The present disclosure relates to spinal interbody and intravertebral body devices and, more particularly, to vertebral interbody and intravertebral devices that are expandable after spinal placement thereof.
Fusion cages, as well as other types of bodies and/or devices, are frequently utilized in spinal surgery inside a vertebra (intravertebral) and/or between vertebrae of a patient (interbody). With interbody devices, one or more such spinal bodies are placed between vertebrae to provide support and promote fusion between adjacent vertebrae where such is necessary due to disease, injury, general deterioration or congenital problem. With intravertebral devices, one or more spinal bodies are placed within a vertebra. Spinal devices, such as fusion cages and/or the like, are inserted into a spinal space either anteriorly, posteriorly, laterally or posterolaterally.
A problem with most spinal interbody and intravertebral devices is that they are static in size. This poses various problems with their use and/or implantation. Particularly, static sized spinal devices are fairly large in order to properly bridge the gap between adjacent vertebrae. This large size does not lend itself to microsurgery, arthroscopic surgery or the like.
A few interbody devices, however, are now being made that are expandable. Expandable interbody devices allow the interbody device to be initially smaller than traditional non-expandable (static) interbody devices such that expandable interbody devices may be more easily inserted or implanted into the vertebral space. Moreover, expandable interbody devices allow the surgeon to set the amount of expansion necessary for the particular patient rather than the static interbody device dictating the spacing.
One embodiment relates to an expandable implant, comprising a top support assembly defining an upper surface configured to engage a first portion of vertebral bone; a bottom support assembly defining a lower surface configured to engage a second portion of vertebral bone; a control assembly coupled to the top support assembly and the bottom support assembly and configured to control relative movement between the top support assembly and the bottom support assembly between a collapsed position and an expanded position; wherein in the collapsed position, the upper surface is generally parallel to the lower surface, and wherein in the expanded position, a portion of the upper surface extends at an acute angle relative to a portion of the lower surface.
Another embodiment relates to an expandable implant comprising a top support assembly defining an upper surface configured to engage a first portion of vertebral bone; a bottom support assembly defining a lower surface configured to engage a second portion of vertebral bone; a first wedge member slidably coupled to the top and bottom support assemblies; a second wedge member slidably coupled to the top and bottom support assemblies; and a control assembly coupled to the first and second wedge members and configured to control relative movement between the top support assembly and the bottom support assembly between a collapsed position and an expanded position; wherein in the collapsed position, the upper surface is generally parallel to the lower surface, and wherein in the expanded position, a portion of the upper surface extends at an angle relative to a portion of the lower surface.
Another embodiment relates to a method of using an expandable implant, comprising providing an expandable implant comprising a top support assembly, a bottom support assembly, and a control assembly coupled to the top and bottom support assemblies; manipulating the control assembly in a first manner to move the top support assembly in a linear fashion relative to the bottom support assembly; and manipulating the control assembly in a second manner to move at least a portion of the top support assembly in a non-linear fashion relative to at least a portion of the bottom support assembly.
Another embodiment relates to an expandable implant, comprising a top support configured to engage a first portion of vertebral bone; a bottom support configured to engage a second portion of vertebral bone; and a control assembly coupled to the top support and the bottom support and configured to control relative movement between the top support and the bottom support, wherein the control assembly includes a control member including a head and a body portion; and wherein the head includes a recess and the body portion includes at least one access port in fluid communication with the recess to enable delivery of fluid to an interior of the implant via the recess and at least one access port.
Another embodiment relates to an expandable implant, comprising a top support including a top surface configured to engage a first portion of vertebral bone; a bottom support including a bottom surface configured to engage a second portion of vertebral bone, wherein the top and bottom surfaces define a taper; and a control assembly coupled to the top support and the bottom support and configured to control relative movement between the top support and the bottom support, wherein the control assembly includes a control member having a recess and at least one access port in fluid communication with the recess to enable delivery of fluid to an interior of the implant via the recess and at least one access port.
Another embodiment relates to an implant comprising a top support configured to engage a first portion of vertebral bone; a bottom support configured to engage a second portion of vertebral bone; and a control assembly coupled to the top support and the bottom support and configured to control relative movement between the top support and the bottom support, wherein the control assembly includes a front portion configured to slidably engage the top and bottom supports; a rear portion configured to slidably engage the top and bottom supports; and a control member including a head disposed within the rear portion, and a threaded portion threadingly engaging the front portion; wherein the head includes a recess and at least one access port in fluid communication with the recess to enable delivery of fluid to an interior of the implant via the recess and at least one access port.
Another embodiment relates to an expandable implant. The expandable implant includes a top support configured to engage a first portion of bone, a bottom support configured to engage a second portion of bone, a control assembly coupled to the top support and the bottom support and configured to control relative movement between the top support and the bottom support, wherein the control assembly includes a front member and a control member, wherein the front member has an aperture configured to receive the control member, wherein the control member includes a head, and wherein a portion of the head is positioned outside of the aperture as the implant is expanded between a first, collapsed orientation and a second, expanded orientation.
Another embodiment relates to a method of installing an expandable implant. The method includes inserting the implant into a desired location. The implant includes an upper support configured to engage a first portion of bone, a lower support configured to engage a second portion of bone, and a control assembly comprising a control member including a head, a front member including an aperture configured to receive the control member, and a rear member, wherein the control assembly is configured to control relative movement between the upper support and the lower support. The method includes manipulating the control member to cause relative sliding movement between the front member and both the upper support and the lower support, and the rear member and both the upper support and the lower support, to expand the implant to a desired height, wherein a portion of the head is positioned outside of the aperture as the implant is expanded between a first, collapsed orientation and a second, expanded orientation.
Another embodiment relates to an implant. The implant includes an upper support configured to engage a first portion of bone, a lower support configured to engage a second portion of bone, a control assembly configured to control relative movement between the upper support and the lower support. The control assembly includes a front portion configured to engage the upper support at the first end of the upper support, a rear portion configured to engage the upper support at a second end of the upper support, the second end being opposite the first end, and a control member adjustably engaging the front portion and the rear portion.
The foregoing and other features of the present invention will become more apparent to one skilled in the art upon also reading the following description of embodiments with reference to the accompanying drawings.
Corresponding reference characters indicate corresponding parts throughout the several views. Although the drawings represent embodiments of the invention, the drawings are not necessarily to scale and certain features may be exaggerated in order to better illustrate and explain the principles of the present invention. The exemplifications set out herein illustrate several embodiments of the invention, but the exemplifications are not to be construed as limiting the scope of the invention in any manner.
The present disclosure relates to expandable and/or dynamic interbody (between adjacent vertebrae), intravertebral-body (inside the vertebrae) and/or spinal stabilization devices that may or may not be used as interbody fusion cages or devices, interbody/intravertebral bodies/body stabilization devices and/or the like (collectively hereinafter, spinal device(s)) for providing support, stabilization and/or promoting bone growth between or inside vertebrae that have been destabilized or otherwise due to injury, illness and/or the like. Particularly, the present disclosure provides various versions of dynamic (expandable and/or expandable and retractable) interbody/intravertebral body devices that are usable in a spinal column of a human.
As representative of each one of the various versions of the present invention,
According to various exemplary embodiments, the components of implant 10 may be made of any suitable material(s), including a variety of metals, plastics, composites, or other suitable bio-compatible materials. In some embodiments, one or more components of implant 10 may be made of the same material, while in other embodiments, different materials may be used for different components of implant 10.
Referring now to
According to an exemplary embodiment, implant 10 includes a first, or front portion 12 (e.g., a first wedge member), a second, or rear portion 14 (e.g., a second wedge member), and a third, intermediate, or control member or portion 16, which collectively form a body or control assembly that extends along a longitudinal axis 11 of implant 10. A first, or upper support 18 (e.g., an upper plate, support member, assembly, etc.) and a second, lower support 20 (e.g., a lower plate, support member, assembly), are coupled to the body assembly and extend generally between front and rear portions 12, 14. According to an exemplary embodiment, first and second supports 18, 20 define a height of implant 10 extending between outer or top surface 48 of first support 18 and outer or lower surface 76 of second support 20.
In one embodiment, front portion 12 includes a rounded, or bull nose portion intended to facilitate insertion of implant 10 into a patient. Front portion 12 also includes ramped surfaces 26, 28 and projections 30, 32 that facilitate controlled sliding movement between front portion 12 and first and second supports 18, 20. An aperture 34 may be threaded to receive control member 16 to provide an adjustable control mechanism for implant 10.
Referring to
Ramped surface 28 and projection 32 share similar features to ramped surface 26 and projection 30, except that ramped surface 28 and projection 32 interface with corresponding surfaces on second support 20, rather than first support 18. It should be noted that ramped surfaces 26, 28 may be inclined relative to axis 11 to provide any desirable adjustment features, as changing the incline of the ramped surfaces will change the rate at which the first and second support members move up/down.
Referring further to
Ramped surface 36 extends at an angle relative to axis 11, and projection 40 extends upward relative to ramped surface 36. Ramped surface 36 is a generally flat surface configured to engage a correspondingly ramped surface (surface 56) on first support 18. Projection 40 extends laterally across rear portion 14. In some embodiments, projection 40 may have a dovetail shape (see, e.g.,
Ramped surface 38 and projection 42 share similar features to ramped surface 36 and projection 40, except that ramped surface 38 and projection 42 interface with corresponding surfaces on second support 20, rather than first support 18. It should be noted that ramped surfaces 36, 38 may be inclined relative to axis 11 to provide any desirable adjustment features, as changing the incline of the ramped surfaces will change the rate at which the first and second support members move up/down.
According to an exemplary embodiment, first and second supports 18, 20 are configured to be moveable relative to the body or control assembly (e.g., front and rear portions 12, 14 and control portion 16) such that implant 10 is reconfigurable between a first configuration (e.g., a retracted, collapsed, or minimal configuration), as shown in
First and second supports 18, 20 and front and rear portions 12, 14 have corresponding geometric features (e.g., correspondingly ramped surfaces) such that displacement of front portion 12 relative to rear portion 14 along axis 11 causes relative planar and/or linear displacement of first and second supports 18, 20. As discussed above, the geometric features of the various components may be varied to provide for varying adjustment features for first and second supports 18, 20.
In one embodiment, first and second supports 18, 20 are generally similar in structure. Referring to
In use, control member 16 extends through through-hole 44 in rear portion 14 and into front portion 12. Head portion 106 of control member 16 seats in counterbore 46 of rear portion 14, and threaded portion 104 threadingly engages aperture 34 of front portion 12. Head portion 106 may include an annular recess 108 configured such that a collar 24 can be positioned (e.g., press-fit, welded, etc.) into counterbore 46 rearward of head portion 106 to retain control member 16 in place. As a user rotates control member 16, front portion 12 and rear portion 14 move toward/away from each other (depending on the direction of rotation), and first and second supports 18, 20 in turn move away from/toward each other.
As shown in
Second support 20 is similar to first support 18 and includes outer, or bottom surface 76, ramped surfaces 82, 84, channels 86, 87, and two pairs of opposing projections—projections 88, 90, and projections 92, 94. Second support 20 further includes sidewalls 96, 98, pin or retaining member apertures 80, and inner, or top surface 102. Bottom surface 76 includes a number of ridges, or projections 78, intended to provide a gripping surface for adjacent vertebrae, and a bone graft cavity, or window 80 intended to provide a space to receive bone graft material. In one embodiment, the components of second support 20 are similar in structure and function to the corresponding components of first support 18. In other embodiments, the components of second support 20 may provide additional and/or different structural and/or functional features relative to the corresponding components of first support 18.
