1. Field of the Invention
The invention relates to implant devices that may be implanted in an atrial appendage for filtering blood flowing between the atrial appendage and an associated atrium of the heart to prevent thrombi from escaping from the atrial appendage into the body's blood circulation system.
2. Description of the Related Art
There are a number of heart diseases (e.g., coronary artery disease, mitral valve disease) that have various adverse effects on a patient's heart. An adverse effect of certain cardiac diseases, such as mitral valve disease, is atrial (or auricular) fibrillation. Atrial fibrillation leads to depressed cardiac output. A high incidence of thromboembolic (i.e., blood clot particulate) phenomena are associated with atrial fibrillation, and the left atrial appendage (LAA) is frequently the source of the emboli (particulates).
Thrombi (i.e., blood dots) formation in the LAA may be due to stasis within the fibrillating and inadequately emptying LAA. Blood pooling in the atrial appendage is conducive to the formation blood clots. Blood clots may accumulate, build upon themselves. Small or large fragments of the blood clots may break off and propagate out from the atrial appendage into the atrium. The blood clot fragments can then enter the body's blood circulation and embolize distally into the blood stream.
Serious medical problems result from the migration of blood clot fragments from the atrial appendage into the body's blood stream. Blood from the left atrium and ventricle circulates to the heart muscle, the brain, and other body organs, supplying them with necessary oxygen and other nutrients. Emboli generated by blood clots formed in the left atrial appendage may block the arteries through which blood flows to a body organ. The blockage deprives the organ tissues of their normal blood flow and oxygen supply (ischemia), and depending on the body organ involved leads to ischemic events such as heart attacks (heart muscle ischemia) and strokes (brain tissue ischemia).
It is therefore important to find a means of preventing blood clots from forming in the left atrial appendage. It is also important to find a means to prevent fragments or emboli generated by any blood clots that may have formed in the atrial appendages, from propagating through the blood stream to the heart muscle, brain or other body organs.
U.S. Pat. No. 5,865,791 (hereinafter, “the '791 patent”) relates to the reduction of regions of blood stasis in the heart and ultimately reduction of thrombi formation in such regions, particularly in the atrial appendages of patients with atrial fibrillation. More specifically, the '791 patent relates to procedures and devices for affixing the atrial appendages in an orientation that prevents subsequent formation of thrombi. In the '791 patent, the appendage is removed from the atrium by pulling the appendage, placing a loop around the appendage to form a sack, and then cutting it off from the rest of the heart.
U.S. Pat. No. 5,306,234 describes a method for surgically closing the passage way between the atrium and the atrial appendage, or alternatively severing the atrial appendage.
Some recently proposed methods of treatment are directed toward implanting a plug-type device in an atrial appendage to occlude the flow of blood therefrom.
A preventive treatment method for avoiding thromboembolic events (e.g., heart attacks, strokes, and other ischemic events) involves filtering out harmful emboli from the blood flowing out of atrial appendages. Co-pending and co-owned U.S. patent application Ser. No. 09/428,008, U.S. patent application Ser. No. 09/614,091, U.S. patent application Ser. No. 09/642,291, and U.S. patent application Ser. No. 09/697,628, all of which are hereby incorporated by reference in their entireties herein, describe filtering devices which may be implanted in an atrial appendage to fitter the blood flow therefrom. The devices may be delivered to the atrial appendage using common cardiac catheterization methods. These methods may include trans septal catheterization which involves puncturing an atrial septum.
Catheters and implant devices that are large may require large punctures in the septum. Large catheters and devices may damage body tissue during delivery or implantation. Damage to body tissue may cause trauma, increase recovery time, increase the risk of complications, and increase the cost of patient care. Further the atrial appendages may vary in shape and size from patient to patient.
It would therefore be desirable to provide implant devices which are small and which can be delivered by small-sized catheters to the atrial appendages. It would therefore also be desirable to provide implant devices whose size can be adjusted in situ to confirm to the size of the atrial appendages.
The invention provides implant devices and methods, which may be used to filter blood flowing between atrial appendages and atrial chambers. The devices are designed to prevent the release of blood clots formed in the atrial appendages into the body's blood circulation system.
All implant devices disclosed herein have adjustable sizes. A compact or narrow size may be used for intra-cutaneous device delivery to an atrial appendage, for example, by cardiac catheterization. The devices include size-adjusting mechanisms that allow the device size to be enlarged in situ to an expanded size conforming to the dimensions of the atrial appendage.
It an embodiment of the implant device, an expanding inner structure is disposed inside a membrane tube. The inner structure has rigid components, which when the inner structure is expanded press or push sides of the membrane tube outward. The inner structure may be self-expanding or may, for example, be expanded by an inflatable balloon. When the inner structure is in a collapsed configuration, the device has a compact size suitable for delivery to and insertion in an atrial appendage, for example, by cardiac catheterization. When fully deployed for use, a closed end of the membrane tube covers the ostium of the atrial appendage. Filter elements or components built into the closed end of the membrane tube filter out harmful-size emboli from the blood flowing out of the atrial appendage. The device may be held in position by expanding the inner structure to press sides of the membrane tube against the interior walls of the atrial appendage.
Other embodiments of the implant devices may have other kinds of inflatable or expandable structures which allow the devices to have compact sizes for device delivery and which can later be enlarged in situ to make the device size conform to the dimensions of the atrial appendages.
The devices may have short axial lengths that are comparable to or are a fraction of the length of an ostium. A short-axial length device may have a thin expandable or inflatable structure. The cross-sectional shape of a thin expandable structure may, for example, resemble that of a mushroom cap, a pill box, or a doughnut-shaped tube, etc. The structure may include suitable blood-permeable filter elements for filtering harmful-size emboli from the blood flow. The filter elements may be located centrally or may be located off-center in the thin structure. When deployed the thin structure covers the ostium of an atrial appendage and directs all blood flow through the ostium to pass through the filter elements. The structure may be suitably designed to prevent unwanted flow channels (e.g., around the edges of the device) through which unfiltered blood may flow between the appendage and the atrium. The structure may have anchors attached to its outside periphery. These anchors may be pins, hooks, barbs, atraumatic bulb tips or other suitable structures for engaging wall tissue. The anchors engage the interior walls of the ostium and thereby secure the position of the deployed device. Some devices may have axial lengths that may be slightly larger than the length of an ostium. Such devices may have anchors disposed on posterior portions of the expandable structure for engaging interior wall tissue of the neck region of the atrial appendage leading to the ostium Other devices with expandable or inflatable structures may have longer axial lengths that are comparable to or are a substantial fraction of the length of an atrial appendage. A longer-axial length device may have a first structure designed to cover the ostium of an atrial appendage and filter blood flow therethrough. This first structure may optionally be expandable or non-expandable. In either case, an expandable second structure in the device may be used to help secure the device in its deployed position. The expandable second structure is generally disposed in the lumen or interior cavity of the atrial appendages. The expandable second structure may be self-expanding or may, for example, be expandable by balloon inflation. The expandable second structures may have components such as attached anchors for engaging the interior walls of the atrial appendages. These anchors may be pins, hooks, barbs, atraumatic bulb tips or other suitable structures for engaging wall tissue. The expandable second structure may additionally or alternatively include inflatable anchors. These inflatable anchors directly engage the interior walls of the atrial appendage when inflated and provide resistance to changes in the position of the deployed device.
Filter elements with predetermined hole size distributions for filtering harmful-sized emboli from the blood flow may be incorporated in the expandable implant devices. The filter elements may be configured so that their hole size distributions do not change significantly during the expansion of the device. In one configuration the filter elements are embedded in elastic membranes. These membranes are designed such that when the devices are expanded concomitant stretching of the filter element configurations due to the increase in device size is largely accommodated by the elastic membranes. The sizes of filter elements themselves and their predetermined hole size distributions remain substantially unchanged.
Further features of the invention, its nature and various advantages will be more apparent from the accompanying drawing and the following detailed description.
Although atrial fibrillation may result in the pooling of blood in the left atrial appendage and the majority of use of the invention is anticipated to be for the left atrial appendage, the invention may also be used for the right atrial appendage and in general for placement across any aperture in the body in which blood is permitted to flow therethrough or therefrom but in which blood clots are substantially prevented from escaping from the atrial appendage and entering into the bloodstream.
The implant devices disclosed herein have adjustable sizes. A compact or narrow size is used for intra-cutaneous device delivery to the atrial appendages, for example, by cardiac catheterization. The devices include size-adjusting expansion mechanisms that allow the device size to be enlarged in situ to an expanded size. Controlled expansion may be desirable for the proper functioning of an implant device. For example, the filter elements of a device must be correctly centered or positioned across an atrial appendage ostium for the device to properly intercept and filter blood flowing out of the atrial appendage. The expansion mechanisms allow for controlled expansion of the implanted device size in situ to conform to the dimensions of the atrial appendage. Further, the expansion mechanisms may allow for the expansion to be at least partially reversed and thereby enable a physician to optimize or adjust the deployment of the device in situ. The types of implant devices disclosed herein add to variety of device types disclosed in U.S. patent application Ser. No. 09/428,008, U.S. patent application Ser. No. 09/614,091, U.S. patent application Ser. No. 09/642,291, and U.S. patent application Ser. No. 09/697,628, incorporated in by reference herein.
In both the collapsed and expanded configurations, structure 130 may have a generally cylindrical shape. Structure 130 may have a design that allows it to expand radially without any significant concomitant change in its axial length. The design of also may allow for permanent deformation, or partially or completely reversible deformation of structure 130 during its expansion.
Externally-initiated means may be used to change the configuration of structure 130 when it is placed in atrial appendage 100. For example, balloon 140 (e.g., placed within structure 130 through central hollow cylindrical ring 134) may be inflated to change the configuration of structure 130 from its collapsed configuration to its expanded configuration. Balloon 140 may be inflated or deflated conventionally, for example, by injecting or withdrawing suitable fluids from the body of balloon 140, respectively, through suitable elastic sealed openings, for example, valve structures 142. The elastic sealed openings such as valve structures 142 prevent uncontrolled release of fluids injected in to balloon 140.
In one embodiment of device 101 at least portions of closed ends 124 serve as filter elements 125 for filtering harmful-size emboli from blood flow. Filter elements 125 are made of blood-permeable material. The remaining portions of membrane tube 125 (e.g., sides 126) may be made of blood-impervious material. The materials used to fabricate membrane tube 125 components can be any suitable bicompatible materials, such as, for example, ePFTE (e.g., Gortex®), polyester (e.g., Dacron®), PTFE (e.g., Teflon®), silicone, urethane, metal fibers, or other biocompatible polymers. The structure of the blood-permeable material used to fabricate filter elements 125 is preferably a two-dimensional screen, a cellular matrix, a woven or non-woven mesh, or the like. The structure of the blood-permeable material may also be that of a permeable metal or a mesh of fine metal fibers. Further, the blood-permeable material in filter elements 125 may be coated or covered with an anticoagulant, such as heparin, or another compound, or treated to provide antithrombogenic properties to the filter elements 125 to inhibit clogging of filter elements 125 by an accumulation of blood clots.
Filter elements 125 have holes through them for blood flow. As used herein, it will be understood that the term hole refers to an opening in the structure of a filter element which provides a continuous open channel or passageway from one side of the fitter element to the other. The term pore refers to a small cavity in the material of a filter element. Cavities or pores do not provide a continuous open channel or passageway through the filter element. Partially opened surface pores, however, are an important component of surface texture which is advantageous for cellular tissue ingrowth.
The hole sizes in the blood-permeable material included in filter elements 125 may be chosen to be sufficiently small so that harmful-size emboli are filtered out from the blood flow between appendage 100 and atrium 105 (shown partially in
The hole size distribution of the material used to make filter elements 125, described above, allows blood to flow therethrough while blocking or inhibiting the passage of thrombus, clots, or emboli formed within the atrial appendage from entering the atrium of the heart and, eventually, the patient's bloodstream.
In an alternative embodiment, substantially all of membrane tube 120 may be made of blood-permeable material suitable for filtering harmful-size emboli. Use of a single material (or a fewer number of different types of materials) in membrane tube 120 may simplify its fabrication. In this case it may be sufficient to coat or cover closed end 124 portions with an anticoagulant to prevent clogging of blood flow between atrial appendage 100 and atrium 105. Sides 126, for example, need not be coated with an anticoagulant as they are likely to be sealed in any event by atrial appendage wall tissue when device 101 is deployed in an atrial appendage, as described below.
