Expandable implant devices for filtering blood flow from atrial appendages

Abstract
Implant devices for filtering blood flowing through the ostium of an atrial appendage have component structures one or more of which are expandable. Devices with component structures in their unexpanded state have a compact size suitable for intra-cutaneous delivery to an atrial appendage situs. The expandable component structures are expanded in situ to deploy the devices. A device may have sufficiently short axial length so that most or almost all of the device length may fit within the ostium region.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The invention relates to implant devices that may be implanted in an atrial appendage for filtering blood flowing between the atrial appendage and an associated atrium of the heart to prevent thrombi from escaping from the atrial appendage into the body's blood circulation system.


2. Description of the Related Art


There are a number of heart diseases (e.g., coronary artery disease, mitral valve disease) that have various adverse effects on a patient's heart. An adverse effect of certain cardiac diseases, such as mitral valve disease, is atrial (or auricular) fibrillation. Atrial fibrillation leads to depressed cardiac output. A high incidence of thromboembolic (i.e., blood clot particulate) phenomena are associated with atrial fibrillation, and the left atrial appendage (LAA) is frequently the source of the emboli (particulates).


Thrombi (i.e., blood dots) formation in the LAA may be due to stasis within the fibrillating and inadequately emptying LAA. Blood pooling in the atrial appendage is conducive to the formation blood clots. Blood clots may accumulate, build upon themselves. Small or large fragments of the blood clots may break off and propagate out from the atrial appendage into the atrium. The blood clot fragments can then enter the body's blood circulation and embolize distally into the blood stream.


Serious medical problems result from the migration of blood clot fragments from the atrial appendage into the body's blood stream. Blood from the left atrium and ventricle circulates to the heart muscle, the brain, and other body organs, supplying them with necessary oxygen and other nutrients. Emboli generated by blood clots formed in the left atrial appendage may block the arteries through which blood flows to a body organ. The blockage deprives the organ tissues of their normal blood flow and oxygen supply (ischemia), and depending on the body organ involved leads to ischemic events such as heart attacks (heart muscle ischemia) and strokes (brain tissue ischemia).


It is therefore important to find a means of preventing blood clots from forming in the left atrial appendage. It is also important to find a means to prevent fragments or emboli generated by any blood clots that may have formed in the atrial appendages, from propagating through the blood stream to the heart muscle, brain or other body organs.


U.S. Pat. No. 5,865,791 (hereinafter, “the '791 patent”) relates to the reduction of regions of blood stasis in the heart and ultimately reduction of thrombi formation in such regions, particularly in the atrial appendages of patients with atrial fibrillation. More specifically, the '791 patent relates to procedures and devices for affixing the atrial appendages in an orientation that prevents subsequent formation of thrombi. In the '791 patent, the appendage is removed from the atrium by pulling the appendage, placing a loop around the appendage to form a sack, and then cutting it off from the rest of the heart.


U.S. Pat. No. 5,306,234 describes a method for surgically closing the passage way between the atrium and the atrial appendage, or alternatively severing the atrial appendage.


Some recently proposed methods of treatment are directed toward implanting a plug-type device in an atrial appendage to occlude the flow of blood therefrom.


A preventive treatment method for avoiding thromboembolic events (e.g., heart attacks, strokes, and other ischemic events) involves filtering out harmful emboli from the blood flowing out of atrial appendages. Co-pending and co-owned U.S. patent application Ser. No. 09/428,008, U.S. patent application Ser. No. 09/614,091, U.S. patent application Ser. No. 09/642,291, and U.S. patent application Ser. No. 09/697,628, all of which are hereby incorporated by reference in their entireties herein, describe filtering devices which may be implanted in an atrial appendage to fitter the blood flow therefrom. The devices may be delivered to the atrial appendage using common cardiac catheterization methods. These methods may include trans septal catheterization which involves puncturing an atrial septum.


Catheters and implant devices that are large may require large punctures in the septum. Large catheters and devices may damage body tissue during delivery or implantation. Damage to body tissue may cause trauma, increase recovery time, increase the risk of complications, and increase the cost of patient care. Further the atrial appendages may vary in shape and size from patient to patient.


It would therefore be desirable to provide implant devices which are small and which can be delivered by small-sized catheters to the atrial appendages. It would therefore also be desirable to provide implant devices whose size can be adjusted in situ to confirm to the size of the atrial appendages.


SUMMARY OF THE INVENTION

The invention provides implant devices and methods, which may be used to filter blood flowing between atrial appendages and atrial chambers. The devices are designed to prevent the release of blood clots formed in the atrial appendages into the body's blood circulation system.


All implant devices disclosed herein have adjustable sizes. A compact or narrow size may be used for intra-cutaneous device delivery to an atrial appendage, for example, by cardiac catheterization. The devices include size-adjusting mechanisms that allow the device size to be enlarged in situ to an expanded size conforming to the dimensions of the atrial appendage.


It an embodiment of the implant device, an expanding inner structure is disposed inside a membrane tube. The inner structure has rigid components, which when the inner structure is expanded press or push sides of the membrane tube outward. The inner structure may be self-expanding or may, for example, be expanded by an inflatable balloon. When the inner structure is in a collapsed configuration, the device has a compact size suitable for delivery to and insertion in an atrial appendage, for example, by cardiac catheterization. When fully deployed for use, a closed end of the membrane tube covers the ostium of the atrial appendage. Filter elements or components built into the closed end of the membrane tube filter out harmful-size emboli from the blood flowing out of the atrial appendage. The device may be held in position by expanding the inner structure to press sides of the membrane tube against the interior walls of the atrial appendage.


Other embodiments of the implant devices may have other kinds of inflatable or expandable structures which allow the devices to have compact sizes for device delivery and which can later be enlarged in situ to make the device size conform to the dimensions of the atrial appendages.


The devices may have short axial lengths that are comparable to or are a fraction of the length of an ostium. A short-axial length device may have a thin expandable or inflatable structure. The cross-sectional shape of a thin expandable structure may, for example, resemble that of a mushroom cap, a pill box, or a doughnut-shaped tube, etc. The structure may include suitable blood-permeable filter elements for filtering harmful-size emboli from the blood flow. The filter elements may be located centrally or may be located off-center in the thin structure. When deployed the thin structure covers the ostium of an atrial appendage and directs all blood flow through the ostium to pass through the filter elements. The structure may be suitably designed to prevent unwanted flow channels (e.g., around the edges of the device) through which unfiltered blood may flow between the appendage and the atrium. The structure may have anchors attached to its outside periphery. These anchors may be pins, hooks, barbs, atraumatic bulb tips or other suitable structures for engaging wall tissue. The anchors engage the interior walls of the ostium and thereby secure the position of the deployed device. Some devices may have axial lengths that may be slightly larger than the length of an ostium. Such devices may have anchors disposed on posterior portions of the expandable structure for engaging interior wall tissue of the neck region of the atrial appendage leading to the ostium Other devices with expandable or inflatable structures may have longer axial lengths that are comparable to or are a substantial fraction of the length of an atrial appendage. A longer-axial length device may have a first structure designed to cover the ostium of an atrial appendage and filter blood flow therethrough. This first structure may optionally be expandable or non-expandable. In either case, an expandable second structure in the device may be used to help secure the device in its deployed position. The expandable second structure is generally disposed in the lumen or interior cavity of the atrial appendages. The expandable second structure may be self-expanding or may, for example, be expandable by balloon inflation. The expandable second structures may have components such as attached anchors for engaging the interior walls of the atrial appendages. These anchors may be pins, hooks, barbs, atraumatic bulb tips or other suitable structures for engaging wall tissue. The expandable second structure may additionally or alternatively include inflatable anchors. These inflatable anchors directly engage the interior walls of the atrial appendage when inflated and provide resistance to changes in the position of the deployed device.


Filter elements with predetermined hole size distributions for filtering harmful-sized emboli from the blood flow may be incorporated in the expandable implant devices. The filter elements may be configured so that their hole size distributions do not change significantly during the expansion of the device. In one configuration the filter elements are embedded in elastic membranes. These membranes are designed such that when the devices are expanded concomitant stretching of the filter element configurations due to the increase in device size is largely accommodated by the elastic membranes. The sizes of filter elements themselves and their predetermined hole size distributions remain substantially unchanged.


Further features of the invention, its nature and various advantages will be more apparent from the accompanying drawing and the following detailed description.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1a is a cross sectional view showing an adjustable-size implant device at its narrow compact size suitable for delivery by cardiac catheterization in accordance with the principles of the invention.



FIG. 1b is a cross sectional view showing the implant device of FIG. 1a deployed in an atrial appendage. The implant device shown has membrane tithe having filter elements for filtering blood. The device is retained in position by an expanded inner structure in accordance with the principles of the invention.



FIG. 1c is a schematic perspective view showing an exemplary expanded inner structure in its expanded configuration in accordance with the principles of the invention.



FIG. 2 is a partial sectional view showing another implant device deployed in an atrial appendage. The implant device shown has filter elements for filtering blood and is retained in position by a self-expanding inner structure in accordance with the principles of the invention.



FIG. 3a is a schematic illustration of an as-delivered implant device positioned within an ostium. The device has a thin expandable structure which may be used to cover the ostium of an atrial appendage so that blood flow between the appendage and the atrium is constrained to pass through filter elements in the device in accordance with the principles of the invention.



FIGS. 3b and 3c are cross-sectional views illustrating exemplary shapes of the expandable structure of the implant device of FIG. 3a.



FIG. 4 schematically illustrates the increase in size of the implant device of FIG. 3a as its expandable structure is being inflated in accordance with the principles of the invention.



FIG. 5a is a partial cross sectional view showing an implant device with an expandable distal structure disposed in an atrial appendage. The implant device shown has a proximal structure, which may be used to cover the ostium of the atrial appendage to direct blood flow to pass through filter elements. The device is retained in position by the distal structure which has inflatable anchors in accordance with the principles of the invention.



FIG. 5b is a side elevational view showing another implant device with expandable structures in which a single expanding structure provides the functions of both the proximal and distal structures shown in FIG. 5b, in covering the ostium and in securing the position of the device, in accordance with the principles of the invention.



FIG. 5c is a plan view of the implant device shown in FIG. 5b.



FIG. 6 is a schematic illustration of a predetermined-size filter element having holes impervious to harmful-size emboli, and an elastic membrane attached the filter element in accordance with the principles of the invention.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

Although atrial fibrillation may result in the pooling of blood in the left atrial appendage and the majority of use of the invention is anticipated to be for the left atrial appendage, the invention may also be used for the right atrial appendage and in general for placement across any aperture in the body in which blood is permitted to flow therethrough or therefrom but in which blood clots are substantially prevented from escaping from the atrial appendage and entering into the bloodstream.


The implant devices disclosed herein have adjustable sizes. A compact or narrow size is used for intra-cutaneous device delivery to the atrial appendages, for example, by cardiac catheterization. The devices include size-adjusting expansion mechanisms that allow the device size to be enlarged in situ to an expanded size. Controlled expansion may be desirable for the proper functioning of an implant device. For example, the filter elements of a device must be correctly centered or positioned across an atrial appendage ostium for the device to properly intercept and filter blood flowing out of the atrial appendage. The expansion mechanisms allow for controlled expansion of the implanted device size in situ to conform to the dimensions of the atrial appendage. Further, the expansion mechanisms may allow for the expansion to be at least partially reversed and thereby enable a physician to optimize or adjust the deployment of the device in situ. The types of implant devices disclosed herein add to variety of device types disclosed in U.S. patent application Ser. No. 09/428,008, U.S. patent application Ser. No. 09/614,091, U.S. patent application Ser. No. 09/642,291, and U.S. patent application Ser. No. 09/697,628, incorporated in by reference herein.



FIG. 1a shows device 101 at its compact size suitable for delivery to atrial appendage 100 (FIG. 1b) by cardiac catheterization. Device 101 has a membrane tube 120 in which an expanding structure 130 is disposed. Membrane tube 120 may be made of thin flexible materials and may include flaps 122 as shown in FIG. 1a. Expanding structure 130, in contrast, may have components which are made of more rigid material such as hard plastics or corrosion-resistant metal alloys including shape memory alloys. Expanding structure 130 has a collapsed configuration (FIG. 1a) and a larger expanded configuration (FIGS. 1b and 1c).


In both the collapsed and expanded configurations, structure 130 may have a generally cylindrical shape. Structure 130 may have a design that allows it to expand radially without any significant concomitant change in its axial length. The design of also may allow for permanent deformation, or partially or completely reversible deformation of structure 130 during its expansion. FIG. 1c schematically illustrates portions of an exemplary inner structure 130 in its expanded configuration. Structure 130 shown in FIG. 1c is similar to structures shown and described in greater detail, for example, in U.S. application Ser. No. 09/642,291. Structure 130 includes interconnected serpentine segments 131. Adjacent serpentine segments 131 are interconnected by a plurality of longitudinal struts 132. End serpentine segment 131 is connected by radial members 133 to a central hollow cylindrical ring 134. Some or all of components 130-134 may, for example, be fabricated from shape memory alloys.