It should be noted that implant 10 may share various features with the other implants described herein, and be made of the same, similar, or different materials. For example, various components of implant 10 may be made of metal, plastic, composites, or other suitable bio-compatible materials. Further, implant 10 may be usable in connection with the spine or other parts of the body.
Referring now to
According to an exemplary embodiment, implant 110 includes a first, or front portion 112, a second, or rear portion 114, and a third, intermediate, or control member or portion 116, which collectively form a body or control assembly that extends along a longitudinal axis 111 of implant 110. A first, or upper support 118 (e.g., an upper plate or support member, etc.) and a second, lower support 120 (e.g., a lower plate or support member), are coupled to the body or control assembly and may extend generally between front and rear portions 112, 114. According to an exemplary embodiment, first and second supports 118, 120 define a height of implant 110 extending between outer or top surface 148 of first support 118 and outer or lower surface 176 of second support 120.
In one embodiment, front portion 112 includes a rounded, or bull nose portion intended to facilitate insertion of implant 110 into a patient. Front portion 112 also includes ramped surfaces and projections (e.g., similar to ramped surfaces 26, 28 and projections 30, 32) that facilitate controlled sliding movement between front portion 112 and first and second supports 118, 120. An aperture may be threaded to receive control member 116 to provide an adjustable control mechanism for implant 110.
As shown in
As with implant 10, according to an exemplary embodiment, first and second supports 118, 120 and front and rear portions 112, 114 have corresponding geometric features (e.g., correspondingly ramped surfaces) such that displacement of front portion 112 relative to rear portion 114 along axis 111 causes relative planar and/or linear displacement of first and second supports 118, 120. As discussed above, the geometric features of the various components may be varied to provide for varying adjustment features for first and second supports 118, 120.
In use, control member 116 includes a head portion and a body portion and extends through a through-hole in rear portion 114 and into front portion 112. The head portion of control member 116 seats in a counterbore of rear portion 114, and the threaded portion of the body threadingly engages an aperture of front portion 112. The head portion may include an annular recess (similar to head portion 106 of implant 10) configured such that a collar 124 can be positioned (e.g., press-fit, welded, etc.) into the counterbore rearward of the head portion to retain control member 116 in place. As a user rotates control member 116, front portion 112 and rear portion 114 move toward/away from each other (depending on the direction of rotation), and first and second supports 118, 120 in turn move away from/toward each other. While the Figures generally show control member 116 threadingly engaging front portion 112, in other embodiments, other adjustment mechanisms may be used (e.g., ratchet mechanisms, indents/detents, etc.).
Opposing projections 160, 162 on first support 118 form a recess, or channel 158. In one embodiment, channel 158 has a dovetail shape corresponding in shape to projection 130 on front portion 112. Likewise, projections 164, 166 in first support 118 form channel 159 having a dovetail shape similar in shape to projection 140 on rear portion 114. Projections 130, 140 slide within channels 158, 159 as first support 118 moves up/down. In some embodiments, retaining members or pins (e.g., similar to pins 22) extend through first and second supports 118, 120 and act to limit the range of movement of first and second supports 118, 120 relative to front and rear portions 112, 114, and prevent first and second supports 118, 120 from being completely removed from front and rear portions 112, 114. Second support 120 includes similar features such as an outer, or bottom surface, ramped surfaces, channels, and two pairs of opposing projections.
In addition to including various features of implant 10, implant 110 further includes an alignment feature intended to maintain alignment between first and second supports 118, 120 during use. In one embodiment, second support 120 includes one or more alignment members 150, 152 (e.g., extensions, projections, etc.) that extend generally upward as shown in
In one embodiment members 150, 152 are formed so as to be generally flush with the exterior surface of first support 118 (e.g., along a side or top surface). In other embodiments, members 150 may be recessed from, or alternatively protrude beyond, the exterior surface of first support 118. Further, while
It should be noted that implant 110 may share various features with the other implants described herein, and be made of the same, similar, or different materials. For example, various components of implant 110 may be made of metal, plastic, composites, or other suitable bio-compatible materials. Further, implant 110 may be usable in connection with the spine or other parts of the body. Further yet, pins similar to pins 22 may be used in conjunction with implant 110 or any of the other implants shown and described herein.
In various embodiments, the implants shown in
Referring now to
According to an exemplary embodiment, implant 210 includes a first, or front portion 212, a second, or rear portion 214, and a third, intermediate, or control member or portion 216, which collectively form a body or control assembly that extends along a longitudinal axis of implant 210. A first, or upper support 218 (e.g., an upper plate or support member, etc.) and a second, lower support 220 (e.g., a lower plate or support member), are coupled to the body assembly and may extend generally between front and rear portions 212, 214. According to an exemplary embodiment, first and second supports 218, 220 define a height of implant 210 extending between the outer or top surface of first support 218 and the outer or lower surface of second support 220.
In one embodiment, control member 216 includes a head portion 230, a collar recess 232, a threaded portion 234, a tool recess 236, and access ports 238. Threaded portion 234 and the non-threaded portion of control member 216 including access ports 238 collectively form a body portion for control member 216. Head portion 230 is received within a counterbore in rear portion 214. Collar recess 232 is configured to enable placement of collar 224 into a position to retain head portion 230 within the counterbore in rear portion 214. Threaded portion 234 is configured to threadingly engage a threaded aperture provided by front portion 212. Tool recess 236 is formed in the rearward portion of head portion 230 and communicates with access ports 238, which extend to opposite sides of control member 216. Tool recess 236 is configured to receive a tool to enable threading manipulation of control member 216. Tool recess 236 and access ports 238 are collectively configured to provide a fluid path to an interior of implant 210 and enable delivery of fluid, bone growth material, or other material to an interior of implant 210.
As shown in
Referring to
According to an exemplary embodiment, implant 260 includes a first, or front portion 262, a second, or rear portion 264, and a third, intermediate, or control member or portion 266, which collectively form a body or control assembly that extends along a longitudinal axis of implant 260. A first, or upper support 268 (e.g., an upper plate or support member, etc.) and a second, lower support 270 (e.g., a lower plate or support member), are coupled to the body assembly and may extend generally between front and rear portions 262, 264. According to an exemplary embodiment, first and second supports 268, 270 define a height of implant 260 extending between the outer or top surface of first support 268 and the outer or lower surface of second support 270.
In one embodiment, control member 266 includes a head portion 280, a collar recess 282, a threaded portion 284, a tool recess 286, and access ports 288. Head portion 280 is received within a counterbore in rear portion 264. Collar recess 282 is configured to enable placement of collar 274 into a position to retain head portion 280 within the counterbore of rear portion 264. Threaded portion 284 is configured to threadingly engage a threaded aperture provided by front portion 262. Tool recess 286 is formed in the rearward portion of head portion 280 and communicates with access ports 288, which extend to opposite sides of control member 266. Tool recess 286 is configured to receive a tool to enable threading manipulation of control member 266. Tool recess 286 and access ports 288 are collectively configured to provide a fluid path to an interior of implant 260 and enable delivery of fluid, bone growth material, or other material to an interior of implant 260.
Referring to
In some embodiments, top and bottom supports 268, 270 have a generally symmetric profile about control member 266, as shown for example, in
Referring to
According to an exemplary embodiment, implant 310 includes a first, or front portion 312, a second, or rear portion 314, and a third, intermediate, or control member or portion 316, which collectively form a body or control assembly that extends along a longitudinal axis of implant 310. A first, or upper support 318 (e.g., an upper plate or support member, etc.) and a second, lower support 320 (e.g., a lower plate or support member), are coupled to the body assembly and may extend generally between front and rear portions 312, 314. According to an exemplary embodiment, first and second supports 318, 320 define a height of implant 310 extending between the outer or top surface of first support 318 and the outer or lower surface of second support 320.
In one embodiment, implant 310 defines a first side portion 330 and a second side portion 332. In one embodiment, one or both of first and second side portions 330, 332 include side bone graft apertures or windows. For example, as shown in
In some embodiments, first side portion 330 and second side portion 332 provide an asymmetric profile about control member 316, as shown for example in
Referring to
According to an exemplary embodiment, implant 360 includes a first, or front portion 362, a second, or rear portion 364, and a third, intermediate, or control member or portion 366, which collectively form a body or control assembly that extends along a longitudinal axis of implant 360. A first, or upper support 368 (e.g., an upper plate or support member, etc.) and a second, lower support 370 (e.g., a lower plate or support member), are coupled to the body or control assembly and may extend generally between front and rear portions 362, 364. According to an exemplary embodiment, first and second supports 368, 370 define a height of implant 360 extending between the outer or top surface of first support 368 and the outer or lower surface of second support 370. As discuss in greater detail below, the height of implant 360 decreases in a lateral direction.
In one embodiment, implant 360 defines a first side portion 380 and a second side portion 382. In one embodiment, one or both of first and second side portions 380, 382 include side bone graft apertures or windows. For example, as shown in
In one embodiment, implant 360 is configured to provide a predetermined lateral taper that remains constant as implant 360 is moved between a collapsed configuration (see
As shown in
Referring to
According to an exemplary embodiment, implant 410 includes a first, or front portion 412, a second, or rear portion 414, and a third, intermediate, or control member or portion 416, which collectively form a body or control assembly that extends along a longitudinal axis of implant 410. In some embodiments, front portion 412 includes a through hole 431 configured to enable control member 416 to extend through front portion 412. A first, or upper support 418 (e.g., an upper plate or support member, etc.) and a second, lower support 420 (e.g., a lower plate or support member), are coupled to the body or control assembly and may extend generally between front and rear portions 412, 414. According to an exemplary embodiment, first and second supports 418, 420 define a height of implant 410 extending between the outer or top surface of first support 418 and the outer or lower surface of second support 420. As discussed in greater detail below, the height of implant 410 decreases in a longitudinal direction (e.g., to provide a longitudinal taper feature).
In one embodiment, implant 410 is configured to provide a predetermined longitudinal taper that remains constant as implant 410 is moved between a collapsed configuration (see
In some embodiments, implant 410 defines a longitudinal axis extending along control member 416. Top support 418 defines a first end 426, a second end 428, and a top surface 421 extending between first and second ends 426, 428. First and second ends 426, 428 define an overall taper to top surface 421. In some embodiments, top surface 421 may define an arcuate shape between first end 426 and second end 428 (e.g., such that top surface 421 has a slight curvature between first and second ends 426, 428). In other embodiments, top surface 421 may define a substantially planar surface between first and second ends 426, 428. Bottom support 420 defines a first end 425, a second end 427, and a bottom surface 423 extending between first and second ends 425, 427. First and second ends 425, 427 define an overall taper to top surface 423. In some embodiments, top surface 423 may define an arcuate shape between first end 425 and second end 427 (e.g., such that top surface 423 has a slight curvature between first and second ends 425, 427). In other embodiments, top surface 423 may define a substantially planar surface between first and second ends 425, 427.
As shown in
Referring to
For example, referring to
According to an exemplary embodiment, implant 460 includes a first, or front portion 462, a second, or rear portion 464, and a third, intermediate, or control member or portion 466, which collectively form a body or control assembly that extends along a longitudinal axis of implant 460. A first, or upper support 468 (e.g., an upper plate or support member, etc.) and a second, lower support 470 (e.g., a lower plate or support member), are coupled to the body or control assembly and may extend generally between front and rear portions 462, 464. According to an exemplary embodiment, first and second supports 468, 470 define a height of implant 460 extending between the outer or top surface of first support 468 and the outer or lower surface of second support 470. In some embodiments, top and bottom supports 468, 470 may include tapered corner sections 490, 492 to facilitate insertion/removal of implant 460, etc.