For all embodiments of device 101, for example, as described above, when fully deployed, membrane tube 120 is held or retained in position in atrial appendage 100 so that proximal closed end 124 extends across or covers ostium 110. After initial insertion of device 101 in atrial appendage 100, expanding structure 130 is expanded, for example, by inflating balloon 140, from its initial compact size to an expanded size. Expanding structure 130 is expanded to a suitable size to press membrane tube sides 126 directly against interior walls 100a of atrial appendage 100. The direct engagement of sides 126 with interior wall tissue 100a caused by the outward pressing by structure 130 holds device 101 provides a degree of resistance to movement of device 101 within atrial appendage 100 and holds device 101 in a substantially fixed position. However, this resistance to movement at least initially during the implant procedure may be reversed to allow repositioning of device 101 if necessary or desirable. The reversal may be complete or partial corresponding to the elastic deformation characteristics of structure 130. The reversal may be accomplished, for example, by deflation of balloon 140. Later, regenerative tissue growth, for example, of endothelial or endocardial tissue, conforming to the outer surface textures of sides 126 may bind sides 126 and provide additional securement of fully deployed device 101. This tissue growth binding may, for example, involve tissue ingrowth into partially-open surface pores of the material of sides 126, or, for example, tissue ingrowth into holes in blood-permeable material in the case where sides 126 are made of blood-permeable material having holes. This tissue growth, in conjunction with the outward pressure provided by inner structure 130, may provide additional means of reducing flow leakage about the periphery of device 101.
In some implant procedures it may be desirable to leave balloon 140 in situs, for example, in a deflated state. In other implant procedures it may be desirable to physically remove balloon 140 after device 101 has been secured in appendage 100. As necessary or desired, balloon 140 may be removed from the patient's body using conventional catheterization techniques. Balloon 140 may be withdrawn from tube 120 through suitable self-sealing openings in closed ends 124. A suitable self-sealing opening may be of the type formed by overlapping membrane flaps (e.g., flaps 124
In further embodiments of device 101, expanding inner structure 130 may be a self-expanding structure. Structure 130 may have suitable biasing means, for example, springs or other elastic components, which change the configuration of structure 130 from its as-implanted collapsed configuration to its expanded configuration after device 101 has been implanted. Self-expanding structure 130 also may, for example, have components made from shape memory alloys (e.g., Nitinol®). The shape memory alloy components may be (preformed to have a shape corresponding to the expanded configuration of structure 130. The performed components may be bent or compressed to form structure 130 in its collapsed configuration. After device implantation, heating or changing temperature induces the bent or compressed the shape memory alloy components to automatically revert to their performed shapes corresponding to the expanded configuration of structure 130.
Other embodiments of the implant devices may have other kinds of inflatable or expandable structures, which allow the devices to have compact sizes for device delivery, and which can later be enlarged in situ to make the device sizes conform to the dimensions of the atrial appendages. An implant device of these embodiments may have one or more component structures or substructures. One or more of the component structures or substructures in a device may be expandable or inflatable. A first type of these component structures or substructures may include blood-permeable filter elements, and, for example, serve to filter harmful size emboli from the blood flow. A second type of the component structures or substructures may include anchoring elements, and, for example, serve to retain the deployed device in position. It will be understood that neither component types are contemplated within the invention as necessarily having mutually exclusive functions. Neither type is restricted to having only filter elements or only anchoring elements. A single component structure may serve both to filter blood flow and to hold the deployed device in position.
Different embodiments of devices having one or more of these types of component structures or substructures may have correspondingly different axial lengths spanning a wide range of values. At the upper end of the range, devices may have axial lengths that are comparable to or are a significant fraction of the length of an atrial appendage. Toward the lower end of the range, devices may have axial lengths that are comparable to or are a fraction of the length of the ostium and the neck region of the atrial appendage leading to the ostium.
A device embodiment having a short axial length suitable for deployment fully within an ostium is illustrated in
Expandable structure 310 may be fabricated from membranes or fabrics made of bicompatible materials, such as, for example, ePFTE (e.g., Gortex®), polyester (e.g., Dacron®), PTFE (e.g., Teflon®), silicone, urethane, metal fibers, or other biocompatible polymers. Expandable structure 310 includes filter elements for filtering harmful-size emboli (not shown). Structure 310 may include non-expanding portions made of blood-permeable membrane or fabric suitable for filtering harmful-size emboli (not shown). The non-expanding portions may, for example, in the case where structure 310 has an expandable doughnut shape extend across the central region of the doughnut shape. Structure 310 may also include access openings or fixtures for attaching catheters or other delivery devices (not shown). Anchors 330 are attached to the outer periphery of expandable structure 330. Anchors 330 may, for example, be attached to an outer rim toward the posterior of expandable structure 330. Anchors 330 may be pins, hooks, barbs, wires with atraumatic bulb tips or other suitable structures for engaging tissue. Device 300 is secured in position relative to ostium 305 when anchors 330 engage surrounding ostium wall tissue.
Device 300 may be suitably deployed to filter blood flowing through ostium 305 by extending expandable structure 310 across ostium 305. Expandable structure 320 may be self-expanding (e.g., like structure 130
In either case, structure 510 is retained in position extending across ostium 110 by use of attached distal structure 520. Distal structure 520 is inflatable and has one or more anchor sets 530 attached to an axial portion or shank 521. Each of the anchor sets 530 has a suitable number of inflatable anchors 531 designed to engage the interior walls of atrial appendage 100. Inflatable anchors 531 in a set 530 may be attached to axial portion 521 along a radial circumference at a suitable distance away from proximal cover 510 (not shown). Alternatively, inflatable anchors 531 in a set 530 may be attached to axial portion 521 along an axial length thereof, for example, as illustrated in
Device 500 is at its compact size suitable for intra-cutaneous delivery when distal structure 520 is deflated, and when proximal structure 510 deflated or suitably folded according to whether proximal structure 510 is an expanding or a non-expanding structure. In an implant procedure, device 500 in its compact size may be delivered to atrial appendage 100, for example, by cardiac catheterization. When fully deployed, device 500 is positioned so that proximal structure 510 appropriately extends across ostium 110. Distal structure 520 is disposed to the interior of atrial appendage 100. Distal structure 520 is inflated by suitable means so that inflated anchors 531 engage and press against the interior walls of atrial appendage 100. The friction between outwardly pressing anchors 531 and the atrial appendage walls retains device 500 in its desired fully deployed position. The suitable means for inflating structure 520 may, for example, involve injection of fluids into structure 520 through suitable openings (not shown). The openings may have suitable valved seals preventing uncontrolled release or leakage of the inflating fluids.
In another device embodiment, a single inflatable structure may provide the functions of both the distal and proximal structures described above. Such a device may have a sufficiently short axial length so that all or almost all of the device may fit within the ostium or ostium region of an atrial appendage Anterior portions of the device may be used cover the ostium in order to direct blood flow between the atrial appendage and the atrial chamber through filter elements. Attached anchors may be distributed on at least part of the exterior surface area of posterior portions of the device. The anchors may be pins, hooks, barbs, wires with atraumatic bulb tips or other suitable structures for engaging tissue. The single inflatable structure may be self-expanding or may expand in response to externally-initiated means. When the device is expanded the anchors attached to its posterior portions engage the rear walls of the ostium and/or possibly the interior walls of the neck region of the atrial appendage close to the ostium. The device may be fabricated using suitable membranes or fabrics made of biocompatible materials, for example, such as those mentioned earlier. Further, the biocompatible materials may have, for example, any of the structures mentioned earlier (e.g., cellular matrix, wire mesh, etc.).
An exemplary implant device 550 most or almost all of which may fit within the ostium of an atrial appendage is illustrated in
As shown in
Posterior portion 570 may optionally have suitable elastic deformation properties that cause portion 570 to recoil slightly in size from its largest expanded size. Such suitable deformation properties may be obtained by design, for example, by choice of fabrication materials with suitable elastic properties. The size recoil of device 550 causes barbs 575 which have engaged the ostium and/or neck region walls during the expansion of device 550 to pull back and draw the walls closer to device 550. The expandable structures in other device embodiments including those described earlier (e.g.,
The various expandable implant devices (e.g., those described above with reference to
For example,
Filter element 600 and elastic membrane 620 are constructed so that the former component is substantially less elastic than the latter component. This difference in elasticity may be obtained, for example, by using the same kind of material to make both components, but by making filter element 600 substantially thicker than elastic membrane 620. Alternatively, elastic membrane 620 and filter 600 may be made of two different kinds of materials that have different elastic properties. The two different material components may be bonded or glued together.
Filter element 600 and elastic membrane 620 may be incorporated in various types of implant device structures, for example, membrane tube 120
It will be understood that the foregoing is only illustrative of the principles of the invention, and that various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention. It will be understood that terms like “distal” and “proximal”, anterior” and “posterior”, and other directional or orientational terms are used herein only for convenience, and that no fixed or absolute orientations are intended by the use of these terms.
This application is a continuation of U.S. application Ser. No. 14/147,149, filed Jan. 3, 2014, which is a continuation of U.S. application Ser. No. 13/493,730, filed Jun. 11, 2012, now U.S. Pat. No. 8,647,361, which is a continuation of U.S. application Ser. No. 11/185,425, filed Jul. 19, 2005, now U.S. Pat. No. 8,197,527, which is a continuation of U.S. application Ser. No. 09/932,512, filed Aug. 17, 2001, which claims the benefit of U.S. provisional application No. 60/226,461, filed Aug. 18, 2000, U.S. provisional application No. 60/234,112, filed Sep. 21, 2000, and U.S. provisional application No. 60/234,113, filed Sep. 21, 2000, all of which are hereby incorporated by reference in their entireties herein.