Externally-initiated means may be used to change the configuration of structure 130 when it is placed in atrial appendage 100. For example, balloon 140 (e.g., placed within structure 130 through central hollow cylindrical ring 134) may be inflated to change the configuration of structure 130 from its collapsed configuration to its expanded configuration. Balloon 140 may be inflated or deflated conventionally, for example, by injecting or withdrawing suitable fluids from the body of balloon 140, respectively, through suitable elastic sealed openings, for example, valve structures 142. The elastic sealed openings such as valve structures 142 prevent uncontrolled release of fluids injected in to balloon 140.



FIG. 1b shows, for example, device 101 expanded to a suitable expanded size for permanent deployment in atrial appendage 100. Device 101 may be used to filter blood flowing out from atrial appendage 100. Device 101 has a membrane tube 120 in which an expanding structure 130 is placed. Membrane tube 120 has a generally cylindrical shape and may have one or both of its distal and proximal ends closed. FIG. 1b shows membrane 120 having both distal and proximal closed ends 124. The membrane tube 120 can be made of bicompatible materials, such as, for example, ePFTE (e.g., Gortex®), polyester (e.g., Dacron®), PTFE (e.g., Teflon®), silicone, urethane, metal fibers, or other biocompatible polymers.


In one embodiment of device 101 at least portions of closed ends 124 serve as filter elements 125 for filtering harmful-size emboli from blood flow. Filter elements 125 are made of blood-permeable material. The remaining portions of membrane tube 125 (e.g., sides 126) may be made of blood-impervious material. The materials used to fabricate membrane tube 125 components can be any suitable bicompatible materials, such as, for example, ePFTE (e.g., Gortex®), polyester (e.g., Dacron®), PTFE (e.g., Teflon®), silicone, urethane, metal fibers, or other biocompatible polymers. The structure of the blood-permeable material used to fabricate filter elements 125 is preferably a two-dimensional screen, a cellular matrix, a woven or non-woven mesh, or the like. The structure of the blood-permeable material may also be that of a permeable metal or a mesh of fine metal fibers. Further, the blood-permeable material in filter elements 125 may be coated or covered with an anticoagulant, such as heparin, or another compound, or treated to provide antithrombogenic properties to the filter elements 125 to inhibit clogging of filter elements 125 by an accumulation of blood clots.


Filter elements 125 have holes through them for blood flow. As used herein, it will be understood that the term hole refers to an opening in the structure of a filter element which provides a continuous open channel or passageway from one side of the fitter element to the other. The term pore refers to a small cavity in the material of a filter element. Cavities or pores do not provide a continuous open channel or passageway through the filter element. Partially opened surface pores, however, are an important component of surface texture which is advantageous for cellular tissue ingrowth.


The hole sizes in the blood-permeable material included in filter elements 125 may be chosen to be sufficiently small so that harmful-size emboli are filtered out from the blood flow between appendage 100 and atrium 105 (shown partially in FIGS. 1b and 1c). Yet the hole sizes may be chosen to be sufficiently large to provide an adequate flow conductivity for emboli-free blood to pass through device 101. Filter elements 125 may have hole sizes ranging, for example, from about 50 to about 400 microns in diameter. The distribution the hole sizes may be suitably chosen, fir example, with regard to individual circumstances, to be larger or smaller than indicated, provided such holes substantially inhibit harmful-size emboli from passing therethrough. The open area of filter elements 125 is preferably at least 20% of the overall surface area of the closed ends 124, although a range of about 25-60% may be preferred.


The hole size distribution of the material used to make filter elements 125, described above, allows blood to flow therethrough while blocking or inhibiting the passage of thrombus, clots, or emboli formed within the atrial appendage from entering the atrium of the heart and, eventually, the patient's bloodstream.


In an alternative embodiment, substantially all of membrane tube 120 may be made of blood-permeable material suitable for filtering harmful-size emboli. Use of a single material (or a fewer number of different types of materials) in membrane tube 120 may simplify its fabrication. In this case it may be sufficient to coat or cover closed end 124 portions with an anticoagulant to prevent clogging of blood flow between atrial appendage 100 and atrium 105. Sides 126, for example, need not be coated with an anticoagulant as they are likely to be sealed in any event by atrial appendage wall tissue when device 101 is deployed in an atrial appendage, as described below.


For all embodiments of device 101, for example, as described above, when fully deployed, membrane tube 120 is held or retained in position in atrial appendage 100 so that proximal closed end 124 extends across or covers ostium 110. After initial insertion of device 101 in atrial appendage 100, expanding structure 130 is expanded, for example, by inflating balloon 140, from its initial compact size to an expanded size. Expanding structure 130 is expanded to a suitable size to press membrane tube sides 126 directly against interior walls 100a of atrial appendage 100. The direct engagement of sides 126 with interior wall tissue 100a caused by the outward pressing by structure 130 holds device 101 provides a degree of resistance to movement of device 101 within atrial appendage 100 and holds device 101 in a substantially fixed position. However, this resistance to movement at least initially during the implant procedure may be reversed to allow repositioning of device 101 if necessary or desirable. The reversal may be complete or partial corresponding to the elastic deformation characteristics of structure 130. The reversal may be accomplished, for example, by deflation of balloon 140. Later, regenerative tissue growth, for example, of endothelial or endocardial tissue, conforming to the outer surface textures of sides 126 may bind sides 126 and provide additional securement of fully deployed device 101. This tissue growth binding may, for example, involve tissue ingrowth into partially-open surface pores of the material of sides 126, or, for example, tissue ingrowth into holes in blood-permeable material in the case where sides 126 are made of blood-permeable material having holes. This tissue growth, in conjunction with the outward pressure provided by inner structure 130, may provide additional means of reducing flow leakage about the periphery of device 101.


In some implant procedures it may be desirable to leave balloon 140 in situs, for example, in a deflated state. In other implant procedures it may be desirable to physically remove balloon 140 after device 101 has been secured in appendage 100. As necessary or desired, balloon 140 may be removed from the patient's body using conventional catheterization techniques. Balloon 140 may be withdrawn from tube 120 through suitable self-sealing openings in closed ends 124. A suitable self-sealing opening may be of the type formed by overlapping membrane flaps (e.g., flaps 124FIG. 1b). Other types of conventional self-sealing openings such as those formed by elastic O-ring structures (not shown) also may be used.


In further embodiments of device 101, expanding inner structure 130 may be a self-expanding structure. Structure 130 may have suitable biasing means, for example, springs or other elastic components, which change the configuration of structure 130 from its as-implanted collapsed configuration to its expanded configuration after device 101 has been implanted. Self-expanding structure 130 also may, for example, have components made from shape memory alloys (e.g., Nitinol®). The shape memory alloy components may be (preformed to have a shape corresponding to the expanded configuration of structure 130. The performed components may be bent or compressed to form structure 130 in its collapsed configuration. After device implantation, heating or changing temperature induces the bent or compressed the shape memory alloy components to automatically revert to their performed shapes corresponding to the expanded configuration of structure 130. FIG. 2 shows, for example, device 101 expanded by self-expanding structure 200 to a suitable expanded size for permanent deployment in an atrial appendage 100.


Other embodiments of the implant devices may have other kinds of inflatable or expandable structures, which allow the devices to have compact sizes for device delivery, and which can later be enlarged in situ to make the device sizes conform to the dimensions of the atrial appendages. An implant device of these embodiments may have one or more component structures or substructures. One or more of the component structures or substructures in a device may be expandable or inflatable. A first type of these component structures or substructures may include blood-permeable filter elements, and, for example, serve to filter harmful size emboli from the blood flow. A second type of the component structures or substructures may include anchoring elements, and, for example, serve to retain the deployed device in position. It will be understood that neither component types are contemplated within the invention as necessarily having mutually exclusive functions. Neither type is restricted to having only filter elements or only anchoring elements. A single component structure may serve both to filter blood flow and to hold the deployed device in position.


Different embodiments of devices having one or more of these types of component structures or substructures may have correspondingly different axial lengths spanning a wide range of values. At the upper end of the range, devices may have axial lengths that are comparable to or are a significant fraction of the length of an atrial appendage. Toward the lower end of the range, devices may have axial lengths that are comparable to or are a fraction of the length of the ostium and the neck region of the atrial appendage leading to the ostium.


A device embodiment having a short axial length suitable for deployment fully within an ostium is illustrated in FIGS. 3a, 3b, 3c, and 4. Device 300 has a thin expandable or inflatable structure 310. FIG. 3a schematically shows device 300 as delivered for deployment positioned within ostium 305. Structure 310 when expanded may have a shape, for example, resembling a mushroom cap (FIG. 3b), a pill box (FIG. 3c), a doughnut-shaped tube, or any other shape suitable for engaging ostium 305.


Expandable structure 310 may be fabricated from membranes or fabrics made of bicompatible materials, such as, for example, ePFTE (e.g., Gortex®), polyester (e.g., Dacron®), PTFE (e.g., Teflon®), silicone, urethane, metal fibers, or other biocompatible polymers. Expandable structure 310 includes filter elements for filtering harmful-size emboli (not shown). Structure 310 may include non-expanding portions made of blood-permeable membrane or fabric suitable for filtering harmful-size emboli (not shown). The non-expanding portions may, for example, in the case where structure 310 has an expandable doughnut shape extend across the central region of the doughnut shape. Structure 310 may also include access openings or fixtures for attaching catheters or other delivery devices (not shown). Anchors 330 are attached to the outer periphery of expandable structure 330. Anchors 330 may, for example, be attached to an outer rim toward the posterior of expandable structure 330. Anchors 330 may be pins, hooks, barbs, wires with atraumatic bulb tips or other suitable structures for engaging tissue. Device 300 is secured in position relative to ostium 305 when anchors 330 engage surrounding ostium wall tissue.


Device 300 may be suitably deployed to filter blood flowing through ostium 305 by extending expandable structure 310 across ostium 305. Expandable structure 320 may be self-expanding (e.g., like structure 130FIG. 2). Alternatively, expandable structure 310 may include externally-initiated mechanical means for expansion (e.g., like balloon 140FIG. 1b). FIG. 4 schematically illustrates the increase in size of device 300 as expandable structure 310 is being inflated. FIG. 4 shows device 300 increasing from an initial size a to an intermediate size b, and then to a size c. As device 300 size increases attached anchors 330 move radially outward toward the interior walls of ostium 305. When structure 310 is sufficiently expanded, anchors 330 engage surrounding interior wall tissue and secure device 300 in position.



FIG. 5a shows an implant device 500 having an axial length which is comparable or a significant fraction of the length of atrial appendage 100. Device 500 has two component substructures, i.e., proximal structure 510, and distal structure 520. Proximal structure 510 may be used to cover ostium 110 of atrial appendage 100. Proximal structure 510 includes blood-permeable filter elements which filter the blood flow through ostium 110. Proximal structure 510 may be made of a suitable fabric made from bicompatible materials, such as, for example, ePFTE (e.g., Gortex®), polyester (e.g., Dacron®), PTFE (e.g., Teflon®), silicone, urethane, metal fibers, or other biocompatible polymers. Proximal structure 510 may be an expandable structure, which may, for example, be similar to expandable structure 310 described above with reference to FIGS. 3a, 3b and 3c. Alternatively, proximal structure 510 may be a structure which is not expandable or inflatable. Non-inflatable structure 510 may, for example, be any one of the structures for covering ostium 110 described in U.S. patent application Ser. No. 09/428,008, U.S. patent application Ser. No. 09/614,091, U.S. patent application Ser. No. 09/642,291, and U.S. patent application Ser. No. 09/697,628, all incorporated by reference herein.


In either case, structure 510 is retained in position extending across ostium 110 by use of attached distal structure 520. Distal structure 520 is inflatable and has one or more anchor sets 530 attached to an axial portion or shank 521. Each of the anchor sets 530 has a suitable number of inflatable anchors 531 designed to engage the interior walls of atrial appendage 100. Inflatable anchors 531 in a set 530 may be attached to axial portion 521 along a radial circumference at a suitable distance away from proximal cover 510 (not shown). Alternatively, inflatable anchors 531 in a set 530 may be attached to axial portion 521 along an axial length thereof, for example, as illustrated in FIG. 5a. Other distributions of anchors 531 also may be used. For example, anchors 531 may be attached to axial portion 521 in a spiral pattern. Distal structure 520 including anchor sets 530 may be made of a suitable fabric made of bicompatible materials, such as, for example, ePFTE (e.g., Gortex®), polyester (e.g., Dacron®), PTFE (e.g., Teflon®), silicone, urethane, metal fibers, or other biocompatible polymers.