In one embodiment, top and bottom supports 468, 470 are retained by upper and lower pins 494, 496. In one embodiment, upper pins 494 extend through opposite sides of one end of top support 468, and lower pins 496 extend through opposite sides of an opposite end of bottom support 470. Pins 494, 496 act to limit expansion of implant 460 and prevent removal of top and bottom supports 468, 470 from front and rear portions 462, 464. As shown in
Referring further to
Referring now to
According to an exemplary embodiment, implant 510 includes a first, or front portion 512, a second, or rear portion 514, and a third, intermediate, or control member or portion 516, which collectively form a body or control assembly that extends along a longitudinal axis of implant 510. A first, or upper support assembly 518 (e.g., an upper plate or support member, etc.) and a second, lower support assembly 520 (e.g., a lower plate or support member), are coupled to the control assembly and may extend generally between front and rear portions 512, 514. According to an exemplary embodiment, first and second support assemblies 518, 520 define a height of implant 520 extending between the outer or top surface of first support assembly 518 and the outer or lower surface of second support assembly 520.
Front portion 512 includes ramped surfaces 562 and a threaded bore 564. Rear portion 514 includes dovetailed projections 566 and recess or aperture 568. Ramped surfaces 562 and dovetailed projections 566 facilitate controlled expansion and contraction of top support assembly 518 and bottom support assembly 520 relative to one another.
In one embodiment, top support assembly 518 includes a first portion 522 and a second portion 524 pivotally coupled to first portion 522 by way of a top pivot pin 530. First portion 522 defines an extension portion 532 that at least partially extends into a recess 534 in second portion 524. Top guide pins 526 extend through second portion 524 and into upper slots 528 in first portion 522 to limit the range of pivotal motion of first portion 522 relative to second portion 524 about top pivot pin 530. First portion 522 includes a ramped surface 536, and second portion 524 includes a dovetailed recess 538. Ramped surface 536 slidingly interfaces with a corresponding ramped surface 562 on front portion 512, and dovetailed recess 538 slidingly interfaces with a dovetailed projection 566 on rear portion 514.
In one embodiment, bottom support assembly 520 includes a first portion 542 and a second portion 544 pivotally coupled to first portion 542 by way of a bottom pivot pin 550. First portion 542 defines an extension portion 552 that at least partially extends into a recess 554 in second portion 524. Bottom guide pins 546 extend through second portion 544 and into bottom slots 548 in first portion 542 to limit the range of pivotal motion of first portion 542 relative to second portion 544 about bottom pivot pin 550. First portion 542 includes a ramped surface 556, and second portion 524 includes a dovetailed recess 558. Ramped surface 556 slidingly interfaces with a corresponding ramped surface 562 on front portion 512, and dovetailed recess 558 slidingly interfaces with a dovetailed projection 566 on rear portion 514.
In one embodiment, implant 510 includes alignment features configured to maintain proper alignment between at least a portion of top support assembly 518 and at least a portion of bottom support assembly 520. For example, an upper alignment guide 540 on second portion 524 of top support assembly 518 slidingly engages a correspondingly shaped lower alignment guide 560 on second portion 544 of bottom support assembly 520. As such, as first portions 522 and 542 angulate away from each other, second portions 524, 544 remain aligned (e.g., move in a linear fashion relative to one another).
In one embodiment, implant 510 is moveable from a first, fully collapsed and aligned position, as shown in
Once maximum angulation is reached, further rotation of control member 516 causes expansion of second members 524, 544 (and therefore also first members 522, 542) relative to one another in a generally linear fashion (e.g., through the interaction of alignment guides 540, 560). It should be noted that to enable angulation of first portions 522, 542, front portion 512 and first portions 522, 542 have generally flat, correspondingly shaped ramped surfaces 562 (on front portion 512), 536 (on first portion 522 of top support assembly 518), and 556 (on first portion 542 of bottom support assembly 520). To facilitate linear movement of second portions 524, 544, rear portion 514 includes dovetailed projections 566, which are received within dovetailed recesses 438 (on second portion 524 of top support assembly 518) and 558 (on second portion 544 of bottom support assembly 520).
The angulation and expansion features enable a user to initially install implant 510 in a collapsed, aligned position, as shown in
Referring now to
According to an exemplary embodiment, implant 610 includes a first, or front portion 612, a second, or rear portion 614, a first, or inner, control member 615, a second, or outer, control member 616, and a receiver member 617, which collectively form a body or control assembly that extends along a longitudinal axis of implant 610. A first, or upper support assembly 618 (e.g., an upper plate or support member, etc.) and a second, lower support assembly 620 (e.g., a lower plate or support member), are coupled to the control assembly and may extend generally between front and rear portions 612, 614. According to an exemplary embodiment, first and second support assemblies 618, 620 define a height of implant 610 extending between the outer or top surface of first support assembly 618 and the outer or lower surface of second support assembly 620.
Front portion 612 includes ramped surfaces 654 and a receiver recess or bore 656. Rear portion 614 includes ramped surfaces 658 and control recess or bore 660. Ramped surfaces 654, 658 facilitate controlled expansion and contraction of top support assembly 618 and bottom support assembly 620 relative to one another.
In one embodiment, top support assembly 618 includes a first or inner portion 622 and a second or outer portion 624 pivotally coupled to first portion 622 by way of a top pivot pin 626. First portion 622 at least partially extends into a recess 628 in second portion 624. First portion 622 includes a ramped surface 630, and second portion 624 includes a ramped surface 632. Ramped surface 630 slidingly interfaces with a corresponding ramped surface 654 on front portion 612, and ramped surface 632 slidingly interfaces with a corresponding ramped surface 658 on rear portion 614.
In one embodiment, bottom support assembly 620 includes a first or inner portion 638 and a second or outer portion 640 pivotally coupled to first portion 638 by way of a bottom pivot pin 642. First portion 638 at least partially extends into a recess 644 in second portion 640. First portion 638 includes a ramped surface 646, and second portion 640 includes a ramped surface 648. Ramped surface 646 slidingly interfaces with a corresponding ramped surface 654 on front portion 612, and ramped surface 648 slidingly interfaces with ramped surface 658 on rear portion 614.
In one embodiment, implant 610 includes alignment features configured to limit a degree of angulation of second portions 624, 640 relative to first portions 622, 638. For example, in some embodiments, first portion 622 of top support assembly 618 includes a single alignment guide or member 634 that is received between two alignment guides or members 650 on first portion 638 of bottom support assembly 620. Alignment guides 634, 650 are collectively received in a top alignment recess in second portion 624 of top support assembly 618 and a bottom alignment recess 644 in second portion 640 of bottom support assembly 620. The various alignment components may be configured to enable a predetermined amount of angulation between first portions 622, 63 and second portions 624, 640.
In one embodiment, implant 610 is moveable from a first, fully collapsed and aligned position, as shown in
In use, threading of outer control member 616 into (or out of) receiver 617 causes linear relative movement (e.g., expansion or contraction) of top support assembly 618 and bottom support assembly 620. For example,
Threading of inner control member 615 within outer control 616 member causes second portions 624, 640 to angulate relative to first portions 622, 638. For example,
The angulation and expansion features enable a user to initially install implant 610 in a collapsed, aligned position, as shown in
Referring now to
Referring to
As will be discussed herein, the implant 700 is expandable between at least a first, collapsed orientation and a second, expanded orientation. For example, the implant 700 shown in
According to an exemplary embodiment, the implant 700 includes a first, or rear portion 740, a second, or front portion 730, and a third, intermediate, or control member or portion 750, which collectively form a control assembly 790 (see
In some embodiments, the rear portion 740 includes an aperture 743 (see
The top portion 710 may have an upper surface 711. In some embodiments, such as shown in
According to an exemplary embodiment, the upper surface 711 and lower surface 721 define a height of the implant 700 (e.g., a support height defined by the vertical distance between the upper surface 711 of the top portion 710 and the lower surface 721 of the bottom portion 720). In some embodiments, the height of the implant 700 may be constant throughout the implant. However, in the embodiment shown in
In some embodiments, the implant 700 defines a longitudinal axis extending along the control member 750. The top portion 710 defines a rear or first end 714, a front or second end 713 opposite the rear or first end 714, a first side 715, and a second side 716 opposite the first side 715. The first end 714 and the second end 713 define an overall taper to the upper surface 711. In some embodiments, the upper surface 711 may define an arcuate shape between the rear or first end 714 and the second end 713 (e.g., such that the upper surface 711 has a slight curvature, such as a parabolic curve, between the first end 714 and the second end 713 when viewed from the first side 715). In other embodiments, the upper surface 711 may define a substantially planar surface between the first end 714 and the second end 713.
The bottom portion 720 defines a first end 724, a second end 723, a first side 725 and a second side 726. The lower surface 721 extends between the first end 724 and the second end 723. The first end 724 and the second end 723 define an overall taper to lower surface 721. In some embodiments, lower surface 821 may define an arcuate shape between the first end 724 and the second end 723 (e.g., such that the bottom surface 721 has a slight curvature, such as a parabolic curve, between the first end 724 and the second end 723 when viewed from the first side 725). In other embodiments, the bottom surface 721 may define a substantially planar surface between the first end 724 and the second end 723.
As shown in
Referring now to
The top portion 710 may also include a side projection 719 on the second side 716 between the first end 714 and the second end 713. The side projection 719 may be configured to be received by a slot 779 on the first side 725 of the bottom portion 720. When the implant 700 expands from the first, collapsed position to the second, expanded position, the projection 719 may slide within the slot 779. The side projection 719 may provide the implant 700 with additional lateral stability to prevent the top portion 710 shifting laterally with respect to the bottom portion 720.
Referring now to
The bottom portion 720 may also include a side projection 729 on the first side 725 between the first end 724 and the second end 723. The side projection 729 may be configured to be received by a slot 769 on the first side 715 of the top portion 710. When the implant 700 expands from the first, collapsed position to the second, expanded position, the projection 729 may slide within the slot 769. The side projection 729 may provide the implant 700 with additional lateral stability to prevent the top portion 710 shifting laterally with respect to the bottom portion 720.
Referring now to
Referring now to
After the implant 700 is inserted, the control assembly 790 may be used to expand the implant 700 from the first, collapsed position to the second, expanded position. For example, a person may use an expansion tool that engages with the tool port 757 of the control member 750. For example, the expansion tool may be a torx head screwdriver. Since the outer ring 754 has a larger exterior diameter than the inner diameter of the aperture 743, the tool port 757 may provide a larger access area than a control member that does not have an outer ring with an exterior diameter larger than the inner diameter of the aperture 743. A person, such as a surgeon or doctor, may then use the expansion tool to turn the control member 750, for example, in a clockwise direction. In this example embodiment, the threaded shaft 753 is received by a threaded bore 735 of the front portion 730 (see
Further, it should be appreciated that the expansion profile of an implant may be customized in part by changing the angles of the various ramped surfaces. Using the implant in various locations may require a custom expansion profile. For example, if the implant is inserted into a patient's spine, the implant expansion profile may be customized to match the curvature of the patient's spine at the desired location that the implant is to be implanted into. In some example embodiments, the ramped surfaces of the rear portion 740 may have a much higher angle (i.e., the angle that upward angled surface and the downward angle surface form) than the ramped surfaces of the front portion 730. In this example embodiment, turning the control member 750 will cause the implant 700 to expand more near the rear portion 740 than near the front portion 730. In this example embodiment, the implant 700 height will be larger near the rear portion 740 than near the front portion 730. It should be appreciated that further customization of the expansion profile of an implant 700 may be accomplished by adjusting the angle of ramped surfaces on the rear portion 740, the front portion 730, the top portion 710, and the bottom portion 720.