Number | Name | Date | Kind |
---|---|---|---|
15192 | Peale | Jun 1856 | A |
2682057 | Lord | Jun 1954 | A |
2701559 | Cooper | Feb 1955 | A |
2832078 | Williams | Apr 1958 | A |
3029819 | Starks | Apr 1962 | A |
3099016 | Lowell | Jul 1963 | A |
3113586 | Edmark | Dec 1963 | A |
3130418 | Head et al. | Apr 1964 | A |
3143742 | Cromie | Aug 1964 | A |
3221006 | Moore et al. | Nov 1965 | A |
3334629 | Cohn | Aug 1967 | A |
3365728 | Edwards et al. | Jan 1968 | A |
3367364 | Cruz et al. | Feb 1968 | A |
3409013 | Henry | Nov 1968 | A |
3445916 | Schulte | May 1969 | A |
3540431 | Mobin-Uddin | Nov 1970 | A |
3548417 | Kischer et al. | Dec 1970 | A |
3570014 | Hancock | Mar 1971 | A |
3587115 | Shiley | Jun 1971 | A |
3592184 | Watkins et al. | Jul 1971 | A |
3628535 | Ostrowsky et al. | Dec 1971 | A |
3642004 | Osthagen et al. | Feb 1972 | A |
3657744 | Ersek | Apr 1972 | A |
3671979 | Moulopoulos | Jun 1972 | A |
3714671 | Goodenough et al. | Feb 1973 | A |
3725961 | Magovern et al. | Apr 1973 | A |
3755823 | Hancock | Sep 1973 | A |
3795246 | Sturgeon | Mar 1974 | A |
3839741 | Haller | Oct 1974 | A |
3868956 | Alfidi et al. | Mar 1975 | A |
3874388 | King et al. | Apr 1975 | A |
3983581 | Angell et al. | Oct 1976 | A |
3997923 | Possis | Dec 1976 | A |
4035849 | Angell et al. | Jul 1977 | A |
4056854 | Boretos et al. | Nov 1977 | A |
4084268 | Ionescu et al. | Apr 1978 | A |
4106129 | Carpentier et al. | Aug 1978 | A |
4222126 | Boretos et al. | Sep 1980 | A |
4233690 | Akins | Nov 1980 | A |
4265694 | Boretos et al. | May 1981 | A |
4291420 | Reul | Sep 1981 | A |
4297749 | Davis et al. | Nov 1981 | A |
4323358 | Lentz et al. | Apr 1982 | A |
4326306 | Poler | Apr 1982 | A |
4339831 | Johnson | Jul 1982 | A |
4343048 | Ross et al. | Aug 1982 | A |
4345340 | Rosen | Aug 1982 | A |
4373216 | Klawitter | Feb 1983 | A |
4406022 | Roy | Sep 1983 | A |
4423809 | Mazzocco | Jan 1984 | A |
4425908 | Simon | Jan 1984 | A |
4470157 | Love | Sep 1984 | A |
4484579 | Meno et al. | Nov 1984 | A |
4501030 | Lane | Feb 1985 | A |
4531943 | Tassel et al. | Jul 1985 | A |
4535483 | Klawitter et al. | Aug 1985 | A |
4574803 | Storz | Mar 1986 | A |
4580568 | Gianturco | Apr 1986 | A |
4592340 | Boyles | Jun 1986 | A |
4602911 | Ahmadi et al. | Jul 1986 | A |
4605407 | Black et al. | Aug 1986 | A |
4610688 | Silvestrini et al. | Sep 1986 | A |
4612011 | Kautzky | Sep 1986 | A |
4617932 | Komberg | Oct 1986 | A |
4643732 | Pietsch et al. | Feb 1987 | A |
4647283 | Carpentier et al. | Mar 1987 | A |
4648881 | Carpentier et al. | Mar 1987 | A |
4655218 | Kulik et al. | Apr 1987 | A |
4655771 | Wallsten et al. | Apr 1987 | A |
4662885 | DiPisa | May 1987 | A |
4665906 | Jervis | May 1987 | A |
4680031 | Alonso | Jul 1987 | A |
4692164 | Dzemeshkevich et al. | Sep 1987 | A |
4705516 | Barone et al. | Nov 1987 | A |
4710192 | Liotta et al. | Dec 1987 | A |
4733665 | Palmaz et al. | Mar 1988 | A |
4755181 | Igoe | Jul 1988 | A |
4759758 | Gabbay | Jul 1988 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4787899 | Lazarus | Nov 1988 | A |
4787901 | Baykut | Nov 1988 | A |
4796629 | Grayzel | Jan 1989 | A |
4819751 | Shimada et al. | Apr 1989 | A |
4829990 | Thuroff et al. | May 1989 | A |
4834755 | Silvestrini et al. | May 1989 | A |
4851001 | Taheri | Jul 1989 | A |
4856516 | Hillstead | Aug 1989 | A |
4865600 | Carpentier et al. | Sep 1989 | A |
4872874 | Taheri | Oct 1989 | A |
4873978 | Ginsburg | Oct 1989 | A |
4878495 | Grayzel | Nov 1989 | A |
4878906 | Lindemann et al. | Nov 1989 | A |
4883458 | Shiber | Nov 1989 | A |
4885005 | Nashef et al. | Dec 1989 | A |
4909252 | Goldberger | Mar 1990 | A |
4917102 | Miller et al. | Apr 1990 | A |
4922905 | Strecker | May 1990 | A |
4927426 | Dretler | May 1990 | A |
4954126 | Wallsten | Sep 1990 | A |
4966604 | Reiss | Oct 1990 | A |
4969890 | Sugita et al. | Nov 1990 | A |
4979939 | Shiber | Dec 1990 | A |
4986830 | Owens et al. | Jan 1991 | A |
4994077 | Dobben | Feb 1991 | A |
5002556 | Ishida et al. | Mar 1991 | A |
5002559 | Tower | Mar 1991 | A |
5007896 | Shiber | Apr 1991 | A |
5026366 | Leckrone | Jun 1991 | A |
5032128 | Alonso | Jul 1991 | A |
5037434 | Lane | Aug 1991 | A |
5047041 | Samuels | Sep 1991 | A |
5064435 | Porter | Nov 1991 | A |
5080668 | Bolz et al. | Jan 1992 | A |
5085635 | Cragg | Feb 1992 | A |
5089015 | Ross | Feb 1992 | A |
5122154 | Rhodes | Jun 1992 | A |
5132473 | Furutaka et al. | Jul 1992 | A |
5141494 | Danforth et al. | Aug 1992 | A |
5152771 | Sabbaghian et al. | Oct 1992 | A |
5159937 | Tremulis | Nov 1992 | A |
5161547 | Tower | Nov 1992 | A |
5163953 | Vince | Nov 1992 | A |
5167628 | Boyles | Dec 1992 | A |
5209741 | Spaeth | May 1993 | A |
5215541 | Nashef et al. | Jun 1993 | A |
5217481 | Barbara | Jun 1993 | A |
5217483 | Tower | Jun 1993 | A |
5238004 | Sahatjian et al. | Aug 1993 | A |
5258023 | Reger | Nov 1993 | A |
5258042 | Mehta | Nov 1993 | A |
5282847 | Trescony et al. | Feb 1994 | A |
5295958 | Shturman | Mar 1994 | A |
5306234 | Johnson | Apr 1994 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5336258 | Quintero et al. | Aug 1994 | A |
5350398 | Pavcnik et al. | Sep 1994 | A |
5360444 | Kusuhara | Nov 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5389106 | Tower | Feb 1995 | A |
5397351 | Pavcnik et al. | Mar 1995 | A |
5409019 | Wilk | Apr 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5425739 | Jessen | Jun 1995 | A |
5425762 | Muller | Jun 1995 | A |
5431676 | Dubrul et al. | Jul 1995 | A |
5443446 | Shturman | Aug 1995 | A |
5443449 | Buelna | Aug 1995 | A |
5443477 | Marin et al. | Aug 1995 | A |
5443495 | Buscemi et al. | Aug 1995 | A |
5443499 | Schmitt | Aug 1995 | A |
5469868 | Reger | Nov 1995 | A |
5476506 | Lunn | Dec 1995 | A |
5476510 | Eberhardt et al. | Dec 1995 | A |
5480410 | Cuschieri et al. | Jan 1996 | A |
5480423 | Ravenscroft et al. | Jan 1996 | A |
5480424 | Cox | Jan 1996 | A |
5489297 | Duran | Feb 1996 | A |
5500014 | Quijano et al. | Mar 1996 | A |
5507767 | Maeda et al. | Apr 1996 | A |
5522881 | Lentz | Jun 1996 | A |
5534007 | Germain et al. | Jul 1996 | A |
5545133 | Burns et al. | Aug 1996 | A |
5545209 | Roberts et al. | Aug 1996 | A |
5545211 | An et al. | Aug 1996 | A |
5545214 | Stevens | Aug 1996 | A |
5549665 | Vesely et al. | Aug 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5571175 | Vanney et al. | Nov 1996 | A |
5571215 | Sterman et al. | Nov 1996 | A |
5573520 | Schwartz et al. | Nov 1996 | A |
5575818 | Pinchuk | Nov 1996 | A |
5591185 | Kilmer et al. | Jan 1997 | A |
5591195 | Taheri et al. | Jan 1997 | A |
5607464 | Trescony et al. | Mar 1997 | A |
5609626 | Quijano et al. | Mar 1997 | A |
5628784 | Strecker | May 1997 | A |
5645559 | Hachtman et al. | Jul 1997 | A |
5653745 | Trescony et al. | Aug 1997 | A |
5662671 | Barbut et al. | Sep 1997 | A |
5667523 | Bynon et al. | Sep 1997 | A |
5674277 | Freitag | Oct 1997 | A |
5681345 | Euteneuer | Oct 1997 | A |
5693083 | Baker et al. | Dec 1997 | A |
5693088 | Lazarus | Dec 1997 | A |
5693310 | Gries et al. | Dec 1997 | A |
5695498 | Tower | Dec 1997 | A |
5709713 | Evans et al. | Jan 1998 | A |
5713951 | Garrison et al. | Feb 1998 | A |
5713953 | Vallana et al. | Feb 1998 | A |
5716370 | Williamson, IV et al. | Feb 1998 | A |
5716417 | Girard et al. | Feb 1998 | A |
5720391 | Dohm et al. | Feb 1998 | A |
5725549 | Lam | Mar 1998 | A |
5728068 | Leone et al. | Mar 1998 | A |
5733325 | Robinson et al. | Mar 1998 | A |
5735842 | Krueger et al. | Apr 1998 | A |
5749890 | Shaknovich | May 1998 | A |
5755783 | Stobie et al. | May 1998 | A |
5756476 | Epstein et al. | May 1998 | A |
5769812 | Stevens et al. | Jun 1998 | A |
5769882 | Fogarty et al. | Jun 1998 | A |
5772609 | Nguyen et al. | Jun 1998 | A |
5776188 | Shepherd et al. | Jul 1998 | A |
5782904 | White et al. | Jul 1998 | A |
5800456 | Maeda et al. | Sep 1998 | A |
5800531 | Cosgrove et al. | Sep 1998 | A |
5807405 | Vanney et al. | Sep 1998 | A |
5817126 | Imran | Oct 1998 | A |
5824037 | Fogarty et al. | Oct 1998 | A |
5824041 | Lenker et al. | Oct 1998 | A |
5824043 | Cottone | Oct 1998 | A |
5824053 | Khosravi et al. | Oct 1998 | A |
5824055 | Spiridigliozzi et al. | Oct 1998 | A |
5824056 | Rosenberg | Oct 1998 | A |
5824064 | Taheri | Oct 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5843158 | Lenker et al. | Dec 1998 | A |
5843161 | Solovay | Dec 1998 | A |
5855597 | Jayaraman | Jan 1999 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5855602 | Angell | Jan 1999 | A |
5860966 | Tower | Jan 1999 | A |
5860996 | Urban et al. | Jan 1999 | A |
5861024 | Rashidi | Jan 1999 | A |
5861028 | Angell | Jan 1999 | A |
5865791 | Whayne et al. | Feb 1999 | A |
5868783 | Tower | Feb 1999 | A |
5876419 | Carpenter et al. | Mar 1999 | A |
5876448 | Thompson et al. | Mar 1999 | A |
5885228 | Rosenman et al. | Mar 1999 | A |
5888201 | Stinson et al. | Mar 1999 | A |
5891191 | Stinson | Apr 1999 | A |
5895399 | Barbut et al. | Apr 1999 | A |
5906619 | Olson et al. | May 1999 | A |
5907893 | Zadno-Azizi et al. | Jun 1999 | A |
5910154 | Tsugita et al. | Jun 1999 | A |
5911734 | Tsugita et al. | Jun 1999 | A |
5925063 | Khosravi | Jul 1999 | A |
5944738 | Amplatz et al. | Aug 1999 | A |
5954766 | Zadno-Azizi et al. | Sep 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
5968070 | Bley et al. | Oct 1999 | A |
5984957 | Laptewicz, Jr. et al. | Nov 1999 | A |
5984959 | Robertson et al. | Nov 1999 | A |
5993469 | McKenzie et al. | Nov 1999 | A |
5997557 | Barbut et al. | Dec 1999 | A |
6010522 | Barbut et al. | Jan 2000 | A |
6015431 | Thornton et al. | Jan 2000 | A |
6022370 | Tower | Feb 2000 | A |
6027520 | Tsugita et al. | Feb 2000 | A |
6027525 | Suh et al. | Feb 2000 | A |
6042598 | Tsugita et al. | Mar 2000 | A |