Device 500 is at its compact size suitable for intra-cutaneous delivery when distal structure 520 is deflated, and when proximal structure 510 deflated or suitably folded according to whether proximal structure 510 is an expanding or a non-expanding structure. In an implant procedure, device 500 in its compact size may be delivered to atrial appendage 100, for example, by cardiac catheterization. When fully deployed, device 500 is positioned so that proximal structure 510 appropriately extends across ostium 110. Distal structure 520 is disposed to the interior of atrial appendage 100. Distal structure 520 is inflated by suitable means so that inflated anchors 531 engage and press against the interior walls of atrial appendage 100. The friction between outwardly pressing anchors 531 and the atrial appendage walls retains device 500 in its desired fully deployed position. The suitable means for inflating structure 520 may, for example, involve injection of fluids into structure 520 through suitable openings (not shown). The openings may have suitable valved seals preventing uncontrolled release or leakage of the inflating fluids.


In another device embodiment, a single inflatable structure may provide the functions of both the distal and proximal structures described above. Such a device may have a sufficiently short axial length so that all or almost all of the device may fit within the ostium or ostium region of an atrial appendage Anterior portions of the device may be used cover the ostium in order to direct blood flow between the atrial appendage and the atrial chamber through filter elements. Attached anchors may be distributed on at least part of the exterior surface area of posterior portions of the device. The anchors may be pins, hooks, barbs, wires with atraumatic bulb tips or other suitable structures for engaging tissue. The single inflatable structure may be self-expanding or may expand in response to externally-initiated means. When the device is expanded the anchors attached to its posterior portions engage the rear walls of the ostium and/or possibly the interior walls of the neck region of the atrial appendage close to the ostium. The device may be fabricated using suitable membranes or fabrics made of biocompatible materials, for example, such as those mentioned earlier. Further, the biocompatible materials may have, for example, any of the structures mentioned earlier (e.g., cellular matrix, wire mesh, etc.).


An exemplary implant device 550 most or almost all of which may fit within the ostium of an atrial appendage is illustrated in FIG. 5b and FIG. 5c. These two FIGS. show side elevational and top plan views of device 550, respectively. Device 550 like device 300 (FIG. 3a) has a single component structure, i.e., expandable structure 551. Expandable structure 551 includes anterior portion 560 and posterior portion 570. The axial length of device 550 may be comparable to or slightly larger than the length of the ostium. Device 550 with an axial length slightly larger than the length of the ostium, when deployed, may extend into the neck region of the atrial appendage close to the ostium.



FIG. 5b shows device 550 at an expanded size at which it may be deployed in the ostium. Anterior portion 560 may be fabricated from an elastic membrane and include suitable filter element 565 for filtering harmful-size emboli from the blood flow. Anterior portion 560 may include suitable openings or fixtures for attaching catheters or other delivery devices (not shown). Anterior portion 560 is used to cover the ostium to ensure that all blood flow through the ostium passes through filter element 565. Posterior portion 570 may, for example, be formed of a wire mesh (as shown), a braided or woven fabric, or a short segment of sheet material tube. Posterior portion 570 may have suitable radial dimensions conforming to the ostium dimensions. FIG. 5c shows, for example, a cylindrical posterior portion 570 having a substantially constant diameter cross-section along its axial length. Alternatively, cylindrical posterior portion 570 may be flared with its diameter increasing along its axial length to match changes in the ostium diameter, for example, as the ostium merges into the neck region of the atrial appendage (not shown).


As shown in FIG. 5b, posterior portion 570 has barbs 575 distributed over a part of its exterior surface area close to anterior portion 560. Alternatively, barbs 575 may be distributed over all of the exterior surface area. When device 550 is positioned and expanded in an ostium, barbs 575 engage the surrounding ostium walls (and possibly neck region walls) to secure device 550 in position.


Posterior portion 570 may optionally have suitable elastic deformation properties that cause portion 570 to recoil slightly in size from its largest expanded size. Such suitable deformation properties may be obtained by design, for example, by choice of fabrication materials with suitable elastic properties. The size recoil of device 550 causes barbs 575 which have engaged the ostium and/or neck region walls during the expansion of device 550 to pull back and draw the walls closer to device 550. The expandable structures in other device embodiments including those described earlier (e.g., FIGS. 1-4, FIG. 5a) also may have similar size recoil characteristics which cause attached anchors to engage and draw surrounding wall tissue closer to the devices.


The various expandable implant devices (e.g., those described above with reference to FIGS. 1-5) may have filter elements for filtering harmful-size emboli out of the blood flowing out from the atrial appendages into the atria. For effective filtering, the filter elements should have appropriate hole size distributions which filter out harmful-size emboli. Since the implant devices are likely to be expanded to different sizes in use, for example, to confirm to the varying dimensions of individual atrial appendages, the filter elements are configured so that their hole size distributions do not change significantly during the expansion of the device.


For example, FIG. 6 shows one configuration of filter element 600 in which the size distribution of holes 610 does not change significantly during device deployment. In the configuration shown, filter element 600 is attached to elastic membrane 620. Filter element 600 and elastic membrane 620 may, for example, be made of a suitable membrane or fabric composed of bicompatible materials, such as, for example, ePFTE (e.g., Gortex®), polyester (e.g., Dacron®), PTFE (e.g., Teflon®), silicone, urethane, metal fibers, or other biocompatible polymers. Filter 600 may have hole sizes ranging, for example, from about 50 to about 400 microns in diameter, suitable for filtering harmful-sized emboli. This range of hole size distribution may be adequate to make filter element 600 impervious to harmful-sized emboli, and yet provide enough permeability for blood to flow through element 600. The hole size distribution may be selected, for example, by selecting the open weave density of the fabric used to make filter 600. Alternatively, for example, for filter elements made of solid sheet material, other techniques such as laser drilling may be used for making small diameter holes.


Filter element 600 and elastic membrane 620 are constructed so that the former component is substantially less elastic than the latter component. This difference in elasticity may be obtained, for example, by using the same kind of material to make both components, but by making filter element 600 substantially thicker than elastic membrane 620. Alternatively, elastic membrane 620 and filter 600 may be made of two different kinds of materials that have different elastic properties. The two different material components may be bonded or glued together.


Filter element 600 and elastic membrane 620 may be incorporated in various types of implant device structures, for example, membrane tube 120FIG. 1a, expandable structure 310FIG. 3a, proximal structure 510FIG. 5a, and anterior portion 560FIG. 5b. When the device incorporating these two components is expanded, most of the concomitant stretching of the filter configuration due to the increase in device size is accommodated by the stretching of elastic membrane 620 leaving the size of filter element 600 substantially unchanged from its predetermined value.


It will be understood that the foregoing is only illustrative of the principles of the invention, and that various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention. It will be understood that terms like “distal” and “proximal”, anterior” and “posterior”, and other directional or orientational terms are used herein only for convenience, and that no fixed or absolute orientations are intended by the use of these terms.

Claims
  • 1. An expandable structure deployable within an ostium of an atrium comprising: an expandable stent having a first end, a second end, a radially compact delivery configuration, a generally cylindrical expanded configuration defining a longitudinal axis in which the expandable stent has an expanded radial dimension greater than a radially compact dimension of the radially compact delivery configuration, andan expandable inner tubular member disposed within the expandable stent,wherein the expandable stent has an opening including a valve structure adapted to prevent uncontrolled passage of fluid and including flaps sized and adapted to occlude the opening,further comprising a tubular member disposed outside of the expandable stent.
  • 2. The expandable structure of claim 1, wherein the expandable stent is self-expanding.
  • 3. The expandable structure of claim 2, wherein the expandable stent is formed from shape memory alloy components.
  • 4. The expandable structure of claim 2, wherein the expandable stent is formed from springs or elastic components.
  • 5. The expandable structure of claim 1, wherein a removable component expands the expandable stent.
  • 6. The expandable structure of claim 5, wherein the removable component is a balloon.
  • 7. The expandable structure of claim 1, wherein the tubular membrane is made from biocompatible materials.
  • 8. The expandable structure of claim 7, wherein the biocompatible materials include ePTFE.
  • 9. The expandable structure of claim 1, wherein the expandable stent provides outward pressure adapted to reduce flow leakage about a periphery of the expandable structure.
  • 10. The expandable structure of claim 1, further comprising an anterior portion and a posterior portion.
  • 11. The expandable structure of claim 10, wherein the posterior portion is formed of a wire mesh or a braided or woven fabric.
  • 12. The expandable structure of claim 10, wherein the posterior portion is flared with its diameter increasing along its axial length.
  • 13. The expandable structure of claim 10, wherein the posterior portion has barbs distributed over at least a part of its exterior surface area.
  • 14. The expandable structure of claim 13, wherein the barbs engage surrounding ostium walls to secure the expandable structure in position.
  • 15. The expandable structure of claim 1, wherein the expandable inner tubular member includes an elastically sealed valve structure.
Parent Case Info

This application is a continuation of U.S. application Ser. No. 14/147,149, filed Jan. 3, 2014, which is a continuation of U.S. application Ser. No. 13/493,730, filed Jun. 11, 2012, now U.S. Pat. No. 8,647,361, which is a continuation of U.S. application Ser. No. 11/185,425, filed Jul. 19, 2005, now U.S. Pat. No. 8,197,527, which is a continuation of U.S. application Ser. No. 09/932,512, filed Aug. 17, 2001, which claims the benefit of U.S. provisional application No. 60/226,461, filed Aug. 18, 2000, U.S. provisional application No. 60/234,112, filed Sep. 21, 2000, and U.S. provisional application No. 60/234,113, filed Sep. 21, 2000, all of which are hereby incorporated by reference in their entireties herein.

