285819 Greenhalgh May 2019 B2
10285820 Greenhalgh May 2019 B2
10292828 Greenhalgh May 2019 B2
10292830 Mcluen et al. May 2019 B2
10299934 Seifert et al. May 2019 B2
10307268 Moskowitz et al. Jun 2019 B2
10350085 Glerum et al. Jul 2019 B2
10376386 Moskowitz et al. Aug 2019 B2
10383741 Butler et al. Aug 2019 B2
10420654 Logan et al. Sep 2019 B2
10426632 Butler et al. Oct 2019 B2
10426633 Moskowitz et al. Oct 2019 B2
10433977 Lechmann et al. Oct 2019 B2
10449058 Lechmann et al. Oct 2019 B2
10470894 Foley et al. Nov 2019 B2
10478319 Moskowitz et al. Nov 2019 B2
10512550 Bechtel et al. Dec 2019 B2
10531895 Weiman et al. Jan 2020 B2
10575966 Logan et al. Mar 2020 B2
10617533 Glerum et al. Apr 2020 B2
10624761 Davenport et al. Apr 2020 B2
10639166 Weiman et al. May 2020 B2
10682240 Mcluen et al. Jun 2020 B2
10702393 Davenport et al. Jul 2020 B2
10709569 Mclaughlin et al. Jul 2020 B2
10709571 Iott et al. Jul 2020 B2
10709573 Weiman et al. Jul 2020 B2
10709574 Mcluen et al. Jul 2020 B2
10722379 Mclaughlin et al. Jul 2020 B2
10729560 Baker et al. Aug 2020 B2
10729562 Knapp et al. Aug 2020 B2
10736754 Mcluen et al. Aug 2020 B2
10758367 Weiman et al. Sep 2020 B2
10765528 Weiman et al. Sep 2020 B2
10772737 Gray et al. Sep 2020 B2
10779957 Weiman et al. Sep 2020 B2
10786364 Davenport et al. Sep 2020 B2
10799368 Glerum et al. Oct 2020 B2
10835387 Weiman et al. Nov 2020 B2
10842644 Weiman et al. Nov 2020 B2
10869768 Weiman et al. Dec 2020 B2
10874522 Weiman Dec 2020 B2
10874523 Weiman et al. Dec 2020 B2
10925752 Weiman Feb 2021 B2
10940014 Greenhalgh Mar 2021 B2
10973649 Weiman et al. Apr 2021 B2
11020239 Miller et al. Jun 2021 B2
11051951 Robinson et al. Jul 2021 B2
11065128 Zappacosta et al. Jul 2021 B2
20020010472 Kuslich et al. Jan 2002 A1
20020029084 Paul et al. Mar 2002 A1
20020128716 Cohen et al. Sep 2002 A1
20020143343 Castro Oct 2002 A1
20020143399 Sutcliffe Oct 2002 A1
20020147461 Aldrich et al. Oct 2002 A1
20020177897 Michelson Nov 2002 A1
20030004576 Thalgott Jan 2003 A1
20030040746 Mitchell et al. Feb 2003 A1
20030040802 Errico et al. Feb 2003 A1
20030176926 Boehm et al. Sep 2003 A1
20030236520 Lim et al. Dec 2003 A1
20040073213 Serhan et al. Apr 2004 A1
20040153156 Cohen et al. Aug 2004 A1
20040167625 Beyar et al. Aug 2004 A1
20040204747 Kemeny et al. Oct 2004 A1
20040225292 Sasso et al. Nov 2004 A1
20040230309 Dimauro et al. Nov 2004 A1
20040254643 Jackson Dec 2004 A1
20050027362 Williams et al. Feb 2005 A1
20050033437 Bao et al. Feb 2005 A1
20050070911 Carrison et al. Mar 2005 A1
20050107800 Frankel et al. May 2005 A1
20050119747 Fabris Monterumici Jun 2005 A1
20050131536 Eisermann et al. Jun 2005 A1
20050143827 Globerman et al. Jun 2005 A1
20050177235 Baynham et al. Aug 2005 A1
20050177236 Mathieu et al. Aug 2005 A1