6042607 | Williamson, IV et al. | Mar 2000 | A |
6051014 | Jang | Apr 2000 | A |
6059827 | Fenton | May 2000 | A |
6074418 | Buchanan et al. | Jun 2000 | A |
6093203 | Uflacker | Jul 2000 | A |
6096074 | Pedros | Aug 2000 | A |
6110198 | Fogarty et al. | Aug 2000 | A |
6123723 | Konya et al. | Sep 2000 | A |
6132473 | Williams et al. | Oct 2000 | A |
6139510 | Palermo | Oct 2000 | A |
6142987 | Tsugita | Nov 2000 | A |
6146366 | Schachar | Nov 2000 | A |
6152144 | Lesh | Nov 2000 | A |
6162245 | Jayaraman | Dec 2000 | A |
6165200 | Tsugita et al. | Dec 2000 | A |
6165209 | Patterson et al. | Dec 2000 | A |
6168579 | Tsugita | Jan 2001 | B1 |
6168614 | Andersen et al. | Jan 2001 | B1 |
6171327 | Daniel et al. | Jan 2001 | B1 |
6171335 | Wheatley et al. | Jan 2001 | B1 |
6179859 | Bates et al. | Jan 2001 | B1 |
6187016 | Hedges et al. | Feb 2001 | B1 |
6197053 | Cosgrove et al. | Mar 2001 | B1 |
6200336 | Pavcnik et al. | Mar 2001 | B1 |
6206911 | Milo | Mar 2001 | B1 |
6214036 | Letendre et al. | Apr 2001 | B1 |
6221006 | Dubrul et al. | Apr 2001 | B1 |
6221091 | Khosravi | Apr 2001 | B1 |
6221096 | Aiba et al. | Apr 2001 | B1 |
6221100 | Strecker | Apr 2001 | B1 |
6231544 | Tsugita et al. | May 2001 | B1 |
6231551 | Barbut | May 2001 | B1 |
6241757 | An et al. | Jun 2001 | B1 |
6245102 | Jayaraman | Jun 2001 | B1 |
6251135 | Stinson et al. | Jun 2001 | B1 |
6258114 | Konya et al. | Jul 2001 | B1 |
6258115 | Dubrul | Jul 2001 | B1 |
6258120 | McKenzie et al. | Jul 2001 | B1 |
6258129 | Dybdal et al. | Jul 2001 | B1 |
6267783 | Letendre et al. | Jul 2001 | B1 |
6270513 | Tsugita et al. | Aug 2001 | B1 |
6277555 | Duran et al. | Aug 2001 | B1 |
6299637 | Shaolian et al. | Oct 2001 | B1 |
6302906 | Goicoechea et al. | Oct 2001 | B1 |
6306164 | Kujawski | Oct 2001 | B1 |
6309417 | Spence et al. | Oct 2001 | B1 |
6312465 | Griffin et al. | Nov 2001 | B1 |
6319281 | Patel | Nov 2001 | B1 |
6327772 | Zadno-Azizi et al. | Dec 2001 | B1 |
6336934 | Gilson et al. | Jan 2002 | B1 |
6336937 | Vonesh et al. | Jan 2002 | B1 |
6338735 | Stevens | Jan 2002 | B1 |
6346116 | Brooks et al. | Feb 2002 | B1 |
6348063 | Yassour et al. | Feb 2002 | B1 |
6352554 | De Paulis | Mar 2002 | B2 |
6352708 | Duran et al. | Mar 2002 | B1 |
6361545 | Macoviak et al. | Mar 2002 | B1 |
6363938 | Saadat et al. | Apr 2002 | B2 |
6364895 | Greenhalgh | Apr 2002 | B1 |
6371970 | Khosravi et al. | Apr 2002 | B1 |
6371983 | Lane | Apr 2002 | B1 |
6379383 | Palmaz et al. | Apr 2002 | B1 |
6387122 | Cragg | May 2002 | B1 |
6398807 | Chouinard et al. | Jun 2002 | B1 |
6402736 | Brown et al. | Jun 2002 | B1 |
6409750 | Hyodoh et al. | Jun 2002 | B1 |
6416510 | Altman et al. | Jul 2002 | B1 |
6425916 | Garrison et al. | Jul 2002 | B1 |
6440164 | DiMatteo et al. | Aug 2002 | B1 |
6454799 | Schreck | Sep 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6461382 | Cao | Oct 2002 | B1 |
6468303 | Amplatz et al. | Oct 2002 | B1 |
6468660 | Ogle et al. | Oct 2002 | B2 |
6475239 | Campbell et al. | Nov 2002 | B1 |
6482228 | Norred | Nov 2002 | B1 |
6485501 | Green | Nov 2002 | B1 |
6485502 | Michael et al. | Nov 2002 | B2 |
6488704 | Connelly et al. | Dec 2002 | B1 |
6494909 | Greenhalgh | Dec 2002 | B2 |
6503272 | Duerig et al. | Jan 2003 | B2 |
6508803 | Horikawa et al. | Jan 2003 | B1 |
6508833 | Pavcnik et al. | Jan 2003 | B2 |
6527800 | McGuckin, Jr. et al. | Mar 2003 | B1 |
6530949 | Konya et al. | Mar 2003 | B2 |
6530952 | Vesely | Mar 2003 | B2 |
6537297 | Tsugita et al. | Mar 2003 | B2 |
6540768 | Diaz et al. | Apr 2003 | B1 |
6540782 | Snyders | Apr 2003 | B1 |
6551303 | Van Tassel et al. | Apr 2003 | B1 |
6562058 | Seguin et al. | May 2003 | B2 |
6569196 | Vesely | May 2003 | B1 |
6572643 | Gharibadeh | Jun 2003 | B1 |
6585766 | Huynh et al. | Jul 2003 | B1 |
6592546 | Barbut et al. | Jul 2003 | B1 |
6592614 | Lenker et al. | Jul 2003 | B2 |
6605112 | Moll et al. | Aug 2003 | B1 |
6610077 | Hancock et al. | Aug 2003 | B1 |
6616682 | Joergensen et al. | Sep 2003 | B2 |
6622604 | Chouinard et al. | Sep 2003 | B1 |
6623518 | Thompson et al. | Sep 2003 | B2 |
6623521 | Steinke et al. | Sep 2003 | B2 |
6626938 | Butaric et al. | Sep 2003 | B1 |
6632243 | Zadno-Azizi et al. | Oct 2003 | B1 |
6635068 | Dubrul et al. | Oct 2003 | B1 |
6635079 | Unsworth et al. | Oct 2003 | B2 |
6635080 | Lauterjung et al. | Oct 2003 | B1 |
6652555 | Van Tassel et al. | Nov 2003 | B1 |
6652571 | White et al. | Nov 2003 | B1 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6663588 | DuBois et al. | Dec 2003 | B2 |
6663663 | Kim et al. | Dec 2003 | B2 |
6663667 | Dehdashtian et al. | Dec 2003 | B2 |
6669724 | Park et al. | Dec 2003 | B2 |
6673089 | Yassour et al. | Jan 2004 | B1 |
6673109 | Cox | Jan 2004 | B2 |
6676668 | Mercereau et al. | Jan 2004 | B2 |
6676692 | Rabkin et al. | Jan 2004 | B2 |
6676698 | McGuckin, Jr. et al. | Jan 2004 | B2 |
6682543 | Barbut et al. | Jan 2004 | B2 |
6682558 | Tu et al. | Jan 2004 | B2 |
6682559 | Myers et al. | Jan 2004 | B2 |
6685739 | DiMatteo et al. | Feb 2004 | B2 |
6689144 | Gerberding | Feb 2004 | B2 |
6689150 | VanTassel | Feb 2004 | B1 |
6689164 | Seguin | Feb 2004 | B1 |
6692512 | Jang | Feb 2004 | B2 |
6695864 | Macoviak et al. | Feb 2004 | B2 |
6695865 | Boyle et al. | Feb 2004 | B2 |
6702851 | Chinn et al. | Mar 2004 | B1 |
6712842 | Gifford, III et al. | Mar 2004 | B1 |
6712843 | Elliott | Mar 2004 | B2 |
6714842 | Ito | Mar 2004 | B1 |
6719789 | Cox | Apr 2004 | B2 |
6723116 | Taheri | Apr 2004 | B2 |
6729356 | Baker et al. | May 2004 | B1 |
6730118 | Spenser et al. | May 2004 | B2 |
6730377 | Wang | May 2004 | B2 |
6733525 | Yang et al. | May 2004 | B2 |
6736846 | Cox | May 2004 | B2 |
6752828 | Thornton | Jun 2004 | B2 |
6755854 | Gillick et al. | Jun 2004 | B2 |
6758855 | Fulton, III et al. | Jul 2004 | B2 |
6764503 | Ishimaru | Jul 2004 | B1 |
6764509 | Chinn et al. | Jul 2004 | B2 |
6767345 | Germain et al. | Jul 2004 | B2 |
6769434 | Liddicoat et al. | Aug 2004 | B2 |
6773454 | Wholey et al. | Aug 2004 | B2 |
6773456 | Gordon et al. | Aug 2004 | B1 |
6776791 | Stallings et al. | Aug 2004 | B1 |
6786925 | Schoon et al. | Sep 2004 | B1 |
6790229 | Berreklouw | Sep 2004 | B1 |
6790230 | Beyersdorf et al. | Sep 2004 | B2 |
6790237 | Stinson | Sep 2004 | B2 |
6792979 | Konya et al. | Sep 2004 | B2 |
6797002 | Spence et al. | Sep 2004 | B2 |
6814746 | Thompson et al. | Nov 2004 | B2 |
6814754 | Greenhalgh | Nov 2004 | B2 |
6821297 | Snyders | Nov 2004 | B2 |
6824041 | Grieder et al. | Nov 2004 | B2 |
6830585 | Artof et al. | Dec 2004 | B1 |
6837901 | Rabkin et al. | Jan 2005 | B2 |
6840957 | DiMatteo et al. | Jan 2005 | B2 |
6843802 | Villalobos et al. | Jan 2005 | B1 |
6849085 | Marton | Feb 2005 | B2 |
6863668 | Gillespie et al. | Mar 2005 | B2 |
6863688 | Ralph et al. | Mar 2005 | B2 |
6866650 | Stevens et al. | Mar 2005 | B2 |
6866669 | Buzzard et al. | Mar 2005 | B2 |
6872223 | Roberts et al. | Mar 2005 | B2 |
6872226 | Cali et al. | Mar 2005 | B2 |
6875231 | Anduiza et al. | Apr 2005 | B2 |
6881220 | Edwin et al. | Apr 2005 | B2 |
6887266 | Williams et al. | May 2005 | B2 |
6890340 | Duane | May 2005 | B2 |
6893459 | Macoviak | May 2005 | B1 |
6893460 | Spenser et al. | May 2005 | B2 |
6896690 | Lambrecht et al. | May 2005 | B1 |
6905743 | Chen et al. | Jun 2005 | B1 |
6908481 | Cribier | Jun 2005 | B2 |
6911036 | Douk et al. | Jun 2005 | B2 |
6911040 | Johnson et al. | Jun 2005 | B2 |
6911043 | Myers et al. | Jun 2005 | B2 |
6936058 | Forde et al. | Aug 2005 | B2 |
6936067 | Buchanan | Aug 2005 | B2 |
6939352 | Buzzard et al. | Sep 2005 | B2 |
6951571 | Srivastava | Oct 2005 | B1 |
6953332 | Kurk et al. | Oct 2005 | B1 |
6964673 | Tsugita et al. | Nov 2005 | B2 |
6969395 | Eskuri | Nov 2005 | B2 |
6972025 | WasDyke | Dec 2005 | B2 |
6974464 | Quijano et al. | Dec 2005 | B2 |
6974474 | Pavcnik et al. | Dec 2005 | B2 |
6974476 | McGuckin, Jr. et al. | Dec 2005 | B2 |
6979350 | Moll et al. | Dec 2005 | B2 |
6984242 | Campbell et al. | Jan 2006 | B2 |
6989027 | Allen et al. | Jan 2006 | B2 |
7004176 | Lau | Feb 2006 | B2 |
7011681 | Vesely | Mar 2006 | B2 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7025791 | Levine et al. | Apr 2006 | B2 |
7037331 | Mitelberg et al. | May 2006 | B2 |
7041132 | Quijano et al. | May 2006 | B2 |
7044966 | Svanidze et al. | May 2006 | B2 |
7097658 | Oktay | Aug 2006 | B2 |
7108715 | Lawrence-Brown et al. | Sep 2006 | B2 |
7122020 | Mogul | Oct 2006 | B2 |
7125418 | Duran et al. | Oct 2006 | B2 |
7141063 | White et al. | Nov 2006 | B2 |
7147663 | Berg et al. | Dec 2006 | B1 |
7166097 | Barbut | Jan 2007 | B2 |
7175652 | Cook et al. | Feb 2007 | B2 |
7175653 | Gaber | Feb 2007 | B2 |
7175654 | Bonsignore et al. | Feb 2007 | B2 |
7175656 | Khairkhahan | Feb 2007 | B2 |
7189258 | Johnson et al. | Mar 2007 | B2 |
7191018 | Gielen et al. | Mar 2007 | B2 |
7201772 | Schwammenthal et al. | Apr 2007 | B2 |
7235093 | Gregorich | Jun 2007 | B2 |
7252682 | Seguin | Aug 2007 | B2 |
7258696 | Rabkin et al. | Aug 2007 | B2 |
7261732 | Justino | Aug 2007 | B2 |
7264632 | Wright et al. | Sep 2007 | B2 |
7267686 | DiMatteo et al. | Sep 2007 | B2 |
7276078 | Spenser et al. | Oct 2007 | B2 |
7322932 | Xie et al. | Jan 2008 | B2 |
7326236 | Andreas et al. | Feb 2008 | B2 |
7329279 | Haug et al. | Feb 2008 | B2 |
7331993 | White | Feb 2008 | B2 |
7374560 | Ressemann et al. | May 2008 | B2 |
7381219 | Salahieh et al. | Jun 2008 | B2 |
7381220 | Macoviak et al. | Jun 2008 | B2 |
7399315 | Iobbi | Jul 2008 | B2 |
7445631 | Salahieh et al. | Nov 2008 | B2 |
7470285 | Nugent et al. | Dec 2008 | B2 |
7491232 | Bolduc et al. | Feb 2009 | B2 |
7510574 | Lê et al. | Mar 2009 | B2 |
7524330 | Berreklouw | Apr 2009 | B2 |
7530995 | Quijano et al. | May 2009 | B2 |
7544206 | Cohn | Jun 2009 | B2 |