US Referenced Citations (917)
Number Name Date Kind
15192 Peale Jun 1856 A
2682057 Lord Jun 1954 A
2701559 Cooper Feb 1955 A
2832078 Williams Apr 1958 A
3029819 Starks Apr 1962 A
3099016 Lowell Jul 1963 A
3113586 Edmark Dec 1963 A
3130418 Head et al. Apr 1964 A
3143742 Cromie Aug 1964 A
3221006 Moore et al. Nov 1965 A
3334629 Cohn Aug 1967 A
3365728 Edwards et al. Jan 1968 A
3367364 Cruz et al. Feb 1968 A
3409013 Henry Nov 1968 A
3445916 Schulte May 1969 A
3540431 Mobin-Uddin Nov 1970 A
3548417 Kischer et al. Dec 1970 A
3570014 Hancock Mar 1971 A
3587115 Shiley Jun 1971 A
3592184 Watkins et al. Jul 1971 A
3628535 Ostrowsky et al. Dec 1971 A
3642004 Osthagen et al. Feb 1972 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Goodenough et al. Feb 1973 A
3725961 Magovern et al. Apr 1973 A
3755823 Hancock Sep 1973 A
3795246 Sturgeon Mar 1974 A
3839741 Haller Oct 1974 A
3868956 Alfidi et al. Mar 1975 A
3874388 King et al. Apr 1975 A
3983581 Angell et al. Oct 1976 A
3997923 Possis Dec 1976 A
4035849 Angell et al. Jul 1977 A
4056854 Boretos et al. Nov 1977 A
4084268 Ionescu et al. Apr 1978 A
4106129 Carpentier et al. Aug 1978 A
4222126 Boretos et al. Sep 1980 A
4233690 Akins Nov 1980 A
4265694 Boretos et al. May 1981 A
4291420 Reul Sep 1981 A
4297749 Davis et al. Nov 1981 A
4323358 Lentz et al. Apr 1982 A
4326306 Poler Apr 1982 A
4339831 Johnson Jul 1982 A
4343048 Ross et al. Aug 1982 A
4345340 Rosen Aug 1982 A
4373216 Klawitter Feb 1983 A
4406022 Roy Sep 1983 A
4423809 Mazzocco Jan 1984 A
4425908 Simon Jan 1984 A
4470157 Love Sep 1984 A
4484579 Meno et al. Nov 1984 A
4501030 Lane Feb 1985 A
4531943 Tassel et al. Jul 1985 A
4535483 Klawitter et al. Aug 1985 A
4574803 Storz Mar 1986 A
4580568 Gianturco Apr 1986 A
4592340 Boyles Jun 1986 A
4602911 Ahmadi et al. Jul 1986 A
4605407 Black et al. Aug 1986 A
4610688 Silvestrini et al. Sep 1986 A
4612011 Kautzky Sep 1986 A
4617932 Komberg Oct 1986 A
4643732 Pietsch et al. Feb 1987 A
4647283 Carpentier et al. Mar 1987 A
4648881 Carpentier et al. Mar 1987 A
4655218 Kulik et al. Apr 1987 A
4655771 Wallsten et al. Apr 1987 A
4662885 DiPisa May 1987 A
4665906 Jervis May 1987 A
4680031 Alonso Jul 1987 A
4692164 Dzemeshkevich et al. Sep 1987 A
4705516 Barone et al. Nov 1987 A
4710192 Liotta et al. Dec 1987 A
4733665 Palmaz et al. Mar 1988 A
4755181 Igoe Jul 1988 A
4759758 Gabbay Jul 1988 A
4777951 Cribier et al. Oct 1988 A
4787899 Lazarus Nov 1988 A
4787901 Baykut Nov 1988 A
4796629 Grayzel Jan 1989 A
4819751 Shimada et al. Apr 1989 A
4829990 Thuroff et al. May 1989 A
4834755 Silvestrini et al. May 1989 A
4851001 Taheri Jul 1989 A
4856516 Hillstead Aug 1989 A
4865600 Carpentier et al. Sep 1989 A
4872874 Taheri Oct 1989 A
4873978 Ginsburg Oct 1989 A
4878495 Grayzel Nov 1989 A
4878906 Lindemann et al. Nov 1989 A
4883458 Shiber Nov 1989 A
4885005 Nashef et al. Dec 1989 A
4909252 Goldberger Mar 1990 A
4917102 Miller et al. Apr 1990 A
4922905 Strecker May 1990 A
4927426 Dretler May 1990 A
4954126 Wallsten Sep 1990 A
4966604 Reiss Oct 1990 A
4969890 Sugita et al. Nov 1990 A
4979939 Shiber Dec 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
5002556 Ishida et al. Mar 1991 A
5002559 Tower Mar 1991 A
5007896 Shiber Apr 1991 A
5026366 Leckrone Jun 1991 A
5032128 Alonso Jul 1991 A
5037434 Lane Aug 1991 A
5047041 Samuels Sep 1991 A
5064435 Porter Nov 1991 A
5080668 Bolz et al. Jan 1992 A
5085635 Cragg Feb 1992 A
5089015 Ross Feb 1992 A
5122154 Rhodes Jun 1992 A
5132473 Furutaka et al. Jul 1992 A
5141494 Danforth et al. Aug 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5159937 Tremulis Nov 1992 A
5161547 Tower Nov 1992 A
5163953 Vince Nov 1992 A
5167628 Boyles Dec 1992 A
5209741 Spaeth May 1993 A
5215541 Nashef et al. Jun 1993 A
5217481 Barbara Jun 1993 A
5217483 Tower Jun 1993 A
5238004 Sahatjian et al. Aug 1993 A
5258023 Reger Nov 1993 A
5258042 Mehta Nov 1993 A
5282847 Trescony et al. Feb 1994 A
5295958 Shturman Mar 1994 A
5306234 Johnson Apr 1994 A
5332402 Teitelbaum Jul 1994 A
5336258 Quintero et al. Aug 1994 A
5350398 Pavcnik et al. Sep 1994 A
5360444 Kusuhara Nov 1994 A
5370685 Stevens Dec 1994 A
5389106 Tower Feb 1995 A
5397351 Pavcnik et al. Mar 1995 A
5409019 Wilk Apr 1995 A
5411552 Andersen et al. May 1995 A
5425739 Jessen Jun 1995 A
5425762 Muller Jun 1995 A
5431676 Dubrul et al. Jul 1995 A
5443446 Shturman Aug 1995 A
5443449 Buelna Aug 1995 A
5443477 Marin et al. Aug 1995 A
5443495 Buscemi et al. Aug 1995 A
5443499 Schmitt Aug 1995 A
5469868 Reger Nov 1995 A
5476506 Lunn Dec 1995 A
5476510 Eberhardt et al. Dec 1995 A
5480410 Cuschieri et al. Jan 1996 A
5480423 Ravenscroft et al. Jan 1996 A
5480424 Cox Jan 1996 A
5489297 Duran Feb 1996 A
5500014 Quijano et al. Mar 1996 A
5507767 Maeda et al. Apr 1996 A
5522881 Lentz Jun 1996 A
5534007 Germain et al. Jul 1996 A
5545133 Burns et al. Aug 1996 A
5545209 Roberts et al. Aug 1996 A
5545211 An et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5549665 Vesely et al. Aug 1996 A
5554185 Block et al. Sep 1996 A
5571175 Vanney et al. Nov 1996 A
5571215 Sterman et al. Nov 1996 A
5573520 Schwartz et al. Nov 1996 A
5575818 Pinchuk Nov 1996 A
5591185 Kilmer et al. Jan 1997 A
5591195 Taheri et al. Jan 1997 A
5607464 Trescony et al. Mar 1997 A
5609626 Quijano et al. Mar 1997 A
5628784 Strecker May 1997 A
5645559 Hachtman et al. Jul 1997 A
5653745 Trescony et al. Aug 1997 A
5662671 Barbut et al. Sep 1997 A
5667523 Bynon et al. Sep 1997 A
5674277 Freitag Oct 1997 A
5681345 Euteneuer Oct 1997 A
5693083 Baker et al. Dec 1997 A
5693088 Lazarus Dec 1997 A
5693310 Gries et al. Dec 1997 A
5695498 Tower Dec 1997 A
5709713 Evans et al. Jan 1998 A
5713951 Garrison et al. Feb 1998 A
5713953 Vallana et al. Feb 1998 A
5716370 Williamson, IV et al. Feb 1998 A
5716417 Girard et al. Feb 1998 A
5720391 Dohm et al. Feb 1998 A
5725549 Lam Mar 1998 A
5728068 Leone et al. Mar 1998 A
5733325 Robinson et al. Mar 1998 A
5735842 Krueger et al. Apr 1998 A
5749890 Shaknovich May 1998 A
5755783 Stobie et al. May 1998 A
5756476 Epstein et al. May 1998 A
5769812 Stevens et al. Jun 1998 A
5769882 Fogarty et al. Jun 1998 A
5772609 Nguyen et al. Jun 1998 A
5776188 Shepherd et al. Jul 1998 A
5782904 White et al. Jul 1998 A
5800456 Maeda et al. Sep 1998 A
5800531 Cosgrove et al. Sep 1998 A
5807405 Vanney et al. Sep 1998 A
5817126 Imran Oct 1998 A
5824037 Fogarty et al. Oct 1998 A
5824041 Lenker et al. Oct 1998 A
5824043 Cottone Oct 1998 A
5824053 Khosravi et al. Oct 1998 A
5824055 Spiridigliozzi et al. Oct 1998 A
5824056 Rosenberg Oct 1998 A
5824064 Taheri Oct 1998 A
5840081 Andersen et al. Nov 1998 A
5843158 Lenker et al. Dec 1998 A
5843161 Solovay Dec 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5855602 Angell Jan 1999 A
5860966 Tower Jan 1999 A
5860996 Urban et al. Jan 1999 A
5861024 Rashidi Jan 1999 A
5861028 Angell Jan 1999 A
5865791 Whayne et al. Feb 1999 A
5868783 Tower Feb 1999 A
5876419 Carpenter et al. Mar 1999 A
5876448 Thompson et al. Mar 1999 A
5885228 Rosenman et al. Mar 1999 A
5888201 Stinson et al. Mar 1999 A
5891191 Stinson Apr 1999 A
5895399 Barbut et al. Apr 1999 A
5906619 Olson et al. May 1999 A
5907893 Zadno-Azizi et al. Jun 1999 A
5910154 Tsugita et al. Jun 1999 A
5911734 Tsugita et al. Jun 1999 A
5925063 Khosravi Jul 1999 A
5944738 Amplatz et al. Aug 1999 A
5954766 Zadno-Azizi et al. Sep 1999 A
5957949 Leonhardt et al. Sep 1999 A
5968070 Bley et al. Oct 1999 A
5984957 Laptewicz, Jr. et al. Nov 1999 A
5984959 Robertson et al. Nov 1999 A
5993469 McKenzie et al. Nov 1999 A
5997557 Barbut et al. Dec 1999 A
6010522 Barbut et al. Jan 2000 A
6015431 Thornton et al. Jan 2000 A
6022370 Tower Feb 2000 A
6027520 Tsugita et al. Feb 2000 A
6027525 Suh et al. Feb 2000 A
6042598 Tsugita et al. Mar 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6051014 Jang Apr 2000 A
6059827 Fenton May 2000 A
6074418 Buchanan et al. Jun 2000 A
6093203 Uflacker Jul 2000 A
6096074 Pedros Aug 2000 A
6110198 Fogarty et al. Aug 2000 A
6123723 Konya et al. Sep 2000 A
6132473 Williams et al. Oct 2000 A
6139510 Palermo Oct 2000 A
6142987 Tsugita Nov 2000 A
6146366 Schachar Nov 2000 A
6152144 Lesh Nov 2000 A
6162245 Jayaraman Dec 2000 A
6165200 Tsugita et al. Dec 2000 A
6165209 Patterson et al. Dec 2000 A
6168579 Tsugita Jan 2001 B1
6168614 Andersen et al. Jan 2001 B1
6171327 Daniel et al. Jan 2001 B1
6171335 Wheatley et al. Jan 2001 B1
6179859 Bates et al. Jan 2001 B1
6187016 Hedges et al. Feb 2001 B1
6197053 Cosgrove et al. Mar 2001 B1
6200336 Pavcnik et al. Mar 2001 B1
6206911 Milo Mar 2001 B1
6214036 Letendre et al. Apr 2001 B1
6221006 Dubrul et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6221096 Aiba et al. Apr 2001 B1
6221100 Strecker Apr 2001 B1
6231544 Tsugita et al. May 2001 B1
6231551 Barbut May 2001 B1
6241757 An et al. Jun 2001 B1
6245102 Jayaraman Jun 2001 B1
6251135 Stinson et al. Jun 2001 B1
6258114 Konya et al. Jul 2001 B1
6258115 Dubrul Jul 2001 B1
6258120 McKenzie et al. Jul 2001 B1
6258129 Dybdal et al. Jul 2001 B1
6267783 Letendre et al. Jul 2001 B1
6270513 Tsugita et al. Aug 2001 B1
6277555 Duran et al. Aug 2001 B1
6299637 Shaolian et al. Oct 2001 B1
6302906 Goicoechea et al. Oct 2001 B1
6306164 Kujawski Oct 2001 B1
6309417 Spence et al. Oct 2001 B1
6312465 Griffin et al. Nov 2001 B1
6319281 Patel Nov 2001 B1
6327772 Zadno-Azizi et al. Dec 2001 B1
6336934 Gilson et al. Jan 2002 B1
6336937 Vonesh et al. Jan 2002 B1
6338735 Stevens Jan 2002 B1
6346116 Brooks et al. Feb 2002 B1
6348063 Yassour et al. Feb 2002 B1
6352554 De Paulis Mar 2002 B2
6352708 Duran et al. Mar 2002 B1
6361545 Macoviak et al. Mar 2002 B1
6363938 Saadat et al. Apr 2002 B2
6364895 Greenhalgh Apr 2002 B1
6371970 Khosravi et al. Apr 2002 B1
6371983 Lane Apr 2002 B1
6379383 Palmaz et al. Apr 2002 B1
6387122 Cragg May 2002 B1
6398807 Chouinard et al. Jun 2002 B1
6402736 Brown et al. Jun 2002 B1
6409750 Hyodoh et al. Jun 2002 B1
6416510 Altman et al. Jul 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6468303 Amplatz et al. Oct 2002 B1