Further, the retention wedge 792 may be used to prevent back-out of the control member 750. For example, if the implant 700 is compressed (i.e., a downward force on the upper surface 711 and an upward force on the lower surface 721), the control member 750 may experience forces that would force the control member 750 away from the front portion 730. To prevent this, a retention wedge 792 may be inserted into the first aperture 744 and the second aperture 745 of the rear portion 740. The retention wedges 792 may then extend into the retention groove 756 in the access ring 755 such that a portion of the retention wedge 792 is positioned within the first aperture 744 or the second aperture 745 and the retention groove 756, thereby preventing the control member 750 from backing out of the rear portion 740. In some embodiments, the surface of the retention wedge 792 that engages the retention groove 756 may have a curvature that matches the curvature of the retention groove 756, thereby allowing a greater portion of the retention wedge 792 to be positioned within the retention groove 756.
Referring to
As will be discussed herein, the implant 800 is expandable between at least a first, collapsed orientation and a second, expanded orientation. For example, the implant 800 shown in
According to an exemplary embodiment, the implant 800 includes a first, or rear portion 840, a second, or front portion 830, and a third, intermediate, or control member or portion 850, which collectively form a control assembly 890 (see
In some embodiments, the rear portion 840 includes an aperture 843 (see
The top portion 810 may have an upper surface 811. In some embodiments, such as shown in
According to an exemplary embodiment, the upper surface 811 and lower surface 821 define a height of the implant 800 (e.g., a support height defined by the vertical distance between the upper surface 811 of the top portion 810 and the lower surface 821 of the bottom portion 820). In some embodiments, the height of the implant 800 may be constant throughout the implant 800. However, in some embodiments, the height of the implant 800 is generally greater near the center of the implant 800 than the height near the rear portion 840 and the front portion 830. It should be appreciated that the height and general profile of the implant 800 may be customized based on the needs of the person the implant 800 is being inserted into.
In some embodiments, the implant 800 defines a longitudinal axis extending along the control member 850. The top portion 810 defines a rear or first end 814, a front or second end 813 opposite the rear or first end 814, a first side 815, and a second side 816 opposite the first side 815. The first end 814 and the second end 813 define an overall taper to upper surface 811. In some embodiments, the upper surface 811 may define an arcuate shape between the first end 814 and the second end 813 (e.g., such that the upper surface 811 has a slight curvature, such as a parabolic curve, between the first end 814 and the second end 813 when viewed from the first side 815). In other embodiments, the upper surface 811 may define a substantially planar surface between the first end 814 and the second end 813.
The bottom portion 820 defines a first end 824, a second end 823, a first side 825 and a second side 826. The lower surface 821 extends between the first end 824 and the second end 823. The first end 824 and the second end 823 define an overall taper to lower surface 821. In some embodiments, lower surface 821 may define an arcuate shape between the first end 824 and the second end 823 (e.g., such that the lower surface 821 has a slight curvature, such as a parabolic curve, between the first end 824 and the second end 823 when viewed from the first side 825). In other embodiments, the lower surface 821 may define a substantially planar surface between the first end 824 and the second end 823.
As shown in
Referring now to
The top portion 810 may also include a plurality of side projections 819 on the first side 815 and the second side 816 between the first end 814 and the second end 813. For example, in the embodiment shown in
Referring now to
The bottom portion 820 may also include a plurality of side projections 829 on the first side 825 and the second side 826 between the first end 824 and the second end 823. The side projections 829 may be configured to be received by a plurality of slots 869 on the first side 815 and the second side 816 of the top portion 810. When the implant 800 expands from the first, collapsed position to the second, expanded position, the projections 829 may slide within the slots 869. The side projections 829 may provide the implant 800 with additional lateral stability to prevent the top portion 810 shifting laterally with respect to the bottom portion 820.
Referring now to
Referring now to
After the implant 800 is inserted, the control assembly 890 may be used to expand the implant 800 from the first, collapsed position to the second, expanded position. For example, a person may use an expansion tool that engages with the tool port 857 of the control member 850. For example, the expansion tool may be a hex head screwdriver. A person, such as a surgeon or doctor, may then use the expansion tool to turn the control member 850, for example, in a clockwise direction. In this example embodiment, the threaded shaft 853 is received by a threaded bore 835 of the front portion 830 (see
Further, it should be appreciated that the expansion profile of an implant may be customized in part by changing the angles of the various ramped surfaces. Using the implant in various locations may require a custom expansion profile. For example, if the implant is inserted into a patient's spine, the implant expansion profile may be customized to match the curvature of the patient's spine at the desired location that the implant is to be implanted into. In some example embodiments, the ramped surfaces of the rear portion 840 may have a much higher angle (i.e., the angle that upward angled surface and the downward angle surface form) than the ramped surfaces of the front portion 830. In this example embodiment, turning the control member 850 will cause the implant 800 to expand more near the rear portion 840 than near the front portion 830. In this example embodiment, the implant 800 height will be larger near the rear portion 840 than near the front portion 830. It should be appreciated that further customization of the expansion profile of an implant 800 may be accomplished by adjusting the angle of ramped surfaces on the rear portion 840, the front portion 830, the top portion 810, and the bottom portion 820.
Further, retention members 892 may be used to prevent back-out of the control member 850. For example, if the implant 800 is compressed (i.e., a downward force on the upper surface 811 and an upward force on the lower surface 821), the control member 850 may experience forces that would force the control member 850 away from the front portion 830. To prevent this, a retention member 892 may be inserted into the first aperture 844 and the second aperture 845 of the rear portion 840. A portion of the retention members 892 may then be positioned within the retention groove 856 in the access ring 855 such that a portion of the retention members 892 is positioned within the first aperture 844 or the second aperture 845 and the retention groove 856, thereby preventing the control member 850 from backing out of the rear portion 840.
Referring now to
As will be discussed herein, the implant 900 is expandable between at least a first, collapsed orientation and a second, expanded orientation. For example, the implant 900 shown in
According to an exemplary embodiment, the implant 900 includes a first, or rear portion 940, a second, or front portion 930, and a third, intermediate, or control member or portion 950, which collectively form a control assembly that extends along a longitudinal axis of the implant 900. A first, or top portion 910 (e.g., an upper plate or support member, etc.) and a second, bottom portion 920 (e.g., a lower plate or support member), are coupled to the body or control assembly and may extend generally between rear portion 940 and the front portion 930.
In some embodiments, the rear portion 940 includes an aperture 943 (see
The top portion 910 may have an upper surface 911. In some embodiments, such as shown in
According to an exemplary embodiment, the upper surface 911 and lower surface 921 define a height of the implant 900 (e.g., a support height defined by the vertical distance between the upper surface 911 of the top portion 910 and the lower surface 921 of the bottom portion 920). In some embodiments, the height of the implant 900 may be constant throughout the implant. However, in the embodiment shown in
In some embodiments, the implant 900 defines a longitudinal axis extending along the control member 950. The top portion 910 defines a rear or first end 914, a front or second end 913 opposite the rear or first end 914, a first lateral side 915, and a second lateral side 916 opposite the first side 915. The first end 914 and the second end 913 define an overall taper to the upper surface 911. In some embodiments, the upper surface 911 may define an arcuate shape between the rear or first end 914 and the second end 913 (e.g., such that the upper surface 911 has a slight curvature, such as a parabolic curve, between the first end 914 and the second end 913 when viewed from the first lateral side 915). In other embodiments, the upper surface 911 may define a substantially planar surface between the first end 914 and the second end 913.
The bottom portion 920 defines a first end 924, a second end 923, a first side 925 and a second side 926. The lower surface 921 extends between the first end 924 and the second end 923. The first end 924 and the second end 923 define an overall taper to lower surface 921. In some embodiments, lower surface 921 may define an arcuate shape between the first end 924 and the second end 923 (e.g., such that the bottom surface 921 has a slight curvature, such as a parabolic curve, between the first end 924 and the second end 923 when viewed from the first side 925). In other embodiments, the bottom surface 921 may define a substantially planar surface between the first end 924 and the second end 923.
In use, the top portion 910 and the bottom portion 920 are configured to move toward and away from each other in a linear manner, such that the degree of taper remains constant and the implant 900 expands from the first, collapsed position to the second, expanded position. In other embodiment, other configurations may be utilized to provide non-linear movement and a varying longitudinal taper. Furthermore, while
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
The control assembly includes the rear portion 940 adjustably coupled to the front portion 930 by the control member 950. As shown in
After the implant 900 is inserted, the control assembly 990 may be used to expand the implant 900 from the first, collapsed position to the second, expanded position. For example, a person may use an expansion tool that engages with the tool port 957 of the control member 950. For example, the expansion tool may be a hex head screwdriver. A person, such as a surgeon or doctor, may then use the expansion tool to turn the control member 950, for example, in a clockwise direction. In this example embodiment, the threaded shaft 953 is received by a threaded bore 935 of the front portion 930 (see
Further, it should be appreciated that the expansion profile of an implant may be customized in part by changing the angles of the various ramped surfaces. Using the implant in various locations may require a custom expansion profile. For example, if the implant is inserted into a patient's spine, the implant expansion profile may be customized to match the curvature of the patient's spine at the desired location that the implant is to be implanted into. In some example embodiments, the ramped surfaces of the rear portion 940 may have a much higher angle (i.e., the angle that upward angled surface and the downward angle surface form) than the ramped surfaces of the front portion 930. In this example embodiment, turning the control member 950 will cause the implant 900 to expand more near the rear portion 940 than near the front portion 930. In this example embodiment, the implant 900 height will be larger near the rear portion 940 than near the front portion 930. It should be appreciated that further customization of the expansion profile of an implant 900 may be accomplished by adjusting the angle of ramped surfaces on the rear portion 940, the front portion 930, the top portion 910, and the bottom portion 920.
Further, the retention pins 922 may be used to prevent back-out of the control member 950. For example, if the implant 900 is compressed (i.e., a downward force on the upper surface 911 and an upward force on the lower surface 921), the control member 950 may experience forces that would force the control member 950 away from the front portion 930. To prevent this, a retention pin 922 may be inserted into the first aperture 944 and the second aperture 944 of the rear portion 940. The retention pins 922 may then extend into the retention groove 956 such that a portion of the retention pin 922 is positioned within the first aperture 944 or the second aperture 944 and the retention groove 956, thereby preventing the control member 950 from backing out of the rear portion 940.
Referring now to the Figures generally, the various embodiments disclosed herein provide expandable implants including a lower support and an upper support adjustably coupled to the lower support and movable between a first, collapsed position, and a second, expanded position. Further, a front component and a control shaft rotatably received by the front component is disclosed, where rotation of the control shaft causes relative movement of a rear portion relative to the front component.
In some embodiments, the upper support moves in a linear fashion relative to the lower support. In other embodiments, the upper support may move in a non-linear fashion relative to the lower support. In some embodiments, a single control member and control shaft are utilized. In other embodiments, multiple (e.g., 2) control members and control shafts are utilized. In some embodiments, the multiple control channels are parallel and straight. In other embodiments, the control channels are non-parallel and straight (e.g., angled toward each other). In further embodiments, the control channels are non-parallel and non-straight such that the adjustable member moves in a non-linear fashion relative to the base member.
In some embodiments, the control shaft includes a control thread corresponding to each control member. As such, while in some embodiments the control shaft includes a single control thread, in other embodiments the control shaft includes multiple (e.g., first and second) control threads. In some embodiments, the control threads are like-threaded. In other embodiments, the control threads have different threads. For example, in some embodiments, a first control thread is opposite-handed from a second control thread. In further embodiments, a first control thread has a different pitch from a second control thread. In yet further embodiments, a first control thread is different handed and has a different pitch from a second control thread.