20050222681 Richley et al. Oct 2005 A1
20050228391 Levy et al. Oct 2005 A1
20050261769 Moskowitz et al. Nov 2005 A1
20050278036 Leonard et al. Dec 2005 A1
20060030943 Peterman Feb 2006 A1
20060036258 Zucherman et al. Feb 2006 A1
20060084988 Kim Apr 2006 A1
20060089715 Truckai et al. Apr 2006 A1
20060089718 Zucherman et al. Apr 2006 A1
20060095136 Mcluen May 2006 A1
20060122701 Kiester Jun 2006 A1
20060189999 Zwirkoski Aug 2006 A1
20060241601 Trautwein et al. Oct 2006 A1
20060241621 Moskowitz et al. Oct 2006 A1
20060253201 Mcluen Nov 2006 A1
20060264938 Zucherman et al. Nov 2006 A1
20060265077 Zwirkoski Nov 2006 A1
20070072475 Justin et al. Mar 2007 A1
20070142915 Altarac et al. Jun 2007 A1
20070213739 Michelson Sep 2007 A1
20070244485 Greenhalgh et al. Oct 2007 A1
20070270968 Baynham et al. Nov 2007 A1
20080114367 Meyer May 2008 A1
20080114453 Francis May 2008 A1
20080114456 Dewey et al. May 2008 A1
20080119853 Felt et al. May 2008 A1
20080119945 Frigg May 2008 A1
20080140085 Gately et al. Jun 2008 A1
20080140207 Olmos et al. Jun 2008 A1
20080147193 Matthis et al. Jun 2008 A1
20080161818 Kloss et al. Jul 2008 A1
20080177391 Mitchell et al. Jul 2008 A1
20080183211 Lamborne et al. Jul 2008 A1
20080243251 Stad et al. Oct 2008 A1
20080288077 Reo et al. Nov 2008 A1
20080312741 Lee et al. Dec 2008 A1
20090005872 Moumene et al. Jan 2009 A1
20090062833 Song Mar 2009 A1
20090062915 Kohm et al. Mar 2009 A1
20090105832 Allain et al. Apr 2009 A1
20090192553 Maguire et al. Jul 2009 A1
20090198338 Phan Aug 2009 A1
20090198339 Kleiner et al. Aug 2009 A1
20090222099 Liu et al. Sep 2009 A1
20090312837 Eisermann et al. Dec 2009 A1
20100082109 Greenhalgh et al. Apr 2010 A1
20100103344 Wang et al. Apr 2010 A1
20100179655 Hansell et al. Jul 2010 A1
20100191336 Greenhalgh Jul 2010 A1
20100204795 Greenhalgh Aug 2010 A1
20100211176 Greenhalgh Aug 2010 A1
20100234889 Hess Sep 2010 A1
20100241167 Taber et al. Sep 2010 A1
20100249937 Blain et al. Sep 2010 A1
20100286777 Errico et al. Nov 2010 A1
20110022090 Gordon et al. Jan 2011 A1
20110046682 Stephan et al. Feb 2011 A1
20110054538 Zehavi et al. Mar 2011 A1
20110066186 Boyer et al. Mar 2011 A1
20110071635 Zhang et al. Mar 2011 A1
20110077738 Ciupik et al. Mar 2011 A1
20110144692 Saladin et al. Jun 2011 A1
20110144753 Marchek et al. Jun 2011 A1
20110144755 Baynham et al. Jun 2011 A1
20110166654 Gately Jul 2011 A1
20110172709 Lyons et al. Jul 2011 A1
20110172716 Glerum Jul 2011 A1
20110172774 Varela Jul 2011 A1
20110178599 Brett Jul 2011 A1
20110184468 Metcalf et al. Jul 2011 A1
20110190817 Thommen et al. Aug 2011 A1
20110196494 Yedlicka et al. Aug 2011 A1
20110224731 Smisson et al. Sep 2011 A1
20110282453 Greenhalgh et al. Nov 2011 A1
20110301711 Palmatier et al. Dec 2011 A1