6468660 Ogle et al. Oct 2002 B2
6475239 Campbell et al. Nov 2002 B1
6482228 Norred Nov 2002 B1
6485501 Green Nov 2002 B1
6485502 Michael et al. Nov 2002 B2
6488704 Connelly et al. Dec 2002 B1
6494909 Greenhalgh Dec 2002 B2
6503272 Duerig et al. Jan 2003 B2
6508803 Horikawa et al. Jan 2003 B1
6508833 Pavcnik et al. Jan 2003 B2
6527800 McGuckin, Jr. et al. Mar 2003 B1
6530949 Konya et al. Mar 2003 B2
6530952 Vesely Mar 2003 B2
6537297 Tsugita et al. Mar 2003 B2
6540768 Diaz et al. Apr 2003 B1
6540782 Snyders Apr 2003 B1
6551303 Van Tassel et al. Apr 2003 B1
6562058 Seguin et al. May 2003 B2
6569196 Vesely May 2003 B1
6572643 Gharibadeh Jun 2003 B1
6585766 Huynh et al. Jul 2003 B1
6592546 Barbut et al. Jul 2003 B1
6592614 Lenker et al. Jul 2003 B2
6605112 Moll et al. Aug 2003 B1
6610077 Hancock et al. Aug 2003 B1
6616682 Joergensen et al. Sep 2003 B2
6622604 Chouinard et al. Sep 2003 B1
6623518 Thompson et al. Sep 2003 B2
6623521 Steinke et al. Sep 2003 B2
6626938 Butaric et al. Sep 2003 B1
6632243 Zadno-Azizi et al. Oct 2003 B1
6635068 Dubrul et al. Oct 2003 B1
6635079 Unsworth et al. Oct 2003 B2
6635080 Lauterjung et al. Oct 2003 B1
6652555 Van Tassel et al. Nov 2003 B1
6652571 White et al. Nov 2003 B1
6652578 Bailey et al. Nov 2003 B2
6663588 DuBois et al. Dec 2003 B2
6663663 Kim et al. Dec 2003 B2
6663667 Dehdashtian et al. Dec 2003 B2
6669724 Park et al. Dec 2003 B2
6673089 Yassour et al. Jan 2004 B1
6673109 Cox Jan 2004 B2
6676668 Mercereau et al. Jan 2004 B2
6676692 Rabkin et al. Jan 2004 B2
6676698 McGuckin, Jr. et al. Jan 2004 B2
6682543 Barbut et al. Jan 2004 B2
6682558 Tu et al. Jan 2004 B2
6682559 Myers et al. Jan 2004 B2
6685739 DiMatteo et al. Feb 2004 B2
6689144 Gerberding Feb 2004 B2
6689150 VanTassel Feb 2004 B1
6689164 Seguin Feb 2004 B1
6692512 Jang Feb 2004 B2
6695864 Macoviak et al. Feb 2004 B2
6695865 Boyle et al. Feb 2004 B2
6702851 Chinn et al. Mar 2004 B1
6712842 Gifford, III et al. Mar 2004 B1
6712843 Elliott Mar 2004 B2
6714842 Ito Mar 2004 B1
6719789 Cox Apr 2004 B2
6723116 Taheri Apr 2004 B2
6729356 Baker et al. May 2004 B1
6730118 Spenser et al. May 2004 B2
6730377 Wang May 2004 B2
6733525 Yang et al. May 2004 B2
6736846 Cox May 2004 B2
6752828 Thornton Jun 2004 B2
6755854 Gillick et al. Jun 2004 B2
6758855 Fulton, III et al. Jul 2004 B2
6764503 Ishimaru Jul 2004 B1
6764509 Chinn et al. Jul 2004 B2
6767345 Germain et al. Jul 2004 B2
6769434 Liddicoat et al. Aug 2004 B2
6773454 Wholey et al. Aug 2004 B2
6773456 Gordon et al. Aug 2004 B1
6776791 Stallings et al. Aug 2004 B1
6786925 Schoon et al. Sep 2004 B1
6790229 Berreklouw Sep 2004 B1
6790230 Beyersdorf et al. Sep 2004 B2
6790237 Stinson Sep 2004 B2
6792979 Konya et al. Sep 2004 B2
6797002 Spence et al. Sep 2004 B2
6814746 Thompson et al. Nov 2004 B2
6814754 Greenhalgh Nov 2004 B2
6821297 Snyders Nov 2004 B2
6824041 Grieder et al. Nov 2004 B2
6830585 Artof et al. Dec 2004 B1
6837901 Rabkin et al. Jan 2005 B2
6840957 DiMatteo et al. Jan 2005 B2
6843802 Villalobos et al. Jan 2005 B1
6849085 Marton Feb 2005 B2
6863668 Gillespie et al. Mar 2005 B2
6863688 Ralph et al. Mar 2005 B2
6866650 Stevens et al. Mar 2005 B2
6866669 Buzzard et al. Mar 2005 B2
6872223 Roberts et al. Mar 2005 B2
6872226 Cali et al. Mar 2005 B2
6875231 Anduiza et al. Apr 2005 B2
6881220 Edwin et al. Apr 2005 B2
6887266 Williams et al. May 2005 B2
6890340 Duane May 2005 B2
6893459 Macoviak May 2005 B1
6893460 Spenser et al. May 2005 B2
6896690 Lambrecht et al. May 2005 B1
6905743 Chen et al. Jun 2005 B1
6908481 Cribier Jun 2005 B2
6911036 Douk et al. Jun 2005 B2
6911040 Johnson et al. Jun 2005 B2
6911043 Myers et al. Jun 2005 B2
6936058 Forde et al. Aug 2005 B2
6936067 Buchanan Aug 2005 B2
6939352 Buzzard et al. Sep 2005 B2
6951571 Srivastava Oct 2005 B1
6953332 Kurk et al. Oct 2005 B1
6964673 Tsugita et al. Nov 2005 B2
6969395 Eskuri Nov 2005 B2
6972025 WasDyke Dec 2005 B2
6974464 Quijano et al. Dec 2005 B2
6974474 Pavcnik et al. Dec 2005 B2
6974476 McGuckin, Jr. et al. Dec 2005 B2
6979350 Moll et al. Dec 2005 B2
6984242 Campbell et al. Jan 2006 B2
6989027 Allen et al. Jan 2006 B2
7004176 Lau Feb 2006 B2
7011681 Vesely Mar 2006 B2
7018406 Seguin et al. Mar 2006 B2
7025791 Levine et al. Apr 2006 B2
7037331 Mitelberg et al. May 2006 B2
7041132 Quijano et al. May 2006 B2
7044966 Svanidze et al. May 2006 B2
7097658 Oktay Aug 2006 B2
7108715 Lawrence-Brown et al. Sep 2006 B2
7122020 Mogul Oct 2006 B2
7125418 Duran et al. Oct 2006 B2
7141063 White et al. Nov 2006 B2
7147663 Berg et al. Dec 2006 B1
7166097 Barbut Jan 2007 B2
7175652 Cook et al. Feb 2007 B2
7175653 Gaber Feb 2007 B2
7175654 Bonsignore et al. Feb 2007 B2
7175656 Khairkhahan Feb 2007 B2
7189258 Johnson et al. Mar 2007 B2
7191018 Gielen et al. Mar 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7235093 Gregorich Jun 2007 B2
7252682 Seguin Aug 2007 B2
7258696 Rabkin et al. Aug 2007 B2
7261732 Justino Aug 2007 B2
7264632 Wright et al. Sep 2007 B2
7267686 DiMatteo et al. Sep 2007 B2
7276078 Spenser et al. Oct 2007 B2
7322932 Xie et al. Jan 2008 B2
7326236 Andreas et al. Feb 2008 B2
7329279 Haug et al. Feb 2008 B2
7331993 White Feb 2008 B2
7374560 Ressemann et al. May 2008 B2
7381219 Salahieh et al. Jun 2008 B2
7381220 Macoviak et al. Jun 2008 B2
7399315 Iobbi Jul 2008 B2
7445631 Salahieh et al. Nov 2008 B2
7470285 Nugent et al. Dec 2008 B2
7491232 Bolduc et al. Feb 2009 B2
7510574 Lê et al. Mar 2009 B2
7524330 Berreklouw Apr 2009 B2
7530995 Quijano et al. May 2009 B2
7544206 Cohn Jun 2009 B2
7622276 Cunanan et al. Nov 2009 B2
7628803 Pavcnik et al. Dec 2009 B2
7632298 Hijikema et al. Dec 2009 B2
7641687 Chinn et al. Jan 2010 B2
7674282 Wu et al. Mar 2010 B2
7712606 Salahieh et al. May 2010 B2
7722638 Deyette, Jr. et al. May 2010 B2
7722662 Steinke et al. May 2010 B2
7722666 Lafontaine May 2010 B2
7731742 Schlick et al. Jun 2010 B2
7736388 Goldfarb et al. Jun 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7758625 Wu et al. Jul 2010 B2
7780725 Haug et al. Aug 2010 B2
7799065 Pappas Sep 2010 B2
7803185 Gabbay Sep 2010 B2
7824442 Salahieh et al. Nov 2010 B2
7824443 Salahieh et al. Nov 2010 B2
7833262 McGuckin, Jr. et al. Nov 2010 B2
7846204 Letac et al. Dec 2010 B2
7857845 Stacchino et al. Dec 2010 B2
7892292 Stack et al. Feb 2011 B2
7918880 Austin Apr 2011 B2
7938851 Olson et al. May 2011 B2
7959666 Salahieh et al. Jun 2011 B2
7959672 Salahieh et al. Jun 2011 B2
7988724 Salahieh et al. Aug 2011 B2
8048153 Salahieh et al. Nov 2011 B2
8052749 Salahieh et al. Nov 2011 B2
8136659 Salahieh et al. Mar 2012 B2
8157853 Laske et al. Apr 2012 B2
8172896 McNamara et al. May 2012 B2
8182528 Salahieh et al. May 2012 B2
8192351 Fishler et al. Jun 2012 B2
8197527 Borillo et al. Jun 2012 B2
8226710 Nguyen et al. Jul 2012 B2
8231670 Salahieh et al. Jul 2012 B2
8236049 Rowe et al. Aug 2012 B2
8246678 Salahieh et al. Aug 2012 B2
8252051 Chau et al. Aug 2012 B2
8252052 Salahieh et al. Aug 2012 B2
8287584 Salahieh et al. Oct 2012 B2
8308798 Pintor et al. Nov 2012 B2
8317858 Straubinger et al. Nov 2012 B2
8323335 Rowe et al. Dec 2012 B2
8328868 Paul et al. Dec 2012 B2
8343213 Salahieh et al. Jan 2013 B2
8376865 Forster et al. Feb 2013 B2
8377117 Keidar et al. Feb 2013 B2
8398708 Meiri et al. Mar 2013 B2
8403983 Quadri et al. Mar 2013 B2
8414644 Quadri et al. Apr 2013 B2
8579962 Salahieh et al. Nov 2013 B2
8603160 Salahieh et al. Dec 2013 B2
8617236 Paul et al. Dec 2013 B2
8623074 Ryan Jan 2014 B2
8623076 Salahieh et al. Jan 2014 B2
8623078 Salahieh et al. Jan 2014 B2
8647361 Borillo et al. Feb 2014 B2
8668733 Haug et al. Mar 2014 B2
8696743 Holecek et al. Apr 2014 B2
8828078 Salahieh et al. Sep 2014 B2
8840662 Salahieh et al. Sep 2014 B2
8840663 Salahieh et al. Sep 2014 B2
8858620 Salahieh et al. Oct 2014 B2
8894703 Salahieh et al. Nov 2014 B2
8951299 Paul et al. Feb 2015 B2
8992608 Haug et al. Mar 2015 B2
9005273 Salahieh et al. Apr 2015 B2
9011521 Haug et al. Apr 2015 B2
9168131 Yohanan et al. Oct 2015 B2
20010002445 Vesely May 2001 A1
20010007956 Letac et al. Jul 2001 A1
20010010017 Letac et al. Jul 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20010025196 Chinn et al. Sep 2001 A1
20010027338 Greenberg Oct 2001 A1
20010032013 Marton Oct 2001 A1
20010039450 Pavcnik et al. Nov 2001 A1
20010041928 Pavcnik et al. Nov 2001 A1
20010041930 Globerman et al. Nov 2001 A1
20010044634 Michael et al. Nov 2001 A1
20010044652 Moore Nov 2001 A1
20010044656 Williamson et al. Nov 2001 A1
20020002396 Fulkerson Jan 2002 A1
20020010489 Grayzel et al. Jan 2002 A1
20020022860 Borillo et al. Feb 2002 A1
20020026233 Shaknovich Feb 2002 A1
20020029014 Jayaraman Mar 2002 A1
20020029981 Nigam Mar 2002 A1
20020032480 Spence et al. Mar 2002 A1
20020032481 Gabbay Mar 2002 A1
20020042651 Liddicoat et al. Apr 2002 A1
20020052651 Myers et al. May 2002 A1
20020055767 Forde et al. May 2002 A1
20020055769 Wang May 2002 A1
20020055774 Liddicoat May 2002 A1
20020058987 Butaric et al. May 2002 A1
20020058995 Stevens May 2002 A1
20020077696 Zadno-Azizi et al. Jun 2002 A1
20020082609 Green Jun 2002 A1
20020095173 Mazzocchi et al. Jul 2002 A1
20020095209 Zadno-Azizi et al. Jul 2002 A1
20020111674 Chouinard et al. Aug 2002 A1
20020120328 Pathak et al. Aug 2002 A1
20020123802 Snyders Sep 2002 A1
20020138138 Yang Sep 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020156522 Ivancev et al. Oct 2002 A1
20020161390 Mouw Oct 2002 A1
20020161392 Dubrul Oct 2002 A1
20020161394 Macoviak et al. Oct 2002 A1
20020165576 Boyle et al. Nov 2002 A1
20020177766 Mogul Nov 2002 A1
20020183781 Casey Dec 2002 A1
20020188341 Elliott Dec 2002 A1
20020188344 Bolea et al. Dec 2002 A1
20020193871 Beyersdorf et al. Dec 2002 A1
20030014104 Cribier Jan 2003 A1
20030023303 Palmaz et al. Jan 2003 A1
20030028247 Cali Feb 2003 A1
20030036791 Philipp et al. Feb 2003 A1
20030040736 Stevens et al. Feb 2003 A1
20030040771 Hyodoh et al. Feb 2003 A1
20030040772 Hyodoh et al. Feb 2003 A1
20030040791 Oktay Feb 2003 A1
20030040792 Gabbay Feb 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030055495 Pease et al. Mar 2003 A1