7622276 | Cunanan et al. | Nov 2009 | B2 |
7628803 | Pavcnik et al. | Dec 2009 | B2 |
7632298 | Hijikema et al. | Dec 2009 | B2 |
7641687 | Chinn et al. | Jan 2010 | B2 |
7674282 | Wu et al. | Mar 2010 | B2 |
7712606 | Salahieh et al. | May 2010 | B2 |
7722638 | Deyette, Jr. et al. | May 2010 | B2 |
7722662 | Steinke et al. | May 2010 | B2 |
7722666 | Lafontaine | May 2010 | B2 |
7731742 | Schlick et al. | Jun 2010 | B2 |
7736388 | Goldfarb et al. | Jun 2010 | B2 |
7748389 | Salahieh et al. | Jul 2010 | B2 |
7758625 | Wu et al. | Jul 2010 | B2 |
7780725 | Haug et al. | Aug 2010 | B2 |
7799065 | Pappas | Sep 2010 | B2 |
7803185 | Gabbay | Sep 2010 | B2 |
7824442 | Salahieh et al. | Nov 2010 | B2 |
7824443 | Salahieh et al. | Nov 2010 | B2 |
7833262 | McGuckin, Jr. et al. | Nov 2010 | B2 |
7846204 | Letac et al. | Dec 2010 | B2 |
7857845 | Stacchino et al. | Dec 2010 | B2 |
7892292 | Stack et al. | Feb 2011 | B2 |
7918880 | Austin | Apr 2011 | B2 |
7938851 | Olson et al. | May 2011 | B2 |
7959666 | Salahieh et al. | Jun 2011 | B2 |
7959672 | Salahieh et al. | Jun 2011 | B2 |
7988724 | Salahieh et al. | Aug 2011 | B2 |
8048153 | Salahieh et al. | Nov 2011 | B2 |
8052749 | Salahieh et al. | Nov 2011 | B2 |
8136659 | Salahieh et al. | Mar 2012 | B2 |
8157853 | Laske et al. | Apr 2012 | B2 |
8172896 | McNamara et al. | May 2012 | B2 |
8182528 | Salahieh et al. | May 2012 | B2 |
8192351 | Fishler et al. | Jun 2012 | B2 |
8197527 | Borillo et al. | Jun 2012 | B2 |
8226710 | Nguyen et al. | Jul 2012 | B2 |
8231670 | Salahieh et al. | Jul 2012 | B2 |
8236049 | Rowe et al. | Aug 2012 | B2 |
8246678 | Salahieh et al. | Aug 2012 | B2 |
8252051 | Chau et al. | Aug 2012 | B2 |
8252052 | Salahieh et al. | Aug 2012 | B2 |
8287584 | Salahieh et al. | Oct 2012 | B2 |
8308798 | Pintor et al. | Nov 2012 | B2 |
8317858 | Straubinger et al. | Nov 2012 | B2 |
8323335 | Rowe et al. | Dec 2012 | B2 |
8328868 | Paul et al. | Dec 2012 | B2 |
8343213 | Salahieh et al. | Jan 2013 | B2 |
8376865 | Forster et al. | Feb 2013 | B2 |
8377117 | Keidar et al. | Feb 2013 | B2 |
8398708 | Meiri et al. | Mar 2013 | B2 |
8403983 | Quadri et al. | Mar 2013 | B2 |
8414644 | Quadri et al. | Apr 2013 | B2 |
8579962 | Salahieh et al. | Nov 2013 | B2 |
8603160 | Salahieh et al. | Dec 2013 | B2 |
8617236 | Paul et al. | Dec 2013 | B2 |
8623074 | Ryan | Jan 2014 | B2 |
8623076 | Salahieh et al. | Jan 2014 | B2 |
8623078 | Salahieh et al. | Jan 2014 | B2 |
8647361 | Borillo et al. | Feb 2014 | B2 |
8668733 | Haug et al. | Mar 2014 | B2 |
8696743 | Holecek et al. | Apr 2014 | B2 |
8828078 | Salahieh et al. | Sep 2014 | B2 |
8840662 | Salahieh et al. | Sep 2014 | B2 |
8840663 | Salahieh et al. | Sep 2014 | B2 |
8858620 | Salahieh et al. | Oct 2014 | B2 |
8894703 | Salahieh et al. | Nov 2014 | B2 |
8951299 | Paul et al. | Feb 2015 | B2 |
8992608 | Haug et al. | Mar 2015 | B2 |
9005273 | Salahieh et al. | Apr 2015 | B2 |
9011521 | Haug et al. | Apr 2015 | B2 |
9168131 | Yohanan et al. | Oct 2015 | B2 |
20010002445 | Vesely | May 2001 | A1 |
20010007956 | Letac et al. | Jul 2001 | A1 |
20010010017 | Letac et al. | Jul 2001 | A1 |
20010021872 | Bailey et al. | Sep 2001 | A1 |
20010025196 | Chinn et al. | Sep 2001 | A1 |
20010027338 | Greenberg | Oct 2001 | A1 |
20010032013 | Marton | Oct 2001 | A1 |
20010039450 | Pavcnik et al. | Nov 2001 | A1 |
20010041928 | Pavcnik et al. | Nov 2001 | A1 |
20010041930 | Globerman et al. | Nov 2001 | A1 |
20010044634 | Michael et al. | Nov 2001 | A1 |
20010044652 | Moore | Nov 2001 | A1 |
20010044656 | Williamson et al. | Nov 2001 | A1 |
20020002396 | Fulkerson | Jan 2002 | A1 |
20020010489 | Grayzel et al. | Jan 2002 | A1 |
20020022860 | Borillo et al. | Feb 2002 | A1 |
20020026233 | Shaknovich | Feb 2002 | A1 |
20020029014 | Jayaraman | Mar 2002 | A1 |
20020029981 | Nigam | Mar 2002 | A1 |
20020032480 | Spence et al. | Mar 2002 | A1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20020042651 | Liddicoat et al. | Apr 2002 | A1 |
20020052651 | Myers et al. | May 2002 | A1 |
20020055767 | Forde et al. | May 2002 | A1 |
20020055769 | Wang | May 2002 | A1 |
20020055774 | Liddicoat | May 2002 | A1 |
20020058987 | Butaric et al. | May 2002 | A1 |
20020058995 | Stevens | May 2002 | A1 |
20020077696 | Zadno-Azizi et al. | Jun 2002 | A1 |
20020082609 | Green | Jun 2002 | A1 |
20020095173 | Mazzocchi et al. | Jul 2002 | A1 |
20020095209 | Zadno-Azizi et al. | Jul 2002 | A1 |
20020111674 | Chouinard et al. | Aug 2002 | A1 |
20020120328 | Pathak et al. | Aug 2002 | A1 |
20020123802 | Snyders | Sep 2002 | A1 |
20020138138 | Yang | Sep 2002 | A1 |
20020151970 | Garrison et al. | Oct 2002 | A1 |
20020156522 | Ivancev et al. | Oct 2002 | A1 |
20020161390 | Mouw | Oct 2002 | A1 |
20020161392 | Dubrul | Oct 2002 | A1 |
20020161394 | Macoviak et al. | Oct 2002 | A1 |
20020165576 | Boyle et al. | Nov 2002 | A1 |
20020177766 | Mogul | Nov 2002 | A1 |
20020183781 | Casey | Dec 2002 | A1 |
20020188341 | Elliott | Dec 2002 | A1 |
20020188344 | Bolea et al. | Dec 2002 | A1 |
20020193871 | Beyersdorf et al. | Dec 2002 | A1 |
20030014104 | Cribier | Jan 2003 | A1 |
20030023303 | Palmaz et al. | Jan 2003 | A1 |
20030028247 | Cali | Feb 2003 | A1 |
20030036791 | Philipp et al. | Feb 2003 | A1 |
20030040736 | Stevens et al. | Feb 2003 | A1 |
20030040771 | Hyodoh et al. | Feb 2003 | A1 |
20030040772 | Hyodoh et al. | Feb 2003 | A1 |
20030040791 | Oktay | Feb 2003 | A1 |
20030040792 | Gabbay | Feb 2003 | A1 |
20030050694 | Yang et al. | Mar 2003 | A1 |
20030055495 | Pease et al. | Mar 2003 | A1 |
20030057156 | Peterson et al. | Mar 2003 | A1 |
20030060844 | Borillo et al. | Mar 2003 | A1 |
20030069492 | Abrams et al. | Apr 2003 | A1 |
20030069646 | Stinson | Apr 2003 | A1 |
20030070944 | Nigam | Apr 2003 | A1 |
20030074058 | Sherry | Apr 2003 | A1 |
20030093145 | Lawrence-Brown et al. | May 2003 | A1 |
20030100918 | Duane | May 2003 | A1 |
20030100919 | Hopkins et al. | May 2003 | A1 |
20030109924 | Cribier | Jun 2003 | A1 |
20030109930 | Bluni et al. | Jun 2003 | A1 |
20030114912 | Sequin et al. | Jun 2003 | A1 |
20030114913 | Spenser et al. | Jun 2003 | A1 |
20030125795 | Pavcnik et al. | Jul 2003 | A1 |
20030130729 | Paniagua et al. | Jul 2003 | A1 |
20030135257 | Taheri | Jul 2003 | A1 |
20030144732 | Cosgrove et al. | Jul 2003 | A1 |
20030149475 | Hyodoh et al. | Aug 2003 | A1 |
20030149476 | Damm et al. | Aug 2003 | A1 |
20030149478 | Figulla et al. | Aug 2003 | A1 |
20030153974 | Spenser et al. | Aug 2003 | A1 |
20030165352 | Ibrahim et al. | Sep 2003 | A1 |
20030171803 | Shimon | Sep 2003 | A1 |
20030176884 | Berrada et al. | Sep 2003 | A1 |
20030181850 | Diamond et al. | Sep 2003 | A1 |
20030187495 | Cully et al. | Oct 2003 | A1 |
20030191516 | Weldon et al. | Oct 2003 | A1 |
20030195609 | Berenstein et al. | Oct 2003 | A1 |
20030199759 | Richard | Oct 2003 | A1 |
20030199913 | Dubrul et al. | Oct 2003 | A1 |
20030199971 | Tower et al. | Oct 2003 | A1 |
20030199972 | Zadno-Azizi et al. | Oct 2003 | A1 |
20030204249 | Letort | Oct 2003 | A1 |
20030208224 | Broome | Nov 2003 | A1 |
20030212429 | Keegan et al. | Nov 2003 | A1 |
20030212452 | Zadno-Azizi et al. | Nov 2003 | A1 |
20030212454 | Scott et al. | Nov 2003 | A1 |
20030216774 | Larson | Nov 2003 | A1 |
20030225445 | Derus et al. | Dec 2003 | A1 |
20030229390 | Ashton et al. | Dec 2003 | A1 |
20030233117 | Adams et al. | Dec 2003 | A1 |
20030236567 | Elliot | Dec 2003 | A1 |
20040019374 | Hojeibane et al. | Jan 2004 | A1 |
20040033364 | Spiridigliozzi et al. | Feb 2004 | A1 |
20040034411 | Quijano et al. | Feb 2004 | A1 |
20040039436 | Spenser et al. | Feb 2004 | A1 |
20040049224 | Buehlmann et al. | Mar 2004 | A1 |
20040049226 | Keegan et al. | Mar 2004 | A1 |
20040049262 | Obermiller et al. | Mar 2004 | A1 |
20040049266 | Anduiza et al. | Mar 2004 | A1 |
20040059409 | Stenzel | Mar 2004 | A1 |
20040073198 | Gilson et al. | Apr 2004 | A1 |
20040082904 | Houde et al. | Apr 2004 | A1 |
20040082967 | Broome et al. | Apr 2004 | A1 |
20040082989 | Cook et al. | Apr 2004 | A1 |
20040087982 | Eskuri | May 2004 | A1 |
20040088045 | Cox | May 2004 | A1 |
20040093016 | Root et al. | May 2004 | A1 |
20040093060 | Seguin et al. | May 2004 | A1 |
20040097788 | Mourlas et al. | May 2004 | A1 |
20040098022 | Barone | May 2004 | A1 |
20040098098 | McGuckin et al. | May 2004 | A1 |
20040098099 | McCullagh et al. | May 2004 | A1 |
20040098112 | DiMatteo et al. | May 2004 | A1 |
20040107004 | Levine et al. | Jun 2004 | A1 |
20040111096 | Tu et al. | Jun 2004 | A1 |
20040116951 | Rosengart | Jun 2004 | A1 |
20040116999 | Ledergerber | Jun 2004 | A1 |
20040117004 | Osborne et al. | Jun 2004 | A1 |
20040117009 | Cali et al. | Jun 2004 | A1 |
20040122468 | Yodfat et al. | Jun 2004 | A1 |
20040122516 | Fogarty et al. | Jun 2004 | A1 |
20040127936 | Salahieh et al. | Jul 2004 | A1 |
20040127979 | Wilson et al. | Jul 2004 | A1 |
20040133274 | Webler et al. | Jul 2004 | A1 |
20040138694 | Tran et al. | Jul 2004 | A1 |
20040138742 | Myers et al. | Jul 2004 | A1 |
20040138743 | Myers et al. | Jul 2004 | A1 |
20040148018 | Carpentier et al. | Jul 2004 | A1 |
20040148021 | Cartledge et al. | Jul 2004 | A1 |
20040153094 | Dunfee et al. | Aug 2004 | A1 |
20040158277 | Lowe et al. | Aug 2004 | A1 |
20040167565 | Beulke et al. | Aug 2004 | A1 |
20040167620 | Ortiz et al. | Aug 2004 | A1 |
20040181140 | Falwell et al. | Sep 2004 | A1 |
20040186558 | Pavcnik et al. | Sep 2004 | A1 |
20040186563 | Lobbi | Sep 2004 | A1 |
20040193261 | Berreklouw | Sep 2004 | A1 |
20040197695 | Aono | Oct 2004 | A1 |
20040199245 | Lauterjung | Oct 2004 | A1 |
20040204755 | Robin | Oct 2004 | A1 |
20040210304 | Seguin et al. | Oct 2004 | A1 |
20040210306 | Quijano et al. | Oct 2004 | A1 |
20040210307 | Khairkhahan | Oct 2004 | A1 |