20110319997 Glerum et al. Dec 2011 A1
20120010717 Spann Jan 2012 A1
20120016418 Chin et al. Jan 2012 A1
20120022652 Berger et al. Jan 2012 A1
20120035730 Spann Feb 2012 A1
20120046748 Weiman Feb 2012 A1
20120059472 Weiman Mar 2012 A1
20120059474 Weiman Mar 2012 A1
20120071978 Suedkamp et al. Mar 2012 A1
20120109203 Dryer et al. May 2012 A1
20120185049 Varela Jul 2012 A1
20120221051 Robinson Aug 2012 A1
20120226357 Varela Sep 2012 A1
20120330422 Weiman Dec 2012 A1
20130023993 Weiman Jan 2013 A1
20130023994 Glerum Jan 2013 A1
20130085572 Glerum et al. Apr 2013 A1
20130103156 Packer et al. Apr 2013 A1
20130116793 Kloss May 2013 A1
20130144391 Siegal et al. Jun 2013 A1
20130158663 Miller et al. Jun 2013 A1
20130158664 Palmatier et al. Jun 2013 A1
20130158668 Nichols et al. Jun 2013 A1
20130158669 Sungarian et al. Jun 2013 A1
20130197647 Wolters et al. Aug 2013 A1
20130211526 Alheidt et al. Aug 2013 A1
20140067071 Weiman et al. Mar 2014 A1
20140148904 Robinson May 2014 A1
20140163683 Seifert et al. Jun 2014 A1
20140188224 Dmuschewsky Jul 2014 A1
20140236296 Wagner et al. Aug 2014 A1
20140249629 Moskowitz et al. Sep 2014 A1
20140277461 Nebosky et al. Sep 2014 A1
20140277473 Perrow Sep 2014 A1
20140277500 Logan et al. Sep 2014 A1
20140288653 Chen Sep 2014 A1
20140343678 Suddaby et al. Nov 2014 A1
20150012097 Ibarra et al. Jan 2015 A1
20150100128 Glerum et al. Apr 2015 A1
20150112438 Mclean Apr 2015 A1
20150173917 Radcliffe et al. Jun 2015 A1
20150230931 Greenhalgh Aug 2015 A1
20150351928 Butler et al. Dec 2015 A1
20150374507 Wolters et al. Dec 2015 A1
20160051377 Weiman et al. Feb 2016 A1
20160089247 Nichols Mar 2016 A1
20160120660 Melkent et al. May 2016 A1
20160242927 Seifert et al. Aug 2016 A1
20160310291 Greenhalgh Oct 2016 A1
20160361177 Biedermann et al. Dec 2016 A1
20160367377 Faulhaber Dec 2016 A1
20170014244 Seifert Jan 2017 A1
20170056197 Weiman et al. Mar 2017 A1
20170216036 Cordaro Aug 2017 A1
20170224504 Butler et al. Aug 2017 A1
20170224505 Butler et al. Aug 2017 A1
20170246006 Carnes et al. Aug 2017 A1
20170258605 Blain et al. Sep 2017 A1
20170281432 Glerum et al. Oct 2017 A1
20170296352 Richerme Oct 2017 A1
20170333198 Robinson Nov 2017 A1
20170333199 Sharifi-Mehr Nov 2017 A1
20170333200 Amin Nov 2017 A1
20170348116 Weiman Dec 2017 A1
20170367842 Predick et al. Dec 2017 A1
20180014947 Baynham Jan 2018 A1
20180042732 Seifert Feb 2018 A1
20180049885 Weiman et al. Feb 2018 A1
20180055652 Davenport et al. Mar 2018 A1
20180243107 Foley et al. Aug 2018 A1
20180256359 Greenhalgh Sep 2018 A1
20180303621 Brotman Oct 2018 A1
20180318101 Engstrom Nov 2018 A1
20180325693 Weiman et al. Nov 2018 A1
20180360616 Luu Dec 2018 A1
20190021871 Baynham Jan 2019 A1
20190133779 Mclaughlin et al. May 2019 A1
20190133784 Gunn et al. May 2019 A1