20030057156 Peterson et al. Mar 2003 A1
20030060844 Borillo et al. Mar 2003 A1
20030069492 Abrams et al. Apr 2003 A1
20030069646 Stinson Apr 2003 A1
20030070944 Nigam Apr 2003 A1
20030074058 Sherry Apr 2003 A1
20030093145 Lawrence-Brown et al. May 2003 A1
20030100918 Duane May 2003 A1
20030100919 Hopkins et al. May 2003 A1
20030109924 Cribier Jun 2003 A1
20030109930 Bluni et al. Jun 2003 A1
20030114912 Sequin et al. Jun 2003 A1
20030114913 Spenser et al. Jun 2003 A1
20030125795 Pavcnik et al. Jul 2003 A1
20030130729 Paniagua et al. Jul 2003 A1
20030135257 Taheri Jul 2003 A1
20030144732 Cosgrove et al. Jul 2003 A1
20030149475 Hyodoh et al. Aug 2003 A1
20030149476 Damm et al. Aug 2003 A1
20030149478 Figulla et al. Aug 2003 A1
20030153974 Spenser et al. Aug 2003 A1
20030165352 Ibrahim et al. Sep 2003 A1
20030171803 Shimon Sep 2003 A1
20030176884 Berrada et al. Sep 2003 A1
20030181850 Diamond et al. Sep 2003 A1
20030187495 Cully et al. Oct 2003 A1
20030191516 Weldon et al. Oct 2003 A1
20030195609 Berenstein et al. Oct 2003 A1
20030199759 Richard Oct 2003 A1
20030199913 Dubrul et al. Oct 2003 A1
20030199971 Tower et al. Oct 2003 A1
20030199972 Zadno-Azizi et al. Oct 2003 A1
20030204249 Letort Oct 2003 A1
20030208224 Broome Nov 2003 A1
20030212429 Keegan et al. Nov 2003 A1
20030212452 Zadno-Azizi et al. Nov 2003 A1
20030212454 Scott et al. Nov 2003 A1
20030216774 Larson Nov 2003 A1
20030225445 Derus et al. Dec 2003 A1
20030229390 Ashton et al. Dec 2003 A1
20030233117 Adams et al. Dec 2003 A1
20030236567 Elliot Dec 2003 A1
20040019374 Hojeibane et al. Jan 2004 A1
20040033364 Spiridigliozzi et al. Feb 2004 A1
20040034411 Quijano et al. Feb 2004 A1
20040039436 Spenser et al. Feb 2004 A1
20040049224 Buehlmann et al. Mar 2004 A1
20040049226 Keegan et al. Mar 2004 A1
20040049262 Obermiller et al. Mar 2004 A1
20040049266 Anduiza et al. Mar 2004 A1
20040059409 Stenzel Mar 2004 A1
20040073198 Gilson et al. Apr 2004 A1
20040082904 Houde et al. Apr 2004 A1
20040082967 Broome et al. Apr 2004 A1
20040082989 Cook et al. Apr 2004 A1
20040087982 Eskuri May 2004 A1
20040088045 Cox May 2004 A1
20040093016 Root et al. May 2004 A1
20040093060 Seguin et al. May 2004 A1
20040097788 Mourlas et al. May 2004 A1
20040098022 Barone May 2004 A1
20040098098 McGuckin et al. May 2004 A1
20040098099 McCullagh et al. May 2004 A1
20040098112 DiMatteo et al. May 2004 A1
20040107004 Levine et al. Jun 2004 A1
20040111096 Tu et al. Jun 2004 A1
20040116951 Rosengart Jun 2004 A1
20040116999 Ledergerber Jun 2004 A1
20040117004 Osborne et al. Jun 2004 A1
20040117009 Cali et al. Jun 2004 A1
20040122468 Yodfat et al. Jun 2004 A1
20040122516 Fogarty et al. Jun 2004 A1
20040127936 Salahieh et al. Jul 2004 A1
20040127979 Wilson et al. Jul 2004 A1
20040133274 Webler et al. Jul 2004 A1
20040138694 Tran et al. Jul 2004 A1
20040138742 Myers et al. Jul 2004 A1
20040138743 Myers et al. Jul 2004 A1
20040148018 Carpentier et al. Jul 2004 A1
20040148021 Cartledge et al. Jul 2004 A1
20040153094 Dunfee et al. Aug 2004 A1
20040158277 Lowe et al. Aug 2004 A1
20040167565 Beulke et al. Aug 2004 A1
20040167620 Ortiz et al. Aug 2004 A1
20040181140 Falwell et al. Sep 2004 A1
20040186558 Pavcnik et al. Sep 2004 A1
20040186563 Lobbi Sep 2004 A1
20040193261 Berreklouw Sep 2004 A1
20040197695 Aono Oct 2004 A1
20040199245 Lauterjung Oct 2004 A1
20040204755 Robin Oct 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040210306 Quijano et al. Oct 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040215331 Chew et al. Oct 2004 A1
20040215333 Duran et al. Oct 2004 A1
20040215339 Drasler et al. Oct 2004 A1
20040220655 Swanson et al. Nov 2004 A1
20040225321 Krolik et al. Nov 2004 A1
20040225353 McGuckin et al. Nov 2004 A1
20040225354 Allen et al. Nov 2004 A1
20040225355 Stevens Nov 2004 A1
20040243221 Fawzi et al. Dec 2004 A1
20040254636 Flagle et al. Dec 2004 A1
20040260390 Sarac et al. Dec 2004 A1
20050010287 Macoviak et al. Jan 2005 A1
20050021136 Xie et al. Jan 2005 A1
20050033398 Seguin Feb 2005 A1
20050033402 Cully et al. Feb 2005 A1
20050043711 Corcoran et al. Feb 2005 A1
20050043757 Arad et al. Feb 2005 A1
20050043790 Seguin Feb 2005 A1
20050049692 Numamoto et al. Mar 2005 A1
20050049696 Siess et al. Mar 2005 A1
20050055088 Liddicoat et al. Mar 2005 A1
20050060016 Wu et al. Mar 2005 A1
20050060029 Le et al. Mar 2005 A1
20050065594 DiMatteo et al. Mar 2005 A1
20050075584 Cali Apr 2005 A1
20050075662 Pedersen et al. Apr 2005 A1
20050075712 Biancucci et al. Apr 2005 A1
20050075717 Nguyen et al. Apr 2005 A1
20050075719 Bergheim Apr 2005 A1
20050075724 Svanidze et al. Apr 2005 A1
20050075730 Myers et al. Apr 2005 A1
20050075731 Artof et al. Apr 2005 A1
20050085841 Eversull et al. Apr 2005 A1
20050085842 Eversull et al. Apr 2005 A1
20050085843 Opolski et al. Apr 2005 A1
20050085890 Rasmussen et al. Apr 2005 A1
20050090846 Pedersen et al. Apr 2005 A1
20050090890 Wu et al. Apr 2005 A1
20050096692 Linder et al. May 2005 A1
20050096734 Majercak et al. May 2005 A1
20050096735 Hojeibane et al. May 2005 A1
20050096736 Osse et al. May 2005 A1
20050096738 Cali et al. May 2005 A1
20050100580 Osborne et al. May 2005 A1
20050107822 WasDyke May 2005 A1
20050113910 Paniagua et al. May 2005 A1
20050131438 Cohn Jun 2005 A1
20050137683 Hezi-Yarnit et al. Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137687 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137689 Salahieh et al. Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050137692 Haug et al. Jun 2005 A1
20050137693 Haug et al. Jun 2005 A1
20050137694 Haug et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137696 Salahieh et al. Jun 2005 A1
20050137697 Salahieh et al. Jun 2005 A1
20050137698 Salahieh et al. Jun 2005 A1
20050137699 Salahieh et al. Jun 2005 A1
20050137701 Salahieh et al. Jun 2005 A1
20050137702 Haug et al. Jun 2005 A1
20050138689 Aukerman Jun 2005 A1
20050143807 Pavcnik et al. Jun 2005 A1
20050143809 Salahieh et al. Jun 2005 A1
20050149159 Andreas et al. Jul 2005 A1
20050165352 Henry et al. Jul 2005 A1
20050165477 Anduiza et al. Jul 2005 A1
20050165479 Drews et al. Jul 2005 A1
20050182486 Gabbay Aug 2005 A1
20050197694 Pai et al. Sep 2005 A1
20050197695 Stacchino et al. Sep 2005 A1
20050203549 Realyvasquez Sep 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050203615 Forster et al. Sep 2005 A1
20050203616 Cribier Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050203618 Sharkawy et al. Sep 2005 A1
20050203818 Rotman et al. Sep 2005 A9
20050209580 Freyman Sep 2005 A1
20050228472 Case et al. Oct 2005 A1
20050228495 Macoviak Oct 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050240200 Bergheim Oct 2005 A1
20050240262 White Oct 2005 A1
20050251250 Verhoeven et al. Nov 2005 A1
20050251251 Cribier Nov 2005 A1
20050261759 Lambrecht et al. Nov 2005 A1
20050267560 Bates Dec 2005 A1
20050283231 Haug et al. Dec 2005 A1
20050283962 Boudjemline Dec 2005 A1
20060004439 Spenser et al. Jan 2006 A1
20060004442 Spenser et al. Jan 2006 A1
20060015168 Gunderson Jan 2006 A1
20060025857 Bergheim et al. Feb 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060155312 Levine et al. Jul 2006 A1
20060161249 Realyvasquez et al. Jul 2006 A1
20060173524 Salahieh et al. Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060253191 Salahieh et al. Nov 2006 A1
20060259134 Schwammenthal et al. Nov 2006 A1
20060271166 Thill et al. Nov 2006 A1
20060287668 Fawzi et al. Dec 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20070010876 Salahieh et al. Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070016286 Herrmann et al. Jan 2007 A1
20070055340 Pryor Mar 2007 A1
20070061008 Salahieh et al. Mar 2007 A1
20070112355 Salahieh et al. May 2007 A1
20070118214 Salahieh et al. May 2007 A1
20070162107 Haug et al. Jul 2007 A1
20070173918 Dreher et al. Jul 2007 A1
20070203503 Salahieh et al. Aug 2007 A1
20070244552 Salahieh et al. Oct 2007 A1
20070288089 Gurskis et al. Dec 2007 A1
20080009940 Cribier Jan 2008 A1
20080033541 Gelbart et al. Feb 2008 A1
20080071363 Tuval et al. Mar 2008 A1
20080082165 Wilson et al. Apr 2008 A1
20080125859 Salahieh et al. May 2008 A1
20080188928 Salahieh et al. Aug 2008 A1
20080208328 Antocci et al. Aug 2008 A1
20080208332 Lamphere et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080234814 Salahieh et al. Sep 2008 A1
20080255661 Straubinger et al. Oct 2008 A1
20080269878 Iobbi Oct 2008 A1
20080288054 Pulnev et al. Nov 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090030512 Thielen et al. Jan 2009 A1
20090054969 Salahieh et al. Feb 2009 A1
20090076598 Salahieh et al. Mar 2009 A1
20090093877 Keidar et al. Apr 2009 A1
20090171456 Kveen et al. Jul 2009 A1
20090216312 Straubinger et al. Aug 2009 A1
20090222076 Figulla et al. Sep 2009 A1
20090264759 Byrd Oct 2009 A1
20090264997 Salahieh et al. Oct 2009 A1
20090299462 Fawzi et al. Dec 2009 A1
20100036479 Hill et al. Feb 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100082089 Quadri et al. Apr 2010 A1
20100094399 Dorn et al. Apr 2010 A1
20100121434 Paul et al. May 2010 A1
20100161045 Righini Jun 2010 A1
20100185275 Richter et al. Jul 2010 A1
20100191320 Straubinger et al. Jul 2010 A1
20100191326 Alkhatib Jul 2010 A1
20100219092 Salahieh et al. Sep 2010 A1
20100249908 Chau et al. Sep 2010 A1
20100280495 Paul et al. Nov 2010 A1
20100298931 Quadri et al. Nov 2010 A1
20110257735 Salahieh et al. Oct 2011 A1
20110264196 Savage et al. Oct 2011 A1
20110276129 Salahieh et al. Nov 2011 A1
20110288634 Tuval et al. Nov 2011 A1
20110295363 Girard et al. Dec 2011 A1
20120016469 Salahieh et al. Jan 2012 A1
20120016471 Salahieh et al. Jan 2012 A1
20120022642 Haug et al. Jan 2012 A1
20120029627 Salahieh et al. Feb 2012 A1
20120041549 Salahieh et al. Feb 2012 A1
20120041550 Salahieh et al. Feb 2012 A1
20120046740 Paul et al. Feb 2012 A1
20120053683 Salahieh et al. Mar 2012 A1
20120089224 Haug et al. Apr 2012 A1
20120132547 Salahieh et al. May 2012 A1
20120179244 Schankereli et al. Jul 2012 A1