20040215331 | Chew et al. | Oct 2004 | A1 |
20040215333 | Duran et al. | Oct 2004 | A1 |
20040215339 | Drasler et al. | Oct 2004 | A1 |
20040220655 | Swanson et al. | Nov 2004 | A1 |
20040225321 | Krolik et al. | Nov 2004 | A1 |
20040225353 | McGuckin et al. | Nov 2004 | A1 |
20040225354 | Allen et al. | Nov 2004 | A1 |
20040225355 | Stevens | Nov 2004 | A1 |
20040243221 | Fawzi et al. | Dec 2004 | A1 |
20040254636 | Flagle et al. | Dec 2004 | A1 |
20040260390 | Sarac et al. | Dec 2004 | A1 |
20050010287 | Macoviak et al. | Jan 2005 | A1 |
20050021136 | Xie et al. | Jan 2005 | A1 |
20050033398 | Seguin | Feb 2005 | A1 |
20050033402 | Cully et al. | Feb 2005 | A1 |
20050043711 | Corcoran et al. | Feb 2005 | A1 |
20050043757 | Arad et al. | Feb 2005 | A1 |
20050043790 | Seguin | Feb 2005 | A1 |
20050049692 | Numamoto et al. | Mar 2005 | A1 |
20050049696 | Siess et al. | Mar 2005 | A1 |
20050055088 | Liddicoat et al. | Mar 2005 | A1 |
20050060016 | Wu et al. | Mar 2005 | A1 |
20050060029 | Le et al. | Mar 2005 | A1 |
20050065594 | DiMatteo et al. | Mar 2005 | A1 |
20050075584 | Cali | Apr 2005 | A1 |
20050075662 | Pedersen et al. | Apr 2005 | A1 |
20050075712 | Biancucci et al. | Apr 2005 | A1 |
20050075717 | Nguyen et al. | Apr 2005 | A1 |
20050075719 | Bergheim | Apr 2005 | A1 |
20050075724 | Svanidze et al. | Apr 2005 | A1 |
20050075730 | Myers et al. | Apr 2005 | A1 |
20050075731 | Artof et al. | Apr 2005 | A1 |
20050085841 | Eversull et al. | Apr 2005 | A1 |
20050085842 | Eversull et al. | Apr 2005 | A1 |
20050085843 | Opolski et al. | Apr 2005 | A1 |
20050085890 | Rasmussen et al. | Apr 2005 | A1 |
20050090846 | Pedersen et al. | Apr 2005 | A1 |
20050090890 | Wu et al. | Apr 2005 | A1 |
20050096692 | Linder et al. | May 2005 | A1 |
20050096734 | Majercak et al. | May 2005 | A1 |
20050096735 | Hojeibane et al. | May 2005 | A1 |
20050096736 | Osse et al. | May 2005 | A1 |
20050096738 | Cali et al. | May 2005 | A1 |
20050100580 | Osborne et al. | May 2005 | A1 |
20050107822 | WasDyke | May 2005 | A1 |
20050113910 | Paniagua et al. | May 2005 | A1 |
20050131438 | Cohn | Jun 2005 | A1 |
20050137683 | Hezi-Yarnit et al. | Jun 2005 | A1 |
20050137686 | Salahieh et al. | Jun 2005 | A1 |
20050137687 | Salahieh et al. | Jun 2005 | A1 |
20050137688 | Salahieh et al. | Jun 2005 | A1 |
20050137689 | Salahieh et al. | Jun 2005 | A1 |
20050137690 | Salahieh et al. | Jun 2005 | A1 |
20050137691 | Salahieh et al. | Jun 2005 | A1 |
20050137692 | Haug et al. | Jun 2005 | A1 |
20050137693 | Haug et al. | Jun 2005 | A1 |
20050137694 | Haug et al. | Jun 2005 | A1 |
20050137695 | Salahieh et al. | Jun 2005 | A1 |
20050137696 | Salahieh et al. | Jun 2005 | A1 |
20050137697 | Salahieh et al. | Jun 2005 | A1 |
20050137698 | Salahieh et al. | Jun 2005 | A1 |
20050137699 | Salahieh et al. | Jun 2005 | A1 |
20050137701 | Salahieh et al. | Jun 2005 | A1 |
20050137702 | Haug et al. | Jun 2005 | A1 |
20050138689 | Aukerman | Jun 2005 | A1 |
20050143807 | Pavcnik et al. | Jun 2005 | A1 |
20050143809 | Salahieh et al. | Jun 2005 | A1 |
20050149159 | Andreas et al. | Jul 2005 | A1 |
20050165352 | Henry et al. | Jul 2005 | A1 |
20050165477 | Anduiza et al. | Jul 2005 | A1 |
20050165479 | Drews et al. | Jul 2005 | A1 |
20050182486 | Gabbay | Aug 2005 | A1 |
20050197694 | Pai et al. | Sep 2005 | A1 |
20050197695 | Stacchino et al. | Sep 2005 | A1 |
20050203549 | Realyvasquez | Sep 2005 | A1 |
20050203614 | Forster et al. | Sep 2005 | A1 |
20050203615 | Forster et al. | Sep 2005 | A1 |
20050203616 | Cribier | Sep 2005 | A1 |
20050203617 | Forster et al. | Sep 2005 | A1 |
20050203618 | Sharkawy et al. | Sep 2005 | A1 |
20050203818 | Rotman et al. | Sep 2005 | A9 |
20050209580 | Freyman | Sep 2005 | A1 |
20050228472 | Case et al. | Oct 2005 | A1 |
20050228495 | Macoviak | Oct 2005 | A1 |
20050234546 | Nugent et al. | Oct 2005 | A1 |
20050240200 | Bergheim | Oct 2005 | A1 |
20050240262 | White | Oct 2005 | A1 |
20050251250 | Verhoeven et al. | Nov 2005 | A1 |
20050251251 | Cribier | Nov 2005 | A1 |
20050261759 | Lambrecht et al. | Nov 2005 | A1 |
20050267560 | Bates | Dec 2005 | A1 |
20050283231 | Haug et al. | Dec 2005 | A1 |
20050283962 | Boudjemline | Dec 2005 | A1 |
20060004439 | Spenser et al. | Jan 2006 | A1 |
20060004442 | Spenser et al. | Jan 2006 | A1 |
20060015168 | Gunderson | Jan 2006 | A1 |
20060025857 | Bergheim et al. | Feb 2006 | A1 |
20060058872 | Salahieh et al. | Mar 2006 | A1 |
20060149360 | Schwammenthal et al. | Jul 2006 | A1 |
20060155312 | Levine et al. | Jul 2006 | A1 |
20060161249 | Realyvasquez et al. | Jul 2006 | A1 |
20060173524 | Salahieh et al. | Aug 2006 | A1 |
20060195183 | Navia et al. | Aug 2006 | A1 |
20060253191 | Salahieh et al. | Nov 2006 | A1 |
20060259134 | Schwammenthal et al. | Nov 2006 | A1 |
20060271166 | Thill et al. | Nov 2006 | A1 |
20060287668 | Fawzi et al. | Dec 2006 | A1 |
20060287717 | Rowe et al. | Dec 2006 | A1 |
20070010876 | Salahieh et al. | Jan 2007 | A1 |
20070010877 | Salahieh et al. | Jan 2007 | A1 |
20070016286 | Herrmann et al. | Jan 2007 | A1 |
20070055340 | Pryor | Mar 2007 | A1 |
20070061008 | Salahieh et al. | Mar 2007 | A1 |
20070112355 | Salahieh et al. | May 2007 | A1 |
20070118214 | Salahieh et al. | May 2007 | A1 |
20070162107 | Haug et al. | Jul 2007 | A1 |
20070173918 | Dreher et al. | Jul 2007 | A1 |
20070203503 | Salahieh et al. | Aug 2007 | A1 |
20070244552 | Salahieh et al. | Oct 2007 | A1 |
20070288089 | Gurskis et al. | Dec 2007 | A1 |
20080009940 | Cribier | Jan 2008 | A1 |
20080033541 | Gelbart et al. | Feb 2008 | A1 |
20080071363 | Tuval et al. | Mar 2008 | A1 |
20080082165 | Wilson et al. | Apr 2008 | A1 |
20080125859 | Salahieh et al. | May 2008 | A1 |
20080188928 | Salahieh et al. | Aug 2008 | A1 |
20080208328 | Antocci et al. | Aug 2008 | A1 |
20080208332 | Lamphere et al. | Aug 2008 | A1 |
20080221672 | Lamphere et al. | Sep 2008 | A1 |
20080234814 | Salahieh et al. | Sep 2008 | A1 |
20080255661 | Straubinger et al. | Oct 2008 | A1 |
20080269878 | Iobbi | Oct 2008 | A1 |
20080288054 | Pulnev et al. | Nov 2008 | A1 |
20090005863 | Goetz et al. | Jan 2009 | A1 |
20090030512 | Thielen et al. | Jan 2009 | A1 |
20090054969 | Salahieh et al. | Feb 2009 | A1 |
20090076598 | Salahieh et al. | Mar 2009 | A1 |
20090093877 | Keidar et al. | Apr 2009 | A1 |
20090171456 | Kveen et al. | Jul 2009 | A1 |
20090216312 | Straubinger et al. | Aug 2009 | A1 |
20090222076 | Figulla et al. | Sep 2009 | A1 |
20090264759 | Byrd | Oct 2009 | A1 |
20090264997 | Salahieh et al. | Oct 2009 | A1 |
20090299462 | Fawzi et al. | Dec 2009 | A1 |
20100036479 | Hill et al. | Feb 2010 | A1 |
20100049313 | Alon et al. | Feb 2010 | A1 |
20100082089 | Quadri et al. | Apr 2010 | A1 |
20100094399 | Dorn et al. | Apr 2010 | A1 |
20100121434 | Paul et al. | May 2010 | A1 |
20100161045 | Righini | Jun 2010 | A1 |
20100185275 | Richter et al. | Jul 2010 | A1 |
20100191320 | Straubinger et al. | Jul 2010 | A1 |
20100191326 | Alkhatib | Jul 2010 | A1 |
20100219092 | Salahieh et al. | Sep 2010 | A1 |
20100249908 | Chau et al. | Sep 2010 | A1 |
20100280495 | Paul et al. | Nov 2010 | A1 |
20100298931 | Quadri et al. | Nov 2010 | A1 |
20110257735 | Salahieh et al. | Oct 2011 | A1 |
20110264196 | Savage et al. | Oct 2011 | A1 |
20110276129 | Salahieh et al. | Nov 2011 | A1 |
20110288634 | Tuval et al. | Nov 2011 | A1 |
20110295363 | Girard et al. | Dec 2011 | A1 |
20120016469 | Salahieh et al. | Jan 2012 | A1 |
20120016471 | Salahieh et al. | Jan 2012 | A1 |
20120022642 | Haug et al. | Jan 2012 | A1 |
20120029627 | Salahieh et al. | Feb 2012 | A1 |
20120041549 | Salahieh et al. | Feb 2012 | A1 |
20120041550 | Salahieh et al. | Feb 2012 | A1 |
20120046740 | Paul et al. | Feb 2012 | A1 |
20120053683 | Salahieh et al. | Mar 2012 | A1 |
20120089224 | Haug et al. | Apr 2012 | A1 |
20120132547 | Salahieh et al. | May 2012 | A1 |
20120179244 | Schankereli et al. | Jul 2012 | A1 |
20120197379 | Laske et al. | Aug 2012 | A1 |
20120303113 | Benichou et al. | Nov 2012 | A1 |
20120303116 | Gorman et al. | Nov 2012 | A1 |
20120330409 | Haug et al. | Dec 2012 | A1 |
20130013057 | Salahieh et al. | Jan 2013 | A1 |
20130018457 | Gregg et al. | Jan 2013 | A1 |
20130030520 | Lee et al. | Jan 2013 | A1 |
20130079867 | Hoffman et al. | Mar 2013 | A1 |
20130079869 | Straubinger et al. | Mar 2013 | A1 |
20130096664 | Goetz et al. | Apr 2013 | A1 |
20130123796 | Sutton et al. | May 2013 | A1 |
20130138207 | Quadri et al. | May 2013 | A1 |
20130158656 | Sutton et al. | Jun 2013 | A1 |
20130184813 | Quadri et al. | Jul 2013 | A1 |
20130190865 | Anderson | Jul 2013 | A1 |
20130304199 | Sutton et al. | Nov 2013 | A1 |
20140018911 | Zhou et al. | Jan 2014 | A1 |
20140094904 | Salahieh et al. | Apr 2014 | A1 |
20140114405 | Paul et al. | Apr 2014 | A1 |
20140114406 | Salahieh et al. | Apr 2014 | A1 |
20140121766 | Salahieh et al. | May 2014 | A1 |
20140135912 | Salahieh et al. | May 2014 | A1 |
20140243967 | Salahieh et al. | Aug 2014 | A1 |
20150012085 | Salahieh et al. | Jan 2015 | A1 |
20150073540 | Salahieh et al. | Mar 2015 | A1 |
20150073541 | Salahieh et al. | Mar 2015 | A1 |
20150127094 | Salahieh et al. | May 2015 | A1 |
20160045307 | Yohanan et al. | Feb 2016 | A1 |
20160199184 | Ma et al. | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
2002329324 | Jul 2007 | AU |
1338951 | Mar 2002 | CN |
19532846 | Mar 1997 | DE |
19546692 | Jun 1997 | DE |
19857887 | Jul 2000 | DE |
19907646 | Aug 2000 | DE |
10049812 | Apr 2002 | DE |
10049813 | Apr 2002 | DE |
10049814 | Apr 2002 | DE |
10049815 | Apr 2002 | DE |
0103546 | May 1988 | EP |
0144167 | Nov 1989 | EP |
579523 | Jan 1994 | EP |
0409929 | Apr 1997 | EP |
0850607 | Jul 1998 | EP |
0597967 | Dec 1999 | EP |
1000590 | May 2000 | EP |
1057459 | Dec 2000 | EP |