In some embodiments, one or both of the lower support and the upper support include projections/grooves to provide a gripping surface intended to facilitate gripping adjacent portions of bone. In further embodiments, one or both of the lower support and the upper support include one or more apertures and/or cavities configured to promote bone growth in and around the lower support and the upper support. In some embodiments, the apertures extend from a top, bottom, and/or side surface of the lower support and the upper support and to a central cavity of the implant.
According to any of the embodiments disclosed herein, one or more bone screws may be included and positioned to extend through one or both of the lower support and the upper support and into adjacent portions of bone. In some embodiments, multiple bone screws are used. A first bone screw may extend through the adjustable member and into a first portion of bone, and a second bone screw may extend through the base member and into a second portion of bone. In further embodiments, multiple bone screws are accessible and manipulatable by way of the rear face of the implant defined by one or both of the adjustable member and the base member. A head and tool port of the control shaft may further be accessible by way of the rear face of the implant.
In various embodiments, any suitable configuration of the control shaft/control member(s)/control channel(s) may be utilized. In some embodiments, an at least partially spherical control member threadingly engages a threaded control shaft and translates both along the control shaft and within the control channel. In other embodiments, the control member is non-spherical and is received at least partially on or in a control rail or control channel provided by the adjustable member, such that the control member translates along both the control shaft and the control channel or control rail.
As utilized herein, the terms “approximately,” “about,” “substantially”, and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of some features described and claimed without restricting the scope of these features to the precise numerical ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and claimed are considered to be within the scope of the application as recited in the appended claims.
It should be noted that the term “exemplary” as used herein to describe various embodiments is intended to indicate that such embodiments are possible examples, representations, and/or illustrations of possible embodiments (and such term is not intended to connote that such embodiments are necessarily extraordinary or superlative examples).
The terms “coupled,” “connected,” and the like as used herein mean the joining of two members directly or indirectly to one another. Such joining may be stationary (e.g., permanent) or moveable (e.g., removable or releasable). Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate members being attached to one another.
References herein to the positions of elements (e.g., “top,” “bottom,” “above,” “below,” etc.) are merely used to describe the orientation of various elements in the FIGURES. It should be noted that the orientation of various elements may differ according to other exemplary embodiments, and that such variations are intended to be encompassed by the present disclosure.
Although the figures and description may illustrate a specific order of method steps, the order of such steps may differ from what is depicted and described, unless specified differently above. Also, two or more steps may be performed concurrently or with partial concurrence, unless specified differently above. Such variation may depend, for example, on hardware systems chosen and on designer choice. All such variations are within the scope of the disclosure.
It is important to note that the construction and arrangement of the various exemplary embodiments are illustrative only. Although only a few embodiments have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter described herein. For example, elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes and omissions may also be made in the design, operating conditions and arrangement of the various exemplary embodiments without departing from the scope of the present application.
It should be appreciated that dimensions of the components, structures, and/or features of the present implants and installation instruments may be altered as desired within the scope of the present disclosure.
This application is a continuation-in-part of U.S. application Ser. No. 16/548,134, filed on Aug. 22, 2019, which is continuation of U.S. application Ser. No. 15/497,044, filed Apr. 25, 2017 and granted Oct. 1, 2019 as U.S. Pat. No. 10,426,632, which is a continuation-in-part of U.S. application Ser. No. 14/714,821, filed May 18, 2015 and granted Oct. 31, 2017 as U.S. Pat. No. 9,801,733, which is a continuation-in-part of U.S. application Ser. No. 13/802,110, filed Mar. 13, 2013 and granted May 19, 2015 as U.S. Pat. No. 9,034,041, all of which are incorporated herein by reference in their entireties. This application is related to U.S. application Ser. No. 15/497,011, filed Apr. 25, 2017 and granted Aug. 20, 2019 as U.S. Pat. No. 10,383,741, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
856481 | Losie, Jr. | Jun 1907 | A |
904434 | Co | Nov 1908 | A |
1925385 | Humes | Sep 1933 | A |
4466426 | Blackman | Aug 1984 | A |
4636217 | Ogilvie et al. | Jan 1987 | A |
4743256 | Brantigan | May 1988 | A |
4863476 | Shepperd | Sep 1989 | A |
5098435 | Stednitz et al. | Mar 1992 | A |
5192327 | Brantigan | Mar 1993 | A |
5236460 | Barber | Aug 1993 | A |
5390683 | Pisharodi | Feb 1995 | A |
5522899 | Michelson | Jun 1996 | A |
5609635 | Michelson | Mar 1997 | A |
5645599 | Samani | Jul 1997 | A |
5658335 | Allen | Aug 1997 | A |
5658337 | Kohrs et al. | Aug 1997 | A |
5776199 | Michelson | Jul 1998 | A |
5836948 | Zucherman et al. | Nov 1998 | A |
5860977 | Zucherman et al. | Jan 1999 | A |
5876404 | Zucherman et al. | Mar 1999 | A |
6045579 | Hochshuler et al. | Apr 2000 | A |
6048342 | Zucherman et al. | Apr 2000 | A |
6068630 | Zucherman et al. | May 2000 | A |
6074390 | Zucherman et al. | Jun 2000 | A |
6080193 | Hochshuler et al. | Jun 2000 | A |
6113638 | Williams et al. | Sep 2000 | A |
6126689 | Brett | Oct 2000 | A |
6129763 | Chauvin et al. | Oct 2000 | A |
6176882 | Biedermann et al. | Jan 2001 | B1 |
6183471 | Zucherman et al. | Feb 2001 | B1 |
6190387 | Zucherman et al. | Feb 2001 | B1 |
6235030 | Zucherman et al. | May 2001 | B1 |
6290724 | Marino | Sep 2001 | B1 |
6302914 | Michelson | Oct 2001 | B1 |
6375682 | Fleischmann et al. | Apr 2002 | B1 |
6409766 | Brett | Jun 2002 | B1 |
6443989 | Jackson | Sep 2002 | B1 |
6447544 | Michelson | Sep 2002 | B1 |
6451019 | Zucherman et al. | Sep 2002 | B1 |
6491724 | Ferree | Dec 2002 | B1 |
6494883 | Ferree | Dec 2002 | B1 |
6537320 | Michelson | Mar 2003 | B1 |
6576016 | Hochshuler et al. | Jun 2003 | B1 |
6613091 | Zdeblick et al. | Sep 2003 | B1 |
6641614 | Wagner et al. | Nov 2003 | B1 |
6648917 | Gerbec et al. | Nov 2003 | B2 |
6685742 | Jackson | Feb 2004 | B1 |
6695842 | Zucherman et al. | Feb 2004 | B2 |
6699246 | Zucherman et al. | Mar 2004 | B2 |
6699247 | Zucherman et al. | Mar 2004 | B2 |
6706070 | Wagner et al. | Mar 2004 | B1 |
6752832 | Neumann | Jun 2004 | B2 |
6773460 | Jackson | Aug 2004 | B2 |
6796983 | Zucherman et al. | Sep 2004 | B1 |
6800092 | Williams et al. | Oct 2004 | B1 |
6849093 | Michelson | Feb 2005 | B2 |
7001385 | Bonutti | Feb 2006 | B2 |
7048736 | Robinson et al. | May 2006 | B2 |
7087055 | Lim et al. | Aug 2006 | B2 |
7101375 | Zucherman et al. | Sep 2006 | B2 |
7214243 | Taylor | May 2007 | B2 |
7217291 | Zucherman et al. | May 2007 | B2 |
7220280 | Kast et al. | May 2007 | B2 |
7250055 | Vanderwalle | Jul 2007 | B1 |
7473276 | Aebi et al. | Jan 2009 | B2 |
7503933 | Michelson | Mar 2009 | B2 |
7621950 | Globerman et al. | Nov 2009 | B1 |
7695513 | Zucherman et al. | Apr 2010 | B2 |
7722674 | Grotz | May 2010 | B1 |
7727280 | McLuen | Jun 2010 | B2 |
7731751 | Butler et al. | Jun 2010 | B2 |
7789914 | Michelson | Sep 2010 | B2 |
D626233 | Cipoletti et al. | Oct 2010 | S |
7824427 | Perez-Cruet et al. | Nov 2010 | B2 |
7828849 | Lim | Nov 2010 | B2 |
7837734 | Zucherman et al. | Nov 2010 | B2 |
7846188 | Moskowitz et al. | Dec 2010 | B2 |
7850733 | Baynham et al. | Dec 2010 | B2 |
7867277 | Tohmeh | Jan 2011 | B1 |
7879098 | Simmons, Jr. | Feb 2011 | B1 |
7942903 | Moskowitz et al. | May 2011 | B2 |
7959675 | Gately | Jun 2011 | B2 |
7972363 | Moskowitz et al. | Jul 2011 | B2 |
8016861 | Mitchell et al. | Sep 2011 | B2 |
8021430 | Michelson | Sep 2011 | B2 |
8048117 | Zucherman et al. | Nov 2011 | B2 |
8062375 | Glerum et al. | Nov 2011 | B2 |
8070817 | Gradl et al. | Dec 2011 | B2 |