20120197379 Laske et al. Aug 2012 A1
20120303113 Benichou et al. Nov 2012 A1
20120303116 Gorman et al. Nov 2012 A1
20120330409 Haug et al. Dec 2012 A1
20130013057 Salahieh et al. Jan 2013 A1
20130018457 Gregg et al. Jan 2013 A1
20130030520 Lee et al. Jan 2013 A1
20130079867 Hoffman et al. Mar 2013 A1
20130079869 Straubinger et al. Mar 2013 A1
20130096664 Goetz et al. Apr 2013 A1
20130123796 Sutton et al. May 2013 A1
20130138207 Quadri et al. May 2013 A1
20130158656 Sutton et al. Jun 2013 A1
20130184813 Quadri et al. Jul 2013 A1
20130190865 Anderson Jul 2013 A1
20130304199 Sutton et al. Nov 2013 A1
20140018911 Zhou et al. Jan 2014 A1
20140094904 Salahieh et al. Apr 2014 A1
20140114405 Paul et al. Apr 2014 A1
20140114406 Salahieh et al. Apr 2014 A1
20140121766 Salahieh et al. May 2014 A1
20140135912 Salahieh et al. May 2014 A1
20140243967 Salahieh et al. Aug 2014 A1
20150012085 Salahieh et al. Jan 2015 A1
20150073540 Salahieh et al. Mar 2015 A1
20150073541 Salahieh et al. Mar 2015 A1
20150127094 Salahieh et al. May 2015 A1
20160045307 Yohanan et al. Feb 2016 A1
20160199184 Ma et al. Jul 2016 A1
Foreign Referenced Citations (172)
Number Date Country
2002329324 Jul 2007 AU
1338951 Mar 2002 CN
19532846 Mar 1997 DE
19546692 Jun 1997 DE
19857887 Jul 2000 DE
19907646 Aug 2000 DE
10049812 Apr 2002 DE
10049813 Apr 2002 DE
10049814 Apr 2002 DE
10049815 Apr 2002 DE
0103546 May 1988 EP
0144167 Nov 1989 EP
579523 Jan 1994 EP
0409929 Apr 1997 EP
0850607 Jul 1998 EP
0597967 Dec 1999 EP
1000590 May 2000 EP
1057459 Dec 2000 EP
1057460 Dec 2000 EP
1088529 Apr 2001 EP
0937439 Sep 2003 EP
1340473 Feb 2004 EP
1356793 Mar 2004 EP
1042045 May 2004 EP
0819013 Jun 2004 EP
1430853 Jun 2004 EP
1435879 Jul 2004 EP
1439800 Jul 2004 EP
1469797 Oct 2004 EP
1472996 Nov 2004 EP
1229864 Apr 2005 EP
1059894 Jul 2005 EP
1551274 Jul 2005 EP
1551336 Jul 2005 EP
1078610 Aug 2005 EP
1562515 Aug 2005 EP
1570809 Sep 2005 EP
1576937 Sep 2005 EP
1582178 Oct 2005 EP
1582179 Oct 2005 EP
1589902 Nov 2005 EP
1600121 Nov 2005 EP
1156757 Dec 2005 EP
1616531 Jan 2006 EP
1605871 Jul 2008 EP
2749254 Jun 2015 EP
2926766 Oct 2015 EP
2788217 Jul 2000 FR
2056023 Mar 1981 GB
2398245 Aug 2004 GB
1271508 Nov 1986 SU
1371700 Feb 1988 SU
9117720 Nov 1991 WO
9217118 Oct 1992 WO
9301768 Feb 1993 WO
9315693 Aug 1993 WO
9504556 Feb 1995 WO
9529640 Nov 1995 WO
9614032 May 1996 WO
9624306 Aug 1996 WO
9640012 Dec 1996 WO
9748350 Dec 1997 WO
9829057 Jul 1998 WO
9836790 Aug 1998 WO
9850103 Nov 1998 WO
9855047 Dec 1998 WO
9857599 Dec 1998 WO
9933414 Jul 1999 WO
9940964 Aug 1999 WO
9944542 Sep 1999 WO
9947075 Sep 1999 WO
9951165 Oct 1999 WO
0009059 Feb 2000 WO
2000009059 Feb 2000 WO
0041652 Jul 2000 WO
0044308 Aug 2000 WO
0044311 Aug 2000 WO
0044313 Aug 2000 WO
0045874 Aug 2000 WO
0047139 Aug 2000 WO
0049970 Aug 2000 WO
0067661 Nov 2000 WO
0105331 Jan 2001 WO
0106959 Feb 2001 WO
0108596 Feb 2001 WO
0110320 Feb 2001 WO
0110343 Feb 2001 WO
0135870 May 2001 WO
0149213 Jul 2001 WO
0154625 Aug 2001 WO
0162189 Aug 2001 WO
2001054625 Aug 2001 WO
0164137 Sep 2001 WO
0176510 Oct 2001 WO
0197715 Dec 2001 WO
0236048 May 2002 WO
0241789 May 2002 WO
0243620 Jun 2002 WO
0247575 Jun 2002 WO
02056955 Jul 2002 WO
02069842 Sep 2002 WO
02100297 Dec 2002 WO
03003943 Jan 2003 WO
03003949 Jan 2003 WO
03011195 Feb 2003 WO
03028592 Apr 2003 WO
03030776 Apr 2003 WO
03032869 Apr 2003 WO
03037222 May 2003 WO
03037227 May 2003 WO
03047468 Jun 2003 WO
03047648 Jun 2003 WO
03088873 Oct 2003 WO
03015851 Nov 2003 WO
03094793 Nov 2003 WO
03094797 Nov 2003 WO
03096932 Nov 2003 WO
2004006803 Jan 2004 WO
2004006804 Jan 2004 WO
2004014256 Feb 2004 WO
2004019811 Mar 2004 WO
2004019817 Mar 2004 WO
2004021922 Mar 2004 WO
2004023980 Mar 2004 WO
2004026117 Apr 2004 WO
2004041126 May 2004 WO
2004043293 May 2004 WO
2004047681 Jun 2004 WO
2004058106 Aug 2004 WO
2004066876 Aug 2004 WO
2004082536 Sep 2004 WO
2004089250 Oct 2004 WO
2004089253 Oct 2004 WO
2004093728 Nov 2004 WO
2004105651 Dec 2004 WO
2005002466 Jan 2005 WO
2005004753 Jan 2005 WO
2005009285 Feb 2005 WO
2005011534 Feb 2005 WO
2005011535 Feb 2005 WO
2005023155 Mar 2005 WO
2005027790 Mar 2005 WO
2005046528 May 2005 WO
2005046529 May 2005 WO
2005048883 Jun 2005 WO
2005062980 Jul 2005 WO
2005065585 Jul 2005 WO
2005084595 Sep 2005 WO
2005087140 Sep 2005 WO
2005096993 Oct 2005 WO
2006005015 Jan 2006 WO
2006009690 Jan 2006 WO
2006027499 Mar 2006 WO
2005062980 May 2006 WO
2007035471 Mar 2007 WO
2005102015 Apr 2007 WO
2006138391 Apr 2007 WO
2007044285 Apr 2007 WO
2007058847 May 2007 WO
2007092354 Aug 2007 WO
2007097983 Aug 2007 WO
2007053243 Sep 2007 WO
2007033093 Jan 2008 WO
2010042950 Apr 2010 WO
2010098857 Sep 2010 WO
2012116368 Aug 2012 WO
2012162228 Nov 2012 WO
2013009975 Jan 2013 WO
2013028387 Feb 2013 WO
2013074671 May 2013 WO
2013096545 Jun 2013 WO
2016126511 Aug 2016 WO
Non-Patent Literature Citations (108)
Entry
US 8,062,356 B2, 11/2011, Salahieh et al. (withdrawn)
US 8,062,357 B2, 11/2011, Salahieh et al. (withdrawn)
US 8,075,614 B2, 12/2011, Salahieh et al. (withdrawn)
US 8,133,271 B2, 03/2012, Salahieh et al. (withdrawn)
US 8,211,170 B2, 07/2012, Paul et al. (withdrawn)
Raillat et al., “Treatment of Iliac Artery Stenosis with the Wallstent Endoprosthesis.” AJR 154(3):613-6 (Mar. 1990).
Remadi et al., “Preliminary results of 130 aortic valve replacements with a new mechanical bileaflet prosthesis: the Edwards MIRA valve” Interactive Cardiovasc. and Thorac. Surg. 2, 80-83 (2003).
Schurink et al,. “Stent Attachment Site-related Endoleakage after Stent Graft Treatment: An in vitro study of the effects of graft size, stent type, and atherosclerotic wall changes.” J. Vasc. Surg., 30(4):658-67 (Oct. 1999).
Sochman et al., “Percutaneous Transcatheter Aortic Disc Valve Prosthesis Implantation: A Feasibility Study.” Cardiovasc. Intervent. Radiol., 23: 384-388, Sep. 2000.
Southern Lights Biomaterials Homepage, http://www.slv.co.nz/, Jan. 7, 2011.
Stassano, “Mid-term Results of the Valve-on-Valve Technique for Bioprosthetic Failure.” European Journal of Cardiothoracic Surgery: vol. 18, 453-457, Oct. 2000.
Steinhoff et al., “Tissue Engineering of Pulmonary Heart Valves on Allogenic Acellular Matrix Conduits.” Circulation, 102 [suppl. III]: III-50-III-55 (2000).
Stuart, “In Heart Valves, A Brave, New Non-Surgical World.” Start-Up. Feb. 9-17, 2004.
Supplemental Search Report from EP Patent Office, EP Application No. 04815634.3, dated Aug. 19, 2011.
Supplemental Search Report from EP Patent Office, EP Application No. 05758878.2, dated Oct. 24, 2011.
Textbook of Interventional Cardiology, 2d Ed., Chapter 75: Percutaneous Expandable Prosthetic Valves (1994).
Thompson et al., “Endoluminal stent grafting of the thoracic aorta: Initial experience with the Gore Excluder,” Journal of Vascular Surgery, 1163-70 (Jun. 2002).
Topol, “Percutaneous Expandable Prosthetic Valves.” Textbook of Interventional Cardiology, W.B. Saunders Company, 2: 1268-1276, 1994.
Vahanian et al., “Percutaneous Approaches to Valvular Disease.” Circulation, 109: 1572-1579, Apr. 6, 2004.
Van Herwerden et al., “Percutaneous Valve Implantation: Back to the Future?” Euro. Heart J., 23(18): 1415-1416, Sep. 2002.
VentureBeatProfiles, Claudio Argento, Jan. 7, 2010, http://venturebeatprofiles.com/person/profile/claudio-argento.
Vossoughi et al., Stent Graft Update (2000)—Kononov, Volodos, and Parodi and Palmaz Stents; Hemobahn Stent Graft.
Yoshioka et al., “Self-Expanding Endovascular Graft: An Experimental Study in Dogs.” AJR 151: 673-76 (Oct. 1988).
Zhou et al., “Self-expandable Valved Stent of Large Size: Off-Bypass Implantation in Pulmonary Position.” Eur. J. Cardiothorac, 24: 212-216, Aug. 2003.
USPTO Case IPR2017-01293, U.S. Pat. No. 8,992,608 B, dated Oct. 13, 2017.
Supplemental Search Report from EP Patent Office, EP Application No. 04813777.2, dated Aug. 19, 2011.
Laborde et al., “Percutaneous Implantation of the Corevalve Aortic Valve Prosthesis for Patients Presenting High Risk for Surgical Valve Replacement.” EuroIntervention: 472-474, Feb. 2006.
“A Matter of Size.” Triennial Review of the National Nanotechnology Initiative, The National Academies Press, Washington DC, v-13, http://www.nap.edu/catalog/11752/a-matter-of-size-triennial-review-of-the-national-nanotechnology, 2006.
“Heart Valve Materials—Bovine (cow).” Equine & Porcine Pericardium, Maverick Biosciences Pty. Lt, http://maverickbio.com/biological-medical-device-materials.php?htm. 2009.
“Pericardial Heart Valves.” Edwards Lifesciences, Cardiovascular Surgery FAQ, http://www.edwards.com/products/cardiovascularsurgeryfaq.htm, Nov. 14, 2010.
Andersen et al. “Transluminal catheter implantation of a new expandable artificial cardiac valve (the stent-valve) in the aorta and the beating heart of closed chest pigs (Abstract).” Eur. Heart J., 11 (Suppl.): 224a (1990).
Andersen et al., “Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs.” Euro. Heart J., 13:704-708, May 1992.
Atwood et al., “Insertion of Heart Valves by Catheterization.” Project Supervised by Prof. S. Muftu of Northeastern University 2001-2002: 36-40, May 30, 2002.
Atwood et al., “Insertion of Heart Valves by Catheterization.” The Capstone Design Course Report MIME 1501-1502. Technical Design Report Northeastern University, pp. 1-93, Nov. 5, 2007.
Blum et al., “Endoluminal Stent-Grafts for Intrarenal Abdominal Aortic Aneurysms.” New Engl. J. Med., 336:13-20 (1997).
Bodnar et al., “Replacement Cardiac Valves R Chapter 13: Extinct Cardiac Valve Prostheses.” Pergamon Publishing Corporation. New York, 307-322, 1991.
Bonhoeffer et al., “Percutaneous Insertion of the Pulmonary Valve.” J. Am. Coll. Cardiol., 39:1664-9 (2002).
Bonhoeffer et al., “Transcatheter Implantation of a Bovine Valve in Pulmonary Position: A Lamb Study.” Circulation, 102: 813-16 (2000).
Bonhoeffer, et al., “Percutaneous replacement of pulmonary valve in a right ventricle to pulmonary-artery prosthetic conduit with valve dysfunction.” The Lancet, vol. 356, 1403-05 (Oct. 21, 2000).