1057460 | Dec 2000 | EP |
1088529 | Apr 2001 | EP |
0937439 | Sep 2003 | EP |
1340473 | Feb 2004 | EP |
1356793 | Mar 2004 | EP |
1042045 | May 2004 | EP |
0819013 | Jun 2004 | EP |
1430853 | Jun 2004 | EP |
1435879 | Jul 2004 | EP |
1439800 | Jul 2004 | EP |
1469797 | Oct 2004 | EP |
1472996 | Nov 2004 | EP |
1229864 | Apr 2005 | EP |
1059894 | Jul 2005 | EP |
1551274 | Jul 2005 | EP |
1551336 | Jul 2005 | EP |
1078610 | Aug 2005 | EP |
1562515 | Aug 2005 | EP |
1570809 | Sep 2005 | EP |
1576937 | Sep 2005 | EP |
1582178 | Oct 2005 | EP |
1582179 | Oct 2005 | EP |
1589902 | Nov 2005 | EP |
1600121 | Nov 2005 | EP |
1156757 | Dec 2005 | EP |
1616531 | Jan 2006 | EP |
1605871 | Jul 2008 | EP |
2749254 | Jun 2015 | EP |
2926766 | Oct 2015 | EP |
2788217 | Jul 2000 | FR |
2056023 | Mar 1981 | GB |
2398245 | Aug 2004 | GB |
1271508 | Nov 1986 | SU |
1371700 | Feb 1988 | SU |
9117720 | Nov 1991 | WO |
9217118 | Oct 1992 | WO |
9301768 | Feb 1993 | WO |
9315693 | Aug 1993 | WO |
9504556 | Feb 1995 | WO |
9529640 | Nov 1995 | WO |
9614032 | May 1996 | WO |
9624306 | Aug 1996 | WO |
9640012 | Dec 1996 | WO |
9748350 | Dec 1997 | WO |
9829057 | Jul 1998 | WO |
9836790 | Aug 1998 | WO |
9850103 | Nov 1998 | WO |
9855047 | Dec 1998 | WO |
9857599 | Dec 1998 | WO |
9933414 | Jul 1999 | WO |
9940964 | Aug 1999 | WO |
9944542 | Sep 1999 | WO |
9947075 | Sep 1999 | WO |
9951165 | Oct 1999 | WO |
0009059 | Feb 2000 | WO |
2000009059 | Feb 2000 | WO |
0041652 | Jul 2000 | WO |
0044308 | Aug 2000 | WO |
0044311 | Aug 2000 | WO |
0044313 | Aug 2000 | WO |
0045874 | Aug 2000 | WO |
0047139 | Aug 2000 | WO |
0049970 | Aug 2000 | WO |
0067661 | Nov 2000 | WO |
0105331 | Jan 2001 | WO |
0106959 | Feb 2001 | WO |
0108596 | Feb 2001 | WO |
0110320 | Feb 2001 | WO |
0110343 | Feb 2001 | WO |
0135870 | May 2001 | WO |
0149213 | Jul 2001 | WO |
0154625 | Aug 2001 | WO |
0162189 | Aug 2001 | WO |
2001054625 | Aug 2001 | WO |
0164137 | Sep 2001 | WO |
0176510 | Oct 2001 | WO |
0197715 | Dec 2001 | WO |
0236048 | May 2002 | WO |
0241789 | May 2002 | WO |
0243620 | Jun 2002 | WO |
0247575 | Jun 2002 | WO |
02056955 | Jul 2002 | WO |
02069842 | Sep 2002 | WO |
02100297 | Dec 2002 | WO |
03003943 | Jan 2003 | WO |
03003949 | Jan 2003 | WO |
03011195 | Feb 2003 | WO |
03028592 | Apr 2003 | WO |
03030776 | Apr 2003 | WO |
03032869 | Apr 2003 | WO |
03037222 | May 2003 | WO |
03037227 | May 2003 | WO |
03047468 | Jun 2003 | WO |
03047648 | Jun 2003 | WO |
03088873 | Oct 2003 | WO |
03015851 | Nov 2003 | WO |
03094793 | Nov 2003 | WO |
03094797 | Nov 2003 | WO |
03096932 | Nov 2003 | WO |
2004006803 | Jan 2004 | WO |
2004006804 | Jan 2004 | WO |
2004014256 | Feb 2004 | WO |
2004019811 | Mar 2004 | WO |
2004019817 | Mar 2004 | WO |
2004021922 | Mar 2004 | WO |
2004023980 | Mar 2004 | WO |
2004026117 | Apr 2004 | WO |
2004041126 | May 2004 | WO |
2004043293 | May 2004 | WO |
2004047681 | Jun 2004 | WO |
2004058106 | Aug 2004 | WO |
2004066876 | Aug 2004 | WO |
2004082536 | Sep 2004 | WO |
2004089250 | Oct 2004 | WO |
2004089253 | Oct 2004 | WO |
2004093728 | Nov 2004 | WO |
2004105651 | Dec 2004 | WO |
2005002466 | Jan 2005 | WO |
2005004753 | Jan 2005 | WO |
2005009285 | Feb 2005 | WO |
2005011534 | Feb 2005 | WO |
2005011535 | Feb 2005 | WO |
2005023155 | Mar 2005 | WO |
2005027790 | Mar 2005 | WO |
2005046528 | May 2005 | WO |
2005046529 | May 2005 | WO |
2005048883 | Jun 2005 | WO |
2005062980 | Jul 2005 | WO |
2005065585 | Jul 2005 | WO |
2005084595 | Sep 2005 | WO |
2005087140 | Sep 2005 | WO |
2005096993 | Oct 2005 | WO |
2006005015 | Jan 2006 | WO |
2006009690 | Jan 2006 | WO |
2006027499 | Mar 2006 | WO |
2005062980 | May 2006 | WO |
2007035471 | Mar 2007 | WO |
2005102015 | Apr 2007 | WO |
2006138391 | Apr 2007 | WO |
2007044285 | Apr 2007 | WO |
2007058847 | May 2007 | WO |
2007092354 | Aug 2007 | WO |
2007097983 | Aug 2007 | WO |
2007053243 | Sep 2007 | WO |
2007033093 | Jan 2008 | WO |
2010042950 | Apr 2010 | WO |
2010098857 | Sep 2010 | WO |
2012116368 | Aug 2012 | WO |
2012162228 | Nov 2012 | WO |
2013009975 | Jan 2013 | WO |
2013028387 | Feb 2013 | WO |
2013074671 | May 2013 | WO |
2013096545 | Jun 2013 | WO |
2016126511 | Aug 2016 | WO |
Entry |
---|
US 8,062,356 B2, 11/2011, Salahieh et al. (withdrawn) |
US 8,062,357 B2, 11/2011, Salahieh et al. (withdrawn) |
US 8,075,614 B2, 12/2011, Salahieh et al. (withdrawn) |
US 8,133,271 B2, 03/2012, Salahieh et al. (withdrawn) |
US 8,211,170 B2, 07/2012, Paul et al. (withdrawn) |
Raillat et al., “Treatment of Iliac Artery Stenosis with the Wallstent Endoprosthesis.” AJR 154(3):613-6 (Mar. 1990). |
Remadi et al., “Preliminary results of 130 aortic valve replacements with a new mechanical bileaflet prosthesis: the Edwards MIRA valve” Interactive Cardiovasc. and Thorac. Surg. 2, 80-83 (2003). |
Schurink et al,. “Stent Attachment Site-related Endoleakage after Stent Graft Treatment: An in vitro study of the effects of graft size, stent type, and atherosclerotic wall changes.” J. Vasc. Surg., 30(4):658-67 (Oct. 1999). |
Sochman et al., “Percutaneous Transcatheter Aortic Disc Valve Prosthesis Implantation: A Feasibility Study.” Cardiovasc. Intervent. Radiol., 23: 384-388, Sep. 2000. |
Southern Lights Biomaterials Homepage, http://www.slv.co.nz/, Jan. 7, 2011. |
Stassano, “Mid-term Results of the Valve-on-Valve Technique for Bioprosthetic Failure.” European Journal of Cardiothoracic Surgery: vol. 18, 453-457, Oct. 2000. |
Steinhoff et al., “Tissue Engineering of Pulmonary Heart Valves on Allogenic Acellular Matrix Conduits.” Circulation, 102 [suppl. III]: III-50-III-55 (2000). |
Stuart, “In Heart Valves, A Brave, New Non-Surgical World.” Start-Up. Feb. 9-17, 2004. |
Supplemental Search Report from EP Patent Office, EP Application No. 04815634.3, dated Aug. 19, 2011. |
Supplemental Search Report from EP Patent Office, EP Application No. 05758878.2, dated Oct. 24, 2011. |
Textbook of Interventional Cardiology, 2d Ed., Chapter 75: Percutaneous Expandable Prosthetic Valves (1994). |
Thompson et al., “Endoluminal stent grafting of the thoracic aorta: Initial experience with the Gore Excluder,” Journal of Vascular Surgery, 1163-70 (Jun. 2002). |
Topol, “Percutaneous Expandable Prosthetic Valves.” Textbook of Interventional Cardiology, W.B. Saunders Company, 2: 1268-1276, 1994. |
Vahanian et al., “Percutaneous Approaches to Valvular Disease.” Circulation, 109: 1572-1579, Apr. 6, 2004. |
Van Herwerden et al., “Percutaneous Valve Implantation: Back to the Future?” Euro. Heart J., 23(18): 1415-1416, Sep. 2002. |
VentureBeatProfiles, Claudio Argento, Jan. 7, 2010, http://venturebeatprofiles.com/person/profile/claudio-argento. |
Vossoughi et al., Stent Graft Update (2000)—Kononov, Volodos, and Parodi and Palmaz Stents; Hemobahn Stent Graft. |
Yoshioka et al., “Self-Expanding Endovascular Graft: An Experimental Study in Dogs.” AJR 151: 673-76 (Oct. 1988). |
Zhou et al., “Self-expandable Valved Stent of Large Size: Off-Bypass Implantation in Pulmonary Position.” Eur. J. Cardiothorac, 24: 212-216, Aug. 2003. |
USPTO Case IPR2017-01293, U.S. Pat. No. 8,992,608 B, dated Oct. 13, 2017. |
Supplemental Search Report from EP Patent Office, EP Application No. 04813777.2, dated Aug. 19, 2011. |
Laborde et al., “Percutaneous Implantation of the Corevalve Aortic Valve Prosthesis for Patients Presenting High Risk for Surgical Valve Replacement.” EuroIntervention: 472-474, Feb. 2006. |
“A Matter of Size.” Triennial Review of the National Nanotechnology Initiative, The National Academies Press, Washington DC, v-13, http://www.nap.edu/catalog/11752/a-matter-of-size-triennial-review-of-the-national-nanotechnology, 2006. |
“Heart Valve Materials—Bovine (cow).” Equine & Porcine Pericardium, Maverick Biosciences Pty. Lt, http://maverickbio.com/biological-medical-device-materials.php?htm. 2009. |
“Pericardial Heart Valves.” Edwards Lifesciences, Cardiovascular Surgery FAQ, http://www.edwards.com/products/cardiovascularsurgeryfaq.htm, Nov. 14, 2010. |
Andersen et al. “Transluminal catheter implantation of a new expandable artificial cardiac valve (the stent-valve) in the aorta and the beating heart of closed chest pigs (Abstract).” Eur. Heart J., 11 (Suppl.): 224a (1990). |
Andersen et al., “Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs.” Euro. Heart J., 13:704-708, May 1992. |
Atwood et al., “Insertion of Heart Valves by Catheterization.” Project Supervised by Prof. S. Muftu of Northeastern University 2001-2002: 36-40, May 30, 2002. |
Atwood et al., “Insertion of Heart Valves by Catheterization.” The Capstone Design Course Report MIME 1501-1502. Technical Design Report Northeastern University, pp. 1-93, Nov. 5, 2007. |
Blum et al., “Endoluminal Stent-Grafts for Intrarenal Abdominal Aortic Aneurysms.” New Engl. J. Med., 336:13-20 (1997). |
Bodnar et al., “Replacement Cardiac Valves R Chapter 13: Extinct Cardiac Valve Prostheses.” Pergamon Publishing Corporation. New York, 307-322, 1991. |
Bonhoeffer et al., “Percutaneous Insertion of the Pulmonary Valve.” J. Am. Coll. Cardiol., 39:1664-9 (2002). |
Bonhoeffer et al., “Transcatheter Implantation of a Bovine Valve in Pulmonary Position: A Lamb Study.” Circulation, 102: 813-16 (2000). |
Bonhoeffer, et al., “Percutaneous replacement of pulmonary valve in a right ventricle to pulmonary-artery prosthetic conduit with valve dysfunction.” The Lancet, vol. 356, 1403-05 (Oct. 21, 2000). |
Boudjemline et al., “Percutaneous Implantation of a Biological Valve in the Aorta to Treat Aortic Valve Insufficiency—A Sheep Study.” Med Sci. Monit., vol. 8, No. 4: BR113-116, Apr. 12, 2002. |
Boudjemline et al., “Percutaneous Implantation of a Valve in the Descending Aorta in Lambs.” Euro. Heart J., 23: 1045-1049, Jul. 2002. |