8071007 | Teoh et al. | Dec 2011 | B1 |
8105382 | Olmos et al. | Jan 2012 | B2 |
8187332 | McLuen | May 2012 | B2 |
8231656 | Lee et al. | Jul 2012 | B2 |
8241330 | Lamborne et al. | Aug 2012 | B2 |
8241364 | Hansell et al. | Aug 2012 | B2 |
8252060 | Hansell et al. | Aug 2012 | B2 |
8257370 | Moskowitz et al. | Sep 2012 | B2 |
8267939 | Cipoletti et al. | Sep 2012 | B2 |
8303663 | Jimenez et al. | Nov 2012 | B2 |
8308804 | Krueger | Nov 2012 | B2 |
8343190 | Mueller et al. | Jan 2013 | B1 |
8353913 | Moskowitz et al. | Jan 2013 | B2 |
8353963 | Glerum | Jan 2013 | B2 |
8366777 | Matthis et al. | Feb 2013 | B2 |
8382801 | Lamborne et al. | Feb 2013 | B2 |
8382842 | Greenhalgh et al. | Feb 2013 | B2 |
8388686 | Aebi et al. | Mar 2013 | B2 |
8394129 | Morgenstern Lopez | Mar 2013 | B2 |
8398713 | Weiman | Mar 2013 | B2 |
8425607 | Waugh et al. | Apr 2013 | B2 |
8435298 | Weiman | May 2013 | B2 |
8444696 | Michelson | May 2013 | B2 |
8454706 | De Beaubien | Jun 2013 | B2 |
8491659 | Weiman | Jul 2013 | B2 |
8506629 | Weiland | Aug 2013 | B2 |
8518120 | Glerum et al. | Aug 2013 | B2 |
8523944 | Jimenez et al. | Sep 2013 | B2 |
8535380 | Greenhalgh et al. | Sep 2013 | B2 |
8551173 | Lechmann et al. | Oct 2013 | B2 |
8556979 | Glerum et al. | Oct 2013 | B2 |
8568481 | Olmos et al. | Oct 2013 | B2 |
8597360 | McLuen et al. | Dec 2013 | B2 |
8628578 | Miller et al. | Jan 2014 | B2 |
8632595 | Weiman | Jan 2014 | B2 |
8641764 | Gately | Feb 2014 | B2 |
8641766 | Donner et al. | Feb 2014 | B2 |
8663332 | To et al. | Mar 2014 | B1 |
8679183 | Glerum et al. | Mar 2014 | B2 |
8685098 | Glerum et al. | Apr 2014 | B2 |
8690883 | Collins et al. | Apr 2014 | B2 |
8702798 | Matthis et al. | Apr 2014 | B2 |
8709086 | Glerum | Apr 2014 | B2 |
8734516 | Moskowitz et al. | May 2014 | B2 |
8795366 | Varela | Aug 2014 | B2 |
8821506 | Mitchell | Sep 2014 | B2 |
8845728 | Abdou | Sep 2014 | B1 |
8845731 | Weiman | Sep 2014 | B2 |
8845732 | Weiman | Sep 2014 | B2 |
8845734 | Weiman | Sep 2014 | B2 |
8852279 | Weiman | Oct 2014 | B2 |
8858638 | Michelson | Oct 2014 | B2 |
8864833 | Glerum et al. | Oct 2014 | B2 |
8888853 | Glerum et al. | Nov 2014 | B2 |
8888854 | Glerum et al. | Nov 2014 | B2 |
8894711 | Varela | Nov 2014 | B2 |
8894712 | Varela | Nov 2014 | B2 |
8906095 | Christensen et al. | Dec 2014 | B2 |
8926704 | Glerum et al. | Jan 2015 | B2 |
8936641 | Cain | Jan 2015 | B2 |
8940052 | Lechmann et al. | Jan 2015 | B2 |
8974505 | Sawa et al. | Mar 2015 | B2 |
9005293 | Moskowitz et al. | Apr 2015 | B2 |
9034041 | Wolters et al. | May 2015 | B2 |
9034045 | Davenport et al. | May 2015 | B2 |
9039771 | Glerum et al. | May 2015 | B2 |
9044284 | Sweeney | Jun 2015 | B2 |
9060876 | To et al. | Jun 2015 | B1 |
9101487 | Petersheim | Aug 2015 | B2 |
9119730 | Glerum et al. | Sep 2015 | B2 |
9125757 | Weiman | Sep 2015 | B2 |
9149367 | Davenport et al. | Oct 2015 | B2 |
9186258 | Davenport et al. | Nov 2015 | B2 |
9186262 | McLuen et al. | Nov 2015 | B2 |
9198772 | Weiman | Dec 2015 | B2 |
9204922 | Hooven | Dec 2015 | B2 |
9204972 | Weiman et al. | Dec 2015 | B2 |
9204974 | Glerum et al. | Dec 2015 | B2 |
9211196 | Glerum et al. | Dec 2015 | B2 |
9216095 | Glerum et al. | Dec 2015 | B2 |
9216098 | Trudeau et al. | Dec 2015 | B2 |
9226836 | Glerum | Jan 2016 | B2 |
9233009 | Gray et al. | Jan 2016 | B2 |
9278008 | Perloff et al. | Mar 2016 | B2 |
9295562 | Lechmann et al. | Mar 2016 | B2 |
9301854 | Moskowitz et al. | Apr 2016 | B2 |
9333092 | To et al. | May 2016 | B2 |
9358123 | McLuen et al. | Jun 2016 | B2 |
9358126 | Glerum et al. | Jun 2016 | B2 |
9358128 | Glerum et al. | Jun 2016 | B2 |
9358129 | Weiman | Jun 2016 | B2 |
9370434 | Weiman | Jun 2016 | B2 |
9402733 | To et al. | Aug 2016 | B1 |
9402738 | Niemiec et al. | Aug 2016 | B2 |
9402739 | Weiman et al. | Aug 2016 | B2 |
9408708 | Greenhalgh | Aug 2016 | B2 |
9414932 | Errico et al. | Aug 2016 | B2 |
9421111 | Baynham | Aug 2016 | B2 |
9433510 | Lechmann et al. | Sep 2016 | B2 |
9445919 | Palmatier et al. | Sep 2016 | B2 |
9452063 | Glerum et al. | Sep 2016 | B2 |
9456903 | Glerum et al. | Oct 2016 | B2 |
9456906 | Gray et al. | Oct 2016 | B2 |
9474622 | McLaughlin et al. | Oct 2016 | B2 |
9480579 | Davenport et al. | Nov 2016 | B2 |
9486325 | Davenport et al. | Nov 2016 | B2 |
9486326 | Gahman et al. | Nov 2016 | B2 |
9492286 | Biedermann et al. | Nov 2016 | B2 |
9492287 | Glerum et al. | Nov 2016 | B2 |
9492289 | Davenport et al. | Nov 2016 | B2 |
9510954 | Glerum et al. | Dec 2016 | B2 |
9517144 | McAtamney et al. | Dec 2016 | B2 |
9532821 | Moskowitz et al. | Jan 2017 | B2 |
9532883 | McLuen et al. | Jan 2017 | B2 |
9539103 | McLaughlin et al. | Jan 2017 | B2 |
9539108 | Glerum et al. | Jan 2017 | B2 |
9554918 | Weiman | Jan 2017 | B2 |
9561116 | Weiman et al. | Feb 2017 | B2 |
9561117 | Lechmann et al. | Feb 2017 | B2 |
9572677 | Davenport et al. | Feb 2017 | B2 |
9579124 | Gordon et al. | Feb 2017 | B2 |
9585765 | Niemiec et al. | Mar 2017 | B2 |
9597197 | Lechmann et al. | Mar 2017 | B2 |
9597200 | Glerum et al. | Mar 2017 | B2 |
9603713 | Moskowitz et al. | Mar 2017 | B2 |
9610174 | Wang et al. | Apr 2017 | B2 |
9622875 | Moskowitz et al. | Apr 2017 | B2 |
9622879 | Taylor et al. | Apr 2017 | B2 |
9655737 | Perloff et al. | May 2017 | B2 |
9655747 | Glerum et al. | May 2017 | B2 |
9662223 | Matthis et al. | May 2017 | B2 |
9662224 | Weiman et al. | May 2017 | B2 |
9707092 | Davenport et al. | Jul 2017 | B2 |
9770343 | Weiman | Sep 2017 | B2 |
9782265 | Weiman et al. | Oct 2017 | B2 |
9801733 | Wolters et al. | Oct 2017 | B2 |
9814601 | Moskowitz et al. | Nov 2017 | B2 |
9833336 | Davenport et al. | Dec 2017 | B2 |
9839528 | Weiman et al. | Dec 2017 | B2 |
9848993 | Moskowitz et al. | Dec 2017 | B2 |
9848997 | Glerum et al. | Dec 2017 | B2 |
9848998 | Moskowitz et al. | Dec 2017 | B2 |
9855151 | Weiman | Jan 2018 | B2 |
9867719 | Moskowitz et al. | Jan 2018 | B2 |
9889022 | Moskowitz et al. | Feb 2018 | B2 |
9895238 | Moskowitz et al. | Feb 2018 | B2 |
9907673 | Weiman et al. | Mar 2018 | B2 |
9907674 | Moskowitz et al. | Mar 2018 | B2 |
9931226 | Kurtaliaj et al. | Apr 2018 | B2 |
9943418 | Davenport et al. | Apr 2018 | B2 |
9956087 | Seifert et al. | May 2018 | B2 |
9962272 | Daffinson et al. | May 2018 | B1 |
9968462 | Weiman | May 2018 | B2 |
9974665 | McLuen et al. | May 2018 | B2 |
9980822 | Perloff et al. | May 2018 | B2 |
9980823 | Matthis et al. | May 2018 | B2 |
9987143 | Robinson et al. | Jun 2018 | B2 |
10004607 | Weiman et al. | Jun 2018 | B2 |
10016283 | McLuen et al. | Jul 2018 | B2 |
10028740 | Moskowitz et al. | Jul 2018 | B2 |
10028842 | Gray et al. | Jul 2018 | B2 |
10034772 | Glerum et al. | Jul 2018 | B2 |
10034773 | McLaughlin et al. | Jul 2018 | B2 |
10052213 | Glerum et al. | Aug 2018 | B2 |
10058433 | Lechmann et al. | Aug 2018 | B2 |
10064742 | Taylor et al. | Sep 2018 | B2 |
10076367 | Moskowitz et al. | Sep 2018 | B2 |
10076423 | Miller et al. | Sep 2018 | B2 |
10080669 | Davenport et al. | Sep 2018 | B2 |
10085844 | Perloff et al. | Oct 2018 | B2 |
10085849 | Weiman et al. | Oct 2018 | B2 |
10092417 | Weiman et al. | Oct 2018 | B2 |
10092422 | McLuen et al. | Oct 2018 | B2 |
10098757 | Logan et al. | Oct 2018 | B2 |
10098758 | Matthews et al. | Oct 2018 | B2 |
10098759 | Weiman | Oct 2018 | B2 |
10105239 | Niemiec et al. | Oct 2018 | B2 |
10111760 | Knapp et al. | Oct 2018 | B2 |
10117754 | Davenport et al. | Nov 2018 | B2 |
10137001 | Weiman | Nov 2018 | B2 |
10137007 | Dewey et al. | Nov 2018 | B2 |
10143500 | Niemiec et al. | Dec 2018 | B2 |
10143569 | Weiman et al. | Dec 2018 | B2 |
10154911 | Predick et al. | Dec 2018 | B2 |
10159583 | Dietzel et al. | Dec 2018 | B2 |
10195050 | Palmatier et al. | Feb 2019 | B2 |
10213321 | Knapp et al. | Feb 2019 | B2 |
10219913 | Matthews et al. | Mar 2019 | B2 |
10226359 | Glerum et al. | Mar 2019 | B2 |
10251643 | Moskowitz et al. | Apr 2019 | B2 |
10285819 | Greenhalgh | May 2019 | B2 |
10285820 | Greenhalgh | May 2019 | B2 |
10292828 | Greenhalgh | May 2019 | B2 |
10292830 | McLuen et al. | May 2019 | B2 |
10299934 | Seifert et al. | May 2019 | B2 |
10307268 | Moskowitz et al. | Jun 2019 | B2 |
10350085 | Glerum et al. | Jul 2019 | B2 |
10376386 | Moskowitz et al. | Aug 2019 | B2 |
10383741 | Butler et al. | Aug 2019 | B2 |
10420654 | Logan et al. | Sep 2019 | B2 |
10426632 | Butler et al. | Oct 2019 | B2 |
10426633 | Moskowitz et al. | Oct 2019 | B2 |
10433977 | Lechmann et al. | Oct 2019 | B2 |
10449058 | Lechmann et al. | Oct 2019 | B2 |
10470894 | Foley et al. | Nov 2019 | B2 |
10478319 | Moskowitz et al. | Nov 2019 | B2 |
10512550 | Bechtel et al. | Dec 2019 | B2 |
10531895 | Weiman et al. | Jan 2020 | B2 |
10575966 | Logan et al. | Mar 2020 | B2 |
10617533 | Glerum et al. | Apr 2020 | B2 |
10624761 | Davenport et al. | Apr 2020 | B2 |
10639166 | Weiman et al. | May 2020 | B2 |
10682240 | McLuen et al. | Jun 2020 | B2 |