Boudjemline et al., “Percutaneous Implantation of a Biological Valve in the Aorta to Treat Aortic Valve Insufficiency—A Sheep Study.” Med Sci. Monit., vol. 8, No. 4: BR113-116, Apr. 12, 2002.
Boudjemline et al., “Percutaneous Implantation of a Valve in the Descending Aorta in Lambs.” Euro. Heart J., 23: 1045-1049, Jul. 2002.
Boudjemline et al., “Percutaneous Pulmonary Valve Replacement in a Large Right Ventricular Outflow Tract: An Experimental Study.” Journal of the American College of Cardiology, vol. 43(6): 1082-1087, Mar. 17, 2004.
Boudjemline et al., “Percutaneous Valve Insertion: A New Approach?” J. of Thoracic and Cardio. Surg, 125(3): 741-743, Mar. 2003.
Boudjemline et al., “Steps Toward Percutaneous Aortic Valve Replacement.” Circulation, 105: 775-778, Feb. 12, 2002.
Cribier et al., “Early Experience with Percutaneous Transcatheter Implantation of Heart Valve Prosthesis for the Treatment of End-Stage Inoperable Patients with Calcific Aortic Stenosis.” J. of Am. Coll. of Cardio, 43(4): 698-703, Feb. 18, 2004.
Cribier et al., “Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis: First Human Case.” Percutaneous Valve Technologies, Inc., 16 pages, Apr. 16, 2002.
Cribier et al., “Percutaneous Transcatheter Implementation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis: First Human Case Description.” Circulation, 106: 3006-3008, Dec. 10, 2002.
Cunanan et al., “Tissue Characterization and Calcification Potential of Commercial Bioprosthetic Heart Valves.” Ann. Thorac. Surg., S417-421, May 15, 2001.
Cunliffe et al., “Glutaraldehyde Inactivation of Exotic Animal Viruses in Swine Heart Tissue.” Applied and Environmental Microbiology, Greenport, New York, 37(5): 1044-1046, May 1979.
Dake et al., “Transluminal Placement of Endovascular Stent-Grafts for the Treatment of Descending Thoracic Aortic Aneurysms.” New Engl. J. of Med., 331(26):1729-34 (1994).
Dolmatch et al., Stent Grafts: Current Clinical Practice (2000)—EVT Endograft and Talent Endoprosthesis.
Dotter, “Transluminally-Placed Coilspring Endarterial Tube Grafts,” Investigative Radiology, pp. 329-332 (1969).
Emery et al., “Replacement of the Aortic Valve in Patients Under 50 Years of Age: Long-Term Follow-Up of the St. Jude Medical Prosthesis.” Ann. Thorac. Surg., 75:1815-9 (2003).
EP Search Report for EP Application No. 06824992.9, dated Aug. 10, 2011.
Examiner's First Report on AU Patent Application No. 2011202667, dated May 17, 2012.
Ferrari et al., “Percutaneous Transvascular Aortic Valve Replacement with Self-Expanding Stent-Valve Device.” Poster from the presentation given at SMIT 2000, 12th International Conference. Sep. 5, 2000.
Helmus, “Mechanical and Bioprosthetic Heart Valves in Biomaterials for Artificial Organs.” Woodhead Publishing Limited: 114-162, 2011.
Hijazi, “Transcatheter Valve Replacement: A New Era of Percutaneous Cardiac Intervention Begins.” J. of Am. College of Cardio., 43(6): 1088-1089, Mar. 17, 2004.
Hourihan et al., “Transcatheter Umbrella Closure of Valvular and Paravalvular Leaks.” JACC, Boston, Massachusetts, 20(6): 1371-1377, Nov. 15, 1992.
Huber et al., “Do Valved Stents Compromise Coronary Flow?” European Journal of Cardio-thoracic Surgery, vol. 25: 154-759, Jan. 23, 2004.
Ing, “Stents: What's Available to the Pediatric Interventional Cardiologist?” Catheterization and Cardiovascular Interventions 57:274-386 (2002).
Kort et al., “Minimally Invasive Aortic Valve Replacement: Echocardiographic and Clinical Results.” Am. Heart J., 142(3): 476-481, Sep. 2001.
Levy, “Mycobacterium Chelonei Infection of Porcine Heart Valves.” The New England Journal of Medicine, Washington DC, 297(12), Sep. 22, 1977.
Love et al., The Autogenous Tissue Heart Valve: Current Status. Journal of Cardiac Surgery, 6(4): 499-507, Mar. 1991.
Lutter et al., “Percutaneous Aortic Valve Replacement: An Experimental Study. I. Studies on Implantation.” J. of Thoracic and Cardio. Surg., 123(4): 768-776, Apr. 2002.
Moazami et al., “Transluminal Aortic Valve Placement: A Feasibility Study With a Newly Designed Collapsiable Aortic Valve,” ASAIO J. vol. 42:5, pp. M383-85 (Sep./Oct. 1996).
Moulopoulos et al., “Catheter-Mounted Aortic Valves.” Annals of Thoracic Surg., 11(5): 423-430, May 1971.
Paniagua et al., “Heart Watch.” Texas Heart Institute. Edition: 8 pages, Spring, 2004.
Paniagua et al., “Percutaneous Heart Valve in the Chronic in Vitro Testing Model.” Circulation, 106: e51-e52, Sep. 17, 2002.
Pavcnik et al., “Percutaneous Bioprosthetic Venous Valve: A Long-term Study in Sheep.” J. of Vascular Surg., 35(3): 598-603, Mar. 2002.
Pavcnik, et al., “Aortic and venous valve for percutaneous insertion,” Min. Invas. Ther. & Allied Technol. 9(3/4) 287-292 (2000).
Phillips et al., “A Temporary Catheter-Tip Aortic Valve: Hemodynamic Effects on Experimental Acute Aortic Insufficiency.” Annals of Thoracic Surg., 21(2): 134-136, Feb. 1976.
Cribier et al., “Percutaneous Transluminal Valvuloplasty of Acquired Aortic Stenosis in Elderly Patients: An Alternative to Valve Replacement?” The Lancet, 63-7 (Jan. 11, 1986).
Allen et al., “What are the characteristics of the ideal endovascular graft for abdominal aortic aneurysm exclusion?” J. Endovasc. Surg., 4(2):195-202 (May 1997).
Bailey, “Percutaneous Expandable Prosthetic Valves, Textbook of Interventional Cardiology.” vol. 2, 2d ed. Eric J. Topol, W.B. Saunders Co. (1994).
Couper, “Surgical Aspects of Prosthetic Valve Selection,” Overview of Cardiac Surgery for the Cardiologist, Springer-Verlag New York, Inc., 131-145 (1994).
Cribier et al., “Trans-Cathether Implantation of Balloon-Expandable Prosthetic Heart Valves: Early Results in an Animal Model.” Circulation [suppl. II] 104(17)11-552 (Oct. 23, 2001).
Dalby et al., “Non-Surgical Aortic Valve Replacement” Br. J. Cardiol., 10:450-2 (2003).
Dhasmana, et al., “Factors Associated With Periprosthetic Leakage Following Primary Mitral Valve Replacement: With Special Consideration of Suture Technique.” Annals of Thorac. Surg. 35(2), 170-8 (Feb. 1983).
Diethrich, AAA Stent Grafts: Current Developments, J. Invasive Cardiol. 13(5) (2001).
Greenberg, “Abdominal Aortic Endografting: Fixation and Sealing.” J. Am. Coll. Surg. 194:1:S79-S87 (2002).
Grossi, “Impact of Minimally Invasive Valvular Heart Surgery: A Case-Control Study.” Ann. Thorac. Surg., 71:807-10 (2001).
Huber et al., “Do Valved Stents Compromise Coronary Flow?” European Journal of Cardio-thoracic Surgery, vol. 25: 754-759, Jan. 23, 2004.
Ionescu, et al., “Prevalence and Clinical Significance of Incidental Paraprosthetic Valvar Regurgitation: A prospective study using transesophageal echocardiography.” Heart, 89:1316-21 (2003).
Kaiser, et al., “Surgery for Left Ventricle Outflow Obstruction: Aortic Valve Replacement and Myomectomy,” Overview of Cardiac Surgery for the Cardiologist. Springer-Verlag New York, Inc., 40-45 (1994).
Kato et al., “Traumatic Thoracic Aortic Aneurysm: Treatment with Endovascular Stent-Grafts.” Radiol., 205: 657-662 (1997).
Khonsari et al., “Cardiac Surgery: Safeguards and Pitfalls in Operative Technique.” 3d ed., 45-74 (2003).
Knudsen et al., “Catheter-implanted prosthetic heart valves.” Int'l J. of Art. Organs, 16(5): 253-262, May 1993.
Lawrence et al., “Percutaneous Endovascular Graft: Experimental Evaluation,” Radiology, 163(2): 357-60 (May 1987).
Levi et al., “Future of Interventional Cardiology in Pediactrics.” Current Opinion in Cardiol., 18:79-90 (2003).
Magovern et al., “Twenty-five-Year Review of the Magovern-Cromie Sutureless Aortic Valve.” Ann. Thorac. Surg., 48: S33-4 (1989).
Maraj et al., Evaluation of Hemolysis in Patients with Prosthetic Heart Valves, Clin. Cardiol. 21, 387-392 (1998).
McKay et al., “The Mansfield Scientific Aortic Valvuloplasty Registry: Overview of Acute Hemodynamic Results and Procedural Complications.” J. Am. Coll. Cardiol. 17(2): 485-91 (Feb. 1991).
Mirich et al., “Percutaneously Placed Endovascular Grafts for Aortic Aneurysms: Feasibility Study.” Radiology, 170: 1033-1037 (1989).
Parodi et al., “Transfemoral Intraluminal Graft Implantation for Abdominal Aortic Aneurysms.” Ann. Vasc. Surg., 5 (6):491-9 (1991).
Pavcnik et al., “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement.” Radiology 183:151-54 (1992).
Printz, et al., “Let the Blood Circulate.” Sulzer Tech. Rev. 4/99.
Rosch et al., “Gianturco-Rosch Expandable Z-Stents in the Treatment of Superior Vena Cava Syndrome.” Cardiovasc. Intervent. Radiol. 15: 319-327 (1992).
Seminars in Interventional Cardiology, ed. P.W. Surruys, vol. 5 (2000).
Stanley et al., “Evaluation of Patient Selection Guidelines for Endoluminal AAA Repair With the Zenith Stent Graft: The Australasian Experience.” J. Endovasc. Ther. 8:457-464 (2001).
White et al., “Endoleak as a Complication of Endoluminal Grafting of Abdominal Aortic Aneurysms: Classification, Incidence, Diagnosis, and Management.” J. Endovac. Surg., 4:152-168 (1997).
Carpentier-Edwards PERIMOUNT Bioprosthesis (2003).
Fluency Vascular Stent Graft Instructions for Use (2003).
Gore Excluder Instructions for Use (2002).
Anderson et al. “Transluminal catheter implantation of a new expandable artificial cardiac valve (the stent-valve) in the aorta and the beating heart of closed chest pigs (Abstract).” Eur. Heart J., 11 (Suppl.): 224a (1990).
USPTO Case IPR 2017-0006, U.S. Pat. No. 8,992,608 B2, “Final Written Decision” dated Mar. 23, 2018.
USPTO Case IPR2016-____, U.S. Pat. No. 8,992,608 “Petition for Interpartes Review of U.S. Pat. No. 8,992,608” dated Oct. 12, 2016.
U.S. Appl. No. 60/553,945 filed Mar. 18, 204, Inventor: White.
Related Publications (1)
Number Date Country
20160008122 A1 Jan 2016 US
Provisional Applications (3)
Number Date Country
60234113 Sep 2000 US
60234112 Sep 2000 US
60226461 Aug 2000 US
Continuations (4)
Number Date Country
Parent 14147149 Jan 2014 US
Child 14866017 US
Parent 13493730 Jun 2012 US
Child 14147149 US
Parent 11185425 Jul 2005 US
Child 13493730 US
Parent 09932512 Aug 2001 US
Child 11185425 US