Boudjemline et al., “Percutaneous Pulmonary Valve Replacement in a Large Right Ventricular Outflow Tract: An Experimental Study.” Journal of the American College of Cardiology, vol. 43(6): 1082-1087, Mar. 17, 2004. |
Boudjemline et al., “Percutaneous Valve Insertion: A New Approach?” J. of Thoracic and Cardio. Surg, 125(3): 741-743, Mar. 2003. |
Boudjemline et al., “Steps Toward Percutaneous Aortic Valve Replacement.” Circulation, 105: 775-778, Feb. 12, 2002. |
Cribier et al., “Early Experience with Percutaneous Transcatheter Implantation of Heart Valve Prosthesis for the Treatment of End-Stage Inoperable Patients with Calcific Aortic Stenosis.” J. of Am. Coll. of Cardio, 43(4): 698-703, Feb. 18, 2004. |
Cribier et al., “Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis: First Human Case.” Percutaneous Valve Technologies, Inc., 16 pages, Apr. 16, 2002. |
Cribier et al., “Percutaneous Transcatheter Implementation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis: First Human Case Description.” Circulation, 106: 3006-3008, Dec. 10, 2002. |
Cunanan et al., “Tissue Characterization and Calcification Potential of Commercial Bioprosthetic Heart Valves.” Ann. Thorac. Surg., S417-421, May 15, 2001. |
Cunliffe et al., “Glutaraldehyde Inactivation of Exotic Animal Viruses in Swine Heart Tissue.” Applied and Environmental Microbiology, Greenport, New York, 37(5): 1044-1046, May 1979. |
Dake et al., “Transluminal Placement of Endovascular Stent-Grafts for the Treatment of Descending Thoracic Aortic Aneurysms.” New Engl. J. of Med., 331(26):1729-34 (1994). |
Dolmatch et al., Stent Grafts: Current Clinical Practice (2000)—EVT Endograft and Talent Endoprosthesis. |
Dotter, “Transluminally-Placed Coilspring Endarterial Tube Grafts,” Investigative Radiology, pp. 329-332 (1969). |
Emery et al., “Replacement of the Aortic Valve in Patients Under 50 Years of Age: Long-Term Follow-Up of the St. Jude Medical Prosthesis.” Ann. Thorac. Surg., 75:1815-9 (2003). |
EP Search Report for EP Application No. 06824992.9, dated Aug. 10, 2011. |
Examiner's First Report on AU Patent Application No. 2011202667, dated May 17, 2012. |
Ferrari et al., “Percutaneous Transvascular Aortic Valve Replacement with Self-Expanding Stent-Valve Device.” Poster from the presentation given at SMIT 2000, 12th International Conference. Sep. 5, 2000. |
Helmus, “Mechanical and Bioprosthetic Heart Valves in Biomaterials for Artificial Organs.” Woodhead Publishing Limited: 114-162, 2011. |
Hijazi, “Transcatheter Valve Replacement: A New Era of Percutaneous Cardiac Intervention Begins.” J. of Am. College of Cardio., 43(6): 1088-1089, Mar. 17, 2004. |
Hourihan et al., “Transcatheter Umbrella Closure of Valvular and Paravalvular Leaks.” JACC, Boston, Massachusetts, 20(6): 1371-1377, Nov. 15, 1992. |
Huber et al., “Do Valved Stents Compromise Coronary Flow?” European Journal of Cardio-thoracic Surgery, vol. 25: 154-759, Jan. 23, 2004. |
Ing, “Stents: What's Available to the Pediatric Interventional Cardiologist?” Catheterization and Cardiovascular Interventions 57:274-386 (2002). |
Kort et al., “Minimally Invasive Aortic Valve Replacement: Echocardiographic and Clinical Results.” Am. Heart J., 142(3): 476-481, Sep. 2001. |
Levy, “Mycobacterium Chelonei Infection of Porcine Heart Valves.” The New England Journal of Medicine, Washington DC, 297(12), Sep. 22, 1977. |
Love et al., The Autogenous Tissue Heart Valve: Current Status. Journal of Cardiac Surgery, 6(4): 499-507, Mar. 1991. |
Lutter et al., “Percutaneous Aortic Valve Replacement: An Experimental Study. I. Studies on Implantation.” J. of Thoracic and Cardio. Surg., 123(4): 768-776, Apr. 2002. |
Moazami et al., “Transluminal Aortic Valve Placement: A Feasibility Study With a Newly Designed Collapsiable Aortic Valve,” ASAIO J. vol. 42:5, pp. M383-85 (Sep./Oct. 1996). |
Moulopoulos et al., “Catheter-Mounted Aortic Valves.” Annals of Thoracic Surg., 11(5): 423-430, May 1971. |
Paniagua et al., “Heart Watch.” Texas Heart Institute. Edition: 8 pages, Spring, 2004. |
Paniagua et al., “Percutaneous Heart Valve in the Chronic in Vitro Testing Model.” Circulation, 106: e51-e52, Sep. 17, 2002. |
Pavcnik et al., “Percutaneous Bioprosthetic Venous Valve: A Long-term Study in Sheep.” J. of Vascular Surg., 35(3): 598-603, Mar. 2002. |
Pavcnik, et al., “Aortic and venous valve for percutaneous insertion,” Min. Invas. Ther. & Allied Technol. 9(3/4) 287-292 (2000). |
Phillips et al., “A Temporary Catheter-Tip Aortic Valve: Hemodynamic Effects on Experimental Acute Aortic Insufficiency.” Annals of Thoracic Surg., 21(2): 134-136, Feb. 1976. |
Cribier et al., “Percutaneous Transluminal Valvuloplasty of Acquired Aortic Stenosis in Elderly Patients: An Alternative to Valve Replacement?” The Lancet, 63-7 (Jan. 11, 1986). |
Allen et al., “What are the characteristics of the ideal endovascular graft for abdominal aortic aneurysm exclusion?” J. Endovasc. Surg., 4(2):195-202 (May 1997). |
Bailey, “Percutaneous Expandable Prosthetic Valves, Textbook of Interventional Cardiology.” vol. 2, 2d ed. Eric J. Topol, W.B. Saunders Co. (1994). |
Couper, “Surgical Aspects of Prosthetic Valve Selection,” Overview of Cardiac Surgery for the Cardiologist, Springer-Verlag New York, Inc., 131-145 (1994). |
Cribier et al., “Trans-Cathether Implantation of Balloon-Expandable Prosthetic Heart Valves: Early Results in an Animal Model.” Circulation [suppl. II] 104(17)11-552 (Oct. 23, 2001). |
Dalby et al., “Non-Surgical Aortic Valve Replacement” Br. J. Cardiol., 10:450-2 (2003). |
Dhasmana, et al., “Factors Associated With Periprosthetic Leakage Following Primary Mitral Valve Replacement: With Special Consideration of Suture Technique.” Annals of Thorac. Surg. 35(2), 170-8 (Feb. 1983). |
Diethrich, AAA Stent Grafts: Current Developments, J. Invasive Cardiol. 13(5) (2001). |
Greenberg, “Abdominal Aortic Endografting: Fixation and Sealing.” J. Am. Coll. Surg. 194:1:S79-S87 (2002). |
Grossi, “Impact of Minimally Invasive Valvular Heart Surgery: A Case-Control Study.” Ann. Thorac. Surg., 71:807-10 (2001). |
Huber et al., “Do Valved Stents Compromise Coronary Flow?” European Journal of Cardio-thoracic Surgery, vol. 25: 754-759, Jan. 23, 2004. |
Ionescu, et al., “Prevalence and Clinical Significance of Incidental Paraprosthetic Valvar Regurgitation: A prospective study using transesophageal echocardiography.” Heart, 89:1316-21 (2003). |
Kaiser, et al., “Surgery for Left Ventricle Outflow Obstruction: Aortic Valve Replacement and Myomectomy,” Overview of Cardiac Surgery for the Cardiologist. Springer-Verlag New York, Inc., 40-45 (1994). |
Kato et al., “Traumatic Thoracic Aortic Aneurysm: Treatment with Endovascular Stent-Grafts.” Radiol., 205: 657-662 (1997). |
Khonsari et al., “Cardiac Surgery: Safeguards and Pitfalls in Operative Technique.” 3d ed., 45-74 (2003). |
Knudsen et al., “Catheter-implanted prosthetic heart valves.” Int'l J. of Art. Organs, 16(5): 253-262, May 1993. |
Lawrence et al., “Percutaneous Endovascular Graft: Experimental Evaluation,” Radiology, 163(2): 357-60 (May 1987). |
Levi et al., “Future of Interventional Cardiology in Pediactrics.” Current Opinion in Cardiol., 18:79-90 (2003). |
Magovern et al., “Twenty-five-Year Review of the Magovern-Cromie Sutureless Aortic Valve.” Ann. Thorac. Surg., 48: S33-4 (1989). |
Maraj et al., Evaluation of Hemolysis in Patients with Prosthetic Heart Valves, Clin. Cardiol. 21, 387-392 (1998). |
McKay et al., “The Mansfield Scientific Aortic Valvuloplasty Registry: Overview of Acute Hemodynamic Results and Procedural Complications.” J. Am. Coll. Cardiol. 17(2): 485-91 (Feb. 1991). |
Mirich et al., “Percutaneously Placed Endovascular Grafts for Aortic Aneurysms: Feasibility Study.” Radiology, 170: 1033-1037 (1989). |
Parodi et al., “Transfemoral Intraluminal Graft Implantation for Abdominal Aortic Aneurysms.” Ann. Vasc. Surg., 5 (6):491-9 (1991). |
Pavcnik et al., “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement.” Radiology 183:151-54 (1992). |
Printz, et al., “Let the Blood Circulate.” Sulzer Tech. Rev. 4/99. |
Rosch et al., “Gianturco-Rosch Expandable Z-Stents in the Treatment of Superior Vena Cava Syndrome.” Cardiovasc. Intervent. Radiol. 15: 319-327 (1992). |
Seminars in Interventional Cardiology, ed. P.W. Surruys, vol. 5 (2000). |
Stanley et al., “Evaluation of Patient Selection Guidelines for Endoluminal AAA Repair With the Zenith Stent Graft: The Australasian Experience.” J. Endovasc. Ther. 8:457-464 (2001). |
White et al., “Endoleak as a Complication of Endoluminal Grafting of Abdominal Aortic Aneurysms: Classification, Incidence, Diagnosis, and Management.” J. Endovac. Surg., 4:152-168 (1997). |
Carpentier-Edwards PERIMOUNT Bioprosthesis (2003). |
Fluency Vascular Stent Graft Instructions for Use (2003). |
Gore Excluder Instructions for Use (2002). |
Anderson et al. “Transluminal catheter implantation of a new expandable artificial cardiac valve (the stent-valve) in the aorta and the beating heart of closed chest pigs (Abstract).” Eur. Heart J., 11 (Suppl.): 224a (1990). |
USPTO Case IPR 2017-0006, U.S. Pat. No. 8,992,608 B2, “Final Written Decision” dated Mar. 23, 2018. |
USPTO Case IPR2016-____, U.S. Pat. No. 8,992,608 “Petition for Interpartes Review of U.S. Pat. No. 8,992,608” dated Oct. 12, 2016. |
U.S. Appl. No. 60/553,945 filed Mar. 18, 204, Inventor: White. |
Number | Date | Country | |
---|---|---|---|
20160008122 A1 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
60234113 | Sep 2000 | US | |
60234112 | Sep 2000 | US | |
60226461 | Aug 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14147149 | Jan 2014 | US |
Child | 14866017 | US | |
Parent | 13493730 | Jun 2012 | US |
Child | 14147149 | US | |
Parent | 11185425 | Jul 2005 | US |
Child | 13493730 | US | |
Parent | 09932512 | Aug 2001 | US |
Child | 11185425 | US |