10702393 | Davenport et al. | Jul 2020 | B2 |
10709569 | McLaughlin et al. | Jul 2020 | B2 |
10709571 | Iott et al. | Jul 2020 | B2 |
10709573 | Weiman et al. | Jul 2020 | B2 |
10709574 | McLuen et al. | Jul 2020 | B2 |
10722379 | McLaughlin et al. | Jul 2020 | B2 |
10729560 | Baker et al. | Aug 2020 | B2 |
10729562 | Knapp et al. | Aug 2020 | B2 |
10736754 | McLuen et al. | Aug 2020 | B2 |
10758367 | Weiman et al. | Sep 2020 | B2 |
10765528 | Weiman et al. | Sep 2020 | B2 |
10772737 | Gray et al. | Sep 2020 | B2 |
10779957 | Weiman et al. | Sep 2020 | B2 |
10786364 | Davenport et al. | Sep 2020 | B2 |
10799368 | Glerum et al. | Oct 2020 | B2 |
10835387 | Weiman et al. | Nov 2020 | B2 |
10842644 | Weiman et al. | Nov 2020 | B2 |
10869768 | Weiman et al. | Dec 2020 | B2 |
10874522 | Weiman | Dec 2020 | B2 |
10874523 | Weiman et al. | Dec 2020 | B2 |
10925752 | Weiman | Feb 2021 | B2 |
10940014 | Greenhalgh | Mar 2021 | B2 |
10973649 | Weiman et al. | Apr 2021 | B2 |
11020239 | Miller et al. | Jun 2021 | B2 |
11051951 | Robinson et al. | Jul 2021 | B2 |
11065128 | Zappacosta et al. | Jul 2021 | B2 |
11083584 | Lauf et al. | Aug 2021 | B2 |
11304817 | Altarac et al. | Apr 2022 | B2 |
11304818 | Butler et al. | Apr 2022 | B2 |
20020010472 | Kuslich et al. | Jan 2002 | A1 |
20020029084 | Paul et al. | Mar 2002 | A1 |
20020091447 | Shimp et al. | Jul 2002 | A1 |
20020128716 | Cohen et al. | Sep 2002 | A1 |
20020143343 | Castro | Oct 2002 | A1 |
20020143399 | Sutcliffe | Oct 2002 | A1 |
20020147461 | Aldrich et al. | Oct 2002 | A1 |
20020177897 | Michelson | Nov 2002 | A1 |
20030004576 | Thalgott | Jan 2003 | A1 |
20030040746 | Mitchell et al. | Feb 2003 | A1 |
20030040802 | Errico et al. | Feb 2003 | A1 |
20030176926 | Boehm, Jr. | Sep 2003 | A1 |
20030236520 | Lim et al. | Dec 2003 | A1 |
20040073213 | Serhan et al. | Apr 2004 | A1 |
20040153156 | Cohen et al. | Aug 2004 | A1 |
20040167625 | Beyar et al. | Aug 2004 | A1 |
20040204747 | Kemeny et al. | Oct 2004 | A1 |
20040225292 | Sasso et al. | Nov 2004 | A1 |
20040230309 | Dimauro et al. | Nov 2004 | A1 |
20040254643 | Jackson | Dec 2004 | A1 |
20050027362 | Williams et al. | Feb 2005 | A1 |
20050033437 | Bao et al. | Feb 2005 | A1 |
20050070911 | Carrison et al. | Mar 2005 | A1 |
20050107800 | Frankel et al. | May 2005 | A1 |
20050119747 | Fabris Monterumici | Jun 2005 | A1 |
20050131536 | Eisermann et al. | Jun 2005 | A1 |
20050143827 | Globerman et al. | Jun 2005 | A1 |
20050177235 | Baynham et al. | Aug 2005 | A1 |
20050177236 | Mathieu et al. | Aug 2005 | A1 |
20050222681 | Richley et al. | Oct 2005 | A1 |
20050228391 | Levy et al. | Oct 2005 | A1 |
20050261769 | Moskowitz et al. | Nov 2005 | A1 |
20050278036 | Leonard et al. | Dec 2005 | A1 |
20060030943 | Peterman | Feb 2006 | A1 |
20060036258 | Zucherman et al. | Feb 2006 | A1 |
20060084988 | Kim | Apr 2006 | A1 |
20060089715 | Truckai et al. | Apr 2006 | A1 |
20060089718 | Zucherman et al. | Apr 2006 | A1 |
20060095136 | McLuen | May 2006 | A1 |
20060122701 | Kiester | Jun 2006 | A1 |
20060189999 | Zwirkoski | Aug 2006 | A1 |
20060241601 | Trautwein et al. | Oct 2006 | A1 |
20060241621 | Moskowitz et al. | Oct 2006 | A1 |
20060253201 | McLuen | Nov 2006 | A1 |
20060264938 | Zucherman et al. | Nov 2006 | A1 |
20060265077 | Zwirkoski | Nov 2006 | A1 |
20070072475 | Justin et al. | Mar 2007 | A1 |
20070142915 | Altarac et al. | Jun 2007 | A1 |
20070213739 | Michelson | Sep 2007 | A1 |
20070244485 | Greenhalgh et al. | Oct 2007 | A1 |
20070270968 | Baynham et al. | Nov 2007 | A1 |
20080114367 | Meyer | May 2008 | A1 |
20080114453 | Francis | May 2008 | A1 |
20080114456 | Dewey et al. | May 2008 | A1 |
20080119853 | Felt et al. | May 2008 | A1 |
20080119945 | Frigg | May 2008 | A1 |
20080140085 | Gately et al. | Jun 2008 | A1 |
20080140207 | Olmos et al. | Jun 2008 | A1 |
20080147193 | Matthis et al. | Jun 2008 | A1 |
20080161818 | Kloss et al. | Jul 2008 | A1 |
20080177391 | Mitchell et al. | Jul 2008 | A1 |
20080183211 | Lamborne et al. | Jul 2008 | A1 |
20080243251 | Stad et al. | Oct 2008 | A1 |
20080288077 | Reo et al. | Nov 2008 | A1 |
20080312741 | Lee et al. | Dec 2008 | A1 |
20090005872 | Moumene et al. | Jan 2009 | A1 |
20090062833 | Song | Mar 2009 | A1 |
20090062915 | Kohm et al. | Mar 2009 | A1 |
20090105832 | Allain et al. | Apr 2009 | A1 |
20090192553 | Maguire et al. | Jul 2009 | A1 |
20090198338 | Phan | Aug 2009 | A1 |
20090198339 | Kleiner et al. | Aug 2009 | A1 |
20090222099 | Liu et al. | Sep 2009 | A1 |
20090222100 | Cipoletti et al. | Sep 2009 | A1 |
20090228109 | Pointillant et al. | Sep 2009 | A1 |
20090312837 | Eisermann et al. | Dec 2009 | A1 |
20100082109 | Greenhalgh et al. | Apr 2010 | A1 |
20100103344 | Wang et al. | Apr 2010 | A1 |
20100179655 | Hansell et al. | Jul 2010 | A1 |
20100185291 | Jimenez et al. | Jul 2010 | A1 |
20100191336 | Greenhalgh | Jul 2010 | A1 |
20100204795 | Greenhalgh | Aug 2010 | A1 |
20100211176 | Greenhalgh | Aug 2010 | A1 |
20100234889 | Hess | Sep 2010 | A1 |
20100241167 | Taber et al. | Sep 2010 | A1 |
20100249937 | Blain et al. | Sep 2010 | A1 |
20100286777 | Errico et al. | Nov 2010 | A1 |
20110022090 | Gordon et al. | Jan 2011 | A1 |
20110029085 | Hynes et al. | Feb 2011 | A1 |
20110046682 | Stephan et al. | Feb 2011 | A1 |
20110054538 | Zehavi et al. | Mar 2011 | A1 |
20110066186 | Boyer et al. | Mar 2011 | A1 |
20110071635 | Zhang et al. | Mar 2011 | A1 |
20110077738 | Ciupik et al. | Mar 2011 | A1 |
20110144692 | Saladin et al. | Jun 2011 | A1 |
20110144753 | Marchek et al. | Jun 2011 | A1 |
20110144755 | Baynham et al. | Jun 2011 | A1 |
20110166654 | Gately | Jul 2011 | A1 |
20110172709 | Lyons et al. | Jul 2011 | A1 |
20110172716 | Glerum | Jul 2011 | A1 |
20110172774 | Varela | Jul 2011 | A1 |
20110178599 | Brett | Jul 2011 | A1 |
20110184468 | Metcalf et al. | Jul 2011 | A1 |
20110190817 | Thommen et al. | Aug 2011 | A1 |
20110224731 | Smisson et al. | Sep 2011 | A1 |
20110282453 | Greenhalgh et al. | Nov 2011 | A1 |
20110301711 | Palmatier et al. | Dec 2011 | A1 |
20110319997 | Glerum et al. | Dec 2011 | A1 |
20120010717 | Spann | Jan 2012 | A1 |
20120016418 | Chin et al. | Jan 2012 | A1 |
20120022652 | Berger et al. | Jan 2012 | A1 |
20120035730 | Spann | Feb 2012 | A1 |
20120046748 | Weiman | Feb 2012 | A1 |
20120059472 | Weiman | Mar 2012 | A1 |
20120059474 | Weiman | Mar 2012 | A1 |
20120059475 | Weiman | Mar 2012 | A1 |
20120071978 | Suedkamp et al. | Mar 2012 | A1 |
20120109203 | Dryer et al. | May 2012 | A1 |
20120185049 | Varela | Jul 2012 | A1 |
20120203347 | Glerum et al. | Aug 2012 | A1 |
20120221051 | Robinson | Aug 2012 | A1 |
20120226357 | Varela | Sep 2012 | A1 |
20120330422 | Weiman | Dec 2012 | A1 |
20130023993 | Weiman | Jan 2013 | A1 |
20130023994 | Glerum | Jan 2013 | A1 |
20130085572 | Glerum et al. | Apr 2013 | A1 |
20130103156 | Packer et al. | Apr 2013 | A1 |
20130116793 | Kloss | May 2013 | A1 |
20130144391 | Siegal et al. | Jun 2013 | A1 |
20130158663 | Miller et al. | Jun 2013 | A1 |
20130158664 | Palmatier et al. | Jun 2013 | A1 |
20130158668 | Nichols et al. | Jun 2013 | A1 |
20130158669 | Sungarian et al. | Jun 2013 | A1 |
20130197647 | Wolters et al. | Aug 2013 | A1 |
20130211526 | Alheidt et al. | Aug 2013 | A1 |
20140067071 | Weiman et al. | Mar 2014 | A1 |
20140148904 | Robinson | May 2014 | A1 |
20140163683 | Seifert et al. | Jun 2014 | A1 |
20140188224 | Dmuschewsky | Jul 2014 | A1 |
20140236296 | Wagner et al. | Aug 2014 | A1 |
20140249629 | Moskowitz et al. | Sep 2014 | A1 |
20140277461 | Nebosky et al. | Sep 2014 | A1 |
20140277473 | Perrow | Sep 2014 | A1 |
20140277500 | Logan et al. | Sep 2014 | A1 |
20140288653 | Chen | Sep 2014 | A1 |
20140343678 | Suddaby et al. | Nov 2014 | A1 |
20150012097 | Ibarra et al. | Jan 2015 | A1 |
20150066145 | Rogers et al. | Mar 2015 | A1 |
20150100128 | Glerum et al. | Apr 2015 | A1 |
20150100130 | Perrow | Apr 2015 | A1 |
20150112438 | McLean | Apr 2015 | A1 |
20150173917 | Radcliffe et al. | Jun 2015 | A1 |
20150230931 | Greenhalgh | Aug 2015 | A1 |
20150351928 | Butler et al. | Dec 2015 | A1 |
20150374507 | Wolters et al. | Dec 2015 | A1 |
20160051377 | Weiman et al. | Feb 2016 | A1 |
20160089247 | Nichols et al. | Mar 2016 | A1 |
20160095718 | Weiman et al. | Apr 2016 | A1 |
20160113776 | Capote | Apr 2016 | A1 |
20160120660 | Melkent et al. | May 2016 | A1 |
20160242927 | Seifert et al. | Aug 2016 | A1 |
20160310291 | Greenhalgh | Oct 2016 | A1 |
20160361177 | Biedermann et al. | Dec 2016 | A1 |
20160367377 | Faulhaber | Dec 2016 | A1 |
20160374826 | Palmatier et al. | Dec 2016 | A1 |
20170014244 | Seifert et al. | Jan 2017 | A1 |
20170056197 | Weiman et al. | Mar 2017 | A1 |
20170100255 | Hleihil et al. | Apr 2017 | A1 |
20170172756 | Faulhaber | Jun 2017 | A1 |
20170216036 | Cordaro | Aug 2017 | A1 |
20170224504 | Butler et al. | Aug 2017 | A1 |