20190201210 Besaw Jul 2019 A1
20190254836 Cowan Aug 2019 A1
20190254838 Miller et al. Aug 2019 A1
20190298524 Lauf Oct 2019 A1
20190307577 Predick et al. Oct 2019 A1
20190314168 Faulhaber Oct 2019 A1
20190328540 Seifert Oct 2019 A1
20190374348 Butler et al. Dec 2019 A1
20190388232 Purcell et al. Dec 2019 A1
20190388238 Lechmann et al. Dec 2019 A1
20200054461 Marrocco et al. Feb 2020 A1
20200360153 Weiman et al. Nov 2020 A1
20210015627 Weiman et al. Jan 2021 A1
20210045892 Rogers Feb 2021 A1
20210113349 Weiman et al. Apr 2021 A1
20210137699 Jang May 2021 A1
20210259849 Robinson et al. Aug 2021 A1
20220133495 Glerum et al. May 2022 A1
20220304823 Melchor Sep 2022 A1
20220387184 Josse Dec 2022 A1
Foreign Referenced Citations (40)
Number Date Country
102427769 Apr 2012 CN
205866898 Jan 2017 CN
94 07 806 Jul 1994 DE
20314708 Nov 2003 DE
0 880 950 Dec 1998 EP
2 777 633 Sep 2014 EP
3 031 424 Jun 2016 EP
3 245 982 Nov 2017 EP
3 479 799 May 2019 EP
2717068 Apr 1996 FR
2727003 Apr 1997 FR
0 284 462 Feb 1928 GB
200290058 Sep 2002 KR
100905962 Jul 2009 KR
WO-9531158 Nov 1995 WO
WO-9926562 Jun 1999 WO
WO-0044319 Aug 2000 WO
WO-0244319 Jun 2002 WO
WO-2004052245 Jun 2004 WO
WO-2005009299 Feb 2005 WO
WO-2006102485 Sep 2006 WO
WO-2006105437 Oct 2006 WO
WO-2009124269 Oct 2009 WO
WO-2010148112 Dec 2010 WO
WO-2012121726 Sep 2012 WO
WO-2014134590 Sep 2014 WO
WO-2014165319 Oct 2014 WO
WO-2015009793 Jan 2015 WO
WO-2015063721 May 2015 WO
WO-2015085111 Jun 2015 WO
WO-2016077610 May 2016 WO
WO-2016127139 Aug 2016 WO
WO-2017027277 Feb 2017 WO
WO-2017027873 Feb 2017 WO
WO-2017066463 Apr 2017 WO
WO-2018049227 Mar 2018 WO
WO-2018200507 Nov 2018 WO
WO-2018200530 Nov 2018 WO
WO-2019014139 Jan 2019 WO
WO-2019241687 Dec 2019 WO
Non-Patent Literature Citations (37)
Entry
Bacfuse® Spinous Process Fusion Plate Surgical Technique, 2011, Pioneer Surgical, 12 pages.
Extended European Search Report for European Application No. 14159101.6, dated Jun. 18, 2014, 5 pages.
Extended European Search Report for European Application No. 16169890.7, dated Oct. 21, 2016, 7 pages.
Foreign Action other than Search Report on EP 06740268.5 dated Jan. 2, 2020, 4 pages.
Foreign Action other than Search Report on PCT PCT/US2018/029120 dated Nov. 7, 2019, 9 pages.
Foreign Action other than Search Report on PCT PCT/US2018/029149 dated Nov. 7, 2019, 8 pages.
Foreign Action other than Search Report on PCT PCT/US2018/041306 dated Jan. 23, 2020, 6 pages.
Foreign Search Report on PCT PCT/US2019/037275 dated Sep. 24, 2019, 12 pages.
International Preliminary Report on Patentability for Application No. PCT/US06/12060 dated Sep. 30, 2007, 3 pages.
International Search Report and Written Opinion for International Application No. PCT/US2006/012060, dated Apr. 5, 2007, 4 pages.