20170224505 | Butler et al. | Aug 2017 | A1 |
20170246006 | Carnes et al. | Aug 2017 | A1 |
20170258605 | Blain et al. | Sep 2017 | A1 |
20170281432 | Glerum et al. | Oct 2017 | A1 |
20170296352 | Richerme et al. | Oct 2017 | A1 |
20170333198 | Robinson | Nov 2017 | A1 |
20170333199 | Sharifi-Mehr et al. | Nov 2017 | A1 |
20170333200 | Arnin | Nov 2017 | A1 |
20170348116 | Weiman | Dec 2017 | A1 |
20170367842 | Predick et al. | Dec 2017 | A1 |
20180000609 | Hessler et al. | Jan 2018 | A1 |
20180014947 | Baynham | Jan 2018 | A1 |
20180042732 | Seifert et al. | Feb 2018 | A1 |
20180049885 | Weiman et al. | Feb 2018 | A1 |
20180055652 | Davenport et al. | Mar 2018 | A1 |
20180185163 | Weiman et al. | Jul 2018 | A1 |
20180243107 | Foley et al. | Aug 2018 | A1 |
20180256359 | Greenhalgh | Sep 2018 | A1 |
20180296361 | Butler et al. | Oct 2018 | A1 |
20180303621 | Brotman et al. | Oct 2018 | A1 |
20180318101 | Engstrom | Nov 2018 | A1 |
20180325693 | Weiman et al. | Nov 2018 | A1 |
20180360616 | Luu | Dec 2018 | A1 |
20190021871 | Baynham | Jan 2019 | A1 |
20190133779 | McLaughlin et al. | May 2019 | A1 |
20190133784 | Gunn et al. | May 2019 | A1 |
20190201210 | Besaw et al. | Jul 2019 | A1 |
20190254836 | Cowan et al. | Aug 2019 | A1 |
20190254838 | Miller et al. | Aug 2019 | A1 |
20190298524 | Lauf et al. | Oct 2019 | A1 |
20190307577 | Predick et al. | Oct 2019 | A1 |
20190314168 | Faulhaber | Oct 2019 | A1 |
20190328540 | Seifert et al. | Oct 2019 | A1 |
20190374348 | Butler et al. | Dec 2019 | A1 |
20190388232 | Purcell et al. | Dec 2019 | A1 |
20190388238 | Lechmann et al. | Dec 2019 | A1 |
20200054461 | Marrocco et al. | Feb 2020 | A1 |
20200129307 | Hunziker et al. | Apr 2020 | A1 |
20200360153 | Weiman et al. | Nov 2020 | A1 |
20210045891 | Rogers et al. | Feb 2021 | A1 |
20210045892 | Rogers et al. | Feb 2021 | A1 |
20210077274 | Robie | Mar 2021 | A1 |
20210113349 | Weiman et al. | Apr 2021 | A1 |
20210137699 | Jang et al. | May 2021 | A1 |
20210259849 | Robinson et al. | Aug 2021 | A1 |
20210322181 | Predick | Oct 2021 | A1 |
20210353428 | Predick et al. | Nov 2021 | A1 |
20220133495 | Glerum et al. | May 2022 | A1 |
20220304823 | Melchor | Sep 2022 | A1 |
20220387184 | Josse et al. | Dec 2022 | A1 |
Number | Date | Country |
---|---|---|
102427769 | Apr 2012 | CN |
205866898 | Jan 2017 | CN |
94 07 806 | Jul 1994 | DE |
20314708 | Nov 2003 | DE |
10 2020 200 882 | Jul 2020 | DE |
0 880 950 | Dec 1998 | EP |
1 925 272 | May 2008 | EP |
2 777 633 | Sep 2014 | EP |
3 031 424 | Jun 2016 | EP |
3 245 982 | Nov 2017 | EP |
3 366 263 | Aug 2018 | EP |
3 479 799 | May 2019 | EP |
3 769 725 | Jan 2021 | EP |
2717068 | Apr 1996 | FR |
2727003 | Apr 1997 | FR |
2894130 | Jun 2007 | FR |
0 284 462 | Feb 1928 | GB |
200290058 | Sep 2002 | KR |
100905962 | Jul 2009 | KR |
WO-9531158 | Nov 1995 | WO |
WO-9926562 | Jun 1999 | WO |
WO-0044319 | Aug 2000 | WO |
WO-0244319 | Jun 2002 | WO |
WO-2004052245 | Jun 2004 | WO |
WO-2005009299 | Feb 2005 | WO |
WO-2006102485 | Sep 2006 | WO |
WO-2006105437 | Oct 2006 | WO |
WO-2009124269 | Oct 2009 | WO |
WO-2010148112 | Dec 2010 | WO |
WO-2012121726 | Sep 2012 | WO |
WO-2014134590 | Sep 2014 | WO |
WO-2014165319 | Oct 2014 | WO |
WO-2015009793 | Jan 2015 | WO |
WO-2015063721 | May 2015 | WO |
WO-2015085111 | Jun 2015 | WO |
WO-2016051095 | Apr 2016 | WO |
WO-2016077610 | May 2016 | WO |
WO-2016127139 | Aug 2016 | WO |
WO-2017027277 | Feb 2017 | WO |
WO-2017027873 | Feb 2017 | WO |
WO-2017066463 | Apr 2017 | WO |
WO-2017106614 | Jun 2017 | WO |
WO-2018049227 | Mar 2018 | WO |
WO-2018200507 | Nov 2018 | WO |
WO-2018200530 | Nov 2018 | WO |
WO20190014139 | Jan 2019 | WO |
WO-2019014139 | Jan 2019 | WO |
WO-2019126213 | Jun 2019 | WO |
WO-2019241687 | Dec 2019 | WO |
WO-2021030645 | Feb 2021 | WO |
Entry |
---|
Folman, et al., “Posterior Lumbar Interbody Fusion for Degenerative Disc Disease Using a Minimally Invasive B-Twin Expandable Spinal Spacer.” Journal of Spinal Disorders & Techniques. 2003, vol. 16, No. 5, pp. 455-460. |
Schizas, C., “Spinal Fusion: Techniques Results and Limitations.” European Cells and Materials. 2005, vol. 10, Suppl. 3, p. 1. |
“MectaLIF Oblique & Posterior Intervertebral Body Fusion Device.” Brochure. 2004, Medacta International, San Pietro, Switzerland. |
“Wedge.” Encyclopedia Brittanica. Aug. 14, 2008. britannica.com/print/article/638734. |
Kambin, P., et al., “Arthroscopic Discectomy of the Lumbar Spine.” Clinical Orthopaedics and Related Research. Apr. 1997, No. 337, pp. 49-57. |
Kim, D., et al. “Posterior Lumbar Interbody Fusion Using a Unilateral Single Cage and a Local Morselized Bone Graft in the Degenerative Lumbar Spine.” Clinics in Orthopedic Surgery. 2009, vol. 1, No. 4, pp. 214-221. |
Kim, Y, et al., “Clinical Applications of the Tubular Retractor on Spinal Disorders.” Journal of Korean Neurosurgery, Nov. 2007, No. 42, pp. 244-250. |
Moore, J., et al, “Mechanics Map—Wedges.” Aug. 20, 2022, mechanicsmap.psu.edu/websites/7_friction/7-3_wedges/wedges. |
Peltier, L. “Orthopedics: A History and Iconography” 1993, Norman Publishing, San Francisco, CA. |
Sasso, R., et al., “Anterior Lumbar Interbody Fusion.” Surgical Management of Low Back Pain. 2009, Chapter 10, pp. 87-95. |
Tsuang, Y., et al., “Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation—A finite element study.” Medical Engineering & Physics 31. 2009, pp. 565-570. |
Virk, S., et al. “History of Spinal Fusion: Where We Came from and Where We Are Going.” Current Concepts in Spinal Fusion. HSS Journal, 2020, No. 16, pp. 137-142. |
Xiao, Y, et al., “Unilateral Transforaminal Lumbar Interbody Fusion: a Review of the Technique, Indications and Graft Materials.” The Journal of International Medical Research. 2009, No. 37, pp. 908-917. |
International Search Report and Written Opinion in PCT PCT/US2021/030261 dated Aug. 31, 2021 (18 pages). |
International Search Report and Written Opinion in PCT/US2021/031596 dated Sep. 28, 2021 (12 pages). |
International Search Report and Written Opinion in PCT/US2021/033832 dated Sep. 17, 2021. |
International Search Report and Written Opinion received for Life Spine, Inc. for PCT app. PCT/US2021/026606 dated Jul. 15, 2021, 20 pages. |
International Search Report and Written Opinion received for Life Spine, Inc., for PCT app. No. PCT/US2021026610 dated Jul. 20, 2021, 18 pages. |
Bacfuse® Spinous Process Fusion Plate Surgical Technique, 2011, Pioneer Surgical, 12 pages. |
Extended European Search Report for European Application No. 14159101.6, dated Jun. 18, 2014, 6 pages. |
Extended European Search Report for European Application No. 16169890.7, dated Oct. 21, 2016, 7 pages. |
Foreign Action other than Search Report on EP 06740268.5 DTD Jan. 2, 2020, 4 pages. |
Foreign Action other than Search Report on PCT PCT/US2018/029120 DTD Nov. 7, 2019, 9 pages. |
Foreign Action other than Search Report on PCT PCT/US2018/029149 DTD Nov. 7, 2019, 8 pages. |
Foreign Action other than Search Report on PCT PCT/US2018/041306 DTD Jan. 23, 2020, 6 pages. |
Foreign Search Report on PCT PCT/US2019/037275 DTD Sep. 24, 2019, 12 pages. |
International Preliminary Report on Patentability for Application No. PCT/US06/12060 dated Sep. 30, 2007, 3 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2006/012060, mail date Apr. 5, 2007, 4 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2012/057324, mail date Dec. 20, 2012, 10 pages. |
International Search Report for Application No. PCT/US06/12060, date of mailing Apr. 5, 2007, 1 page. |
International Search Report for International Application No. PCT/US2018/029120, mail date Jun. 28, 2018, 17 pages. |
International Search Report for International Application No. PCT/US2018/029149, mail date Jun. 25, 2018, 13 pages. |
Search Report for International Application No. PCT/US2018/041306, mail date Sep. 28, 2018, 12 pages. |
Written Opinion of the International Searching Authority for Application No. PCT/US06/12060, date of mailing Apr. 5, 2007, 3 pages. |
International Search Report on PCT/US2020/037020, Sep. 29, 2020, 20 pages. |
International Search Report and Written Opinion in PCT/US2022/053230 dated May 3, 2023 (18 pages). |
International Search Report and Written Opinion on PCT/US2020/036809 DTD Sep. 14, 2020, 12 pages. |
Final Office Action on U.S. Appl. No. 16/850,795 DTD Jul. 20, 2022. |
Non-Final Office Action on U.S. Appl. No. 16/438,031 DTD Jul. 25, 2022. |
International Search Report and Written Opinion in PCT/US2023/021528 dated Aug. 24, 2023 (17 pages). |
Number | Date | Country | |
---|---|---|---|
20200383798 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15497044 | Apr 2017 | US |
Child | 16548134 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16548134 | Aug 2019 | US |
Child | 16904248 | US | |
Parent | 14714821 | May 2015 | US |
Child | 15497044 | US | |
Parent | 13802110 | Mar 2013 | US |
Child | 14714821 | US |