International Search Report and Written Opinion for International Application No. PCT/US2012/057324, dated Dec. 20, 2012, 10 pages.
International Search Report for Application No. PCT/US06/12060, dated Apr. 5, 2007, 1 page.
International Search Report for International Application No. PCT/US2018/029120, dated Jun. 28, 2018, 17 pages.
International Search Report for International Application No. PCT/US2018/029149, dated Jun. 25, 2018, 13 pages.
Search Report for International Application No. PCT/US2018/041306, dated Sep. 28, 2018, 12 pages.
Written Opinion of the International Searching Authority for Application No. PCT/US06/12060, dated Apr. 5, 2007, 3 pages.
International Search Report and Written Opinion received for Life Spine, Inc., for PCT app. No. PCT/US2021026610 dated Jul. 20, 2021, 18 pages.
International Search Report and Written Opinion in PCT PCT/US2021/030261 dated Aug. 31, 2021 (18 pages).
International Search Report and Written Opinion in PCT/US2021/031596 dated Sep. 28, 2021 (12 pages).
International Search Report and Written Opinion in PCT/US2021/033832 dated Sep. 17, 2021.
International Search Report and Written Opinion on PCT/US2020/036809 dated Sep. 14, 2020, 12 pages.
International Search Report and Written Opinion received for Life Spine, Inc. for PCT app. PCT/US2021/026606 dated Jul. 15, 2021, 20 pages.
International Search Report on PCT/US2020/037020, dated Sep. 29, 2020, 20 pages.
Folman, et al., “Posterior Lumbar Interbody Fusion for Degenerative Disc Disease Using a Minimally Invasive B-Twin Expandable Spinal Spacer.” Journal of Spinal Disorders & Techniques. 2003, vol. 16, No. 5, pp. 455-460.
Schizas, C., “Spinal Fusion: Techniques Results and Limitations.” European Cells and Materials. 2005, vol. 10, Suppl. 3, p. 1.
“MectaLIF Oblique & Posterior Intervertebral Body Fusion Device.” Brochure. 2004, Medacta International, San Pietro, Switzerland.
“Webster's II New College Dictionary.” Excerpts. 2005, Houghton Mifflin Co., p. 992.
“Wedge.” Encyclopedia Brittanica. Aug. 14, 2008. britannica.com/print/article/638734.
Kambin, P., et al., “Arthroscopic Discectomy of the Lumbar Spine.” Clinical Orthopaedics and Related Research. Apr. 1997, No. 337, pp. 49-57.
Kim, D., et al. “Posterior Lumbar Interbody Fusion Using a Unilateral Single Cage and a Local Morselized Bone Graft in the Degenerative Lumbar Spine.” Clinics in Orthopedic Surgery. 2009, vol. 1, No. 4, pp. 214-221.
Kim, Y, et al., “Clinical Applications of the Tubular Retractor on Spinal Disorders.” Journal of Korean Neurosurgery, Nov. 2007, No. 42, pp. 244-250.
Moore, J., et al., “Mechanics Map—Wedges.” Aug. 20, 2022, mechanicsmap.psu.edu/websites/7_friction/7-3_wedges/wedges.
Peltier, L. “Orthopedics: A History and Iconography” 1993, Norman Publishing, San Francisco, CA.
Sasso, R., et al., “Anterior Lumbar Interbody Fusion.” Surgical Management of Low Back Pain. 2009, Chapter 10, pp. 87-95.
Tsuang, Y., et al., “Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation—A finite element study.” Medical Engineering & Physics 31. 2009, pp. 565-570.
Virk, S., et al. “History of Spinal Fusion: Where We Came from and Where We Are Going.” Current Concepts in Spinal Fusion. HSS Journal, 2020, No. 16, pp. 137-142.
Xiao, Y, et al., “Unilateral Transforaminal Lumbar Interbody Fusion: a Review of the Technique, Indications and Graft Materials.” The Journal of International Medical Research. 2009, No. 37, pp. 908-917.
Related Publications (1)
Number Date Country
20210322181 A1 Oct 2021 US