Expandable implant

Information

  • Patent Grant
  • 10058433
  • Patent Number
    10,058,433
  • Date Filed
    Friday, October 28, 2016
    8 years ago
  • Date Issued
    Tuesday, August 28, 2018
    6 years ago
Abstract
An expandable implant for inserting within a skeletal space is provided, and a method for using the implant to expand the skeletal space. The implant is preferably designed to be inserted into an intervertebral space to replace at least part of an intervertebral disc between adjacent vertebral bodies. The expandable implant contains at least one first expansion compartment and at least one second expansion compartments, which compartments can be inflatable balloons that are inflated by a catheter. Inflating the first expansion compartment expands the implant in a first direction and inflating the second expansion compartment expands the implant in a second direction.
Description
TECHNICAL FIELD

This invention relates to improved implants for a skeletal space. This invention also relates to improved methods for expanding a skeletal space and for treating a patient having skeletal damage or injury.


BACKGROUND

There are many situations where there is a need to replace, augment or support sections of bone in human or animal bodies, such as for replacement of material between or within bones in the spine, long bones in the arms or legs, in the knee, hip, shoulder, finger or other joints and following removal of a portion of bone due to tumour treatment or injury. In particular, there is a requirement for support or realignment of neighbouring vertebrae for treating damage to the spine, for example due to osteoporosis or damage to a vertebral disc. Expandable intervertebral implants which can be inserted into a patient's spine at a relatively small size and which are able to expand to restore the original height of removed spinal material or to a height desired by a surgeon in order to support and/or realign the spine are known from WO 2009/092102.


WO 2009/092102 discloses implants that may be sequentially expanded in an intervertebral space using a surgical instrument to perform lateral expansion in the anterior-posterior (a-p) direction and then using a balloon to expand the implant in the cranio-caudal (c-c) direction. However, it has been found that when an instrument is used to expand the implant in the a-p direction, it is difficult to achieve the desired dimension of the intervertebral implant in the a-p direction (the implant “footprint”). One reason for this is the difficulty in accessing the implant with an appropriate instrument when the implant is located in a surgically sensitive site, such as between vertebrae, due to the potential risk of tissue and nerve damage to the patient. An alternative method for effecting a-p expansion of the implant disclosed in WO 2009/092102 is using the pre-installed balloon. However, this results in an inherent expansion of the implant in the c-c direction. A disadvantage of this arrangement is that there is a risk that the implant will contact the vertebrae too early during the c-c expansion, thereby limiting the a-p expansion achievable and, hence, preventing the degree of a-p expansion within the intervertebral space desired by the surgeon. A consequence of insufficient a-p expansion of the implant is that the implant may be less effective at supporting and/or aligning the vertebrae and may not allow sufficiently high biomechanical performance.


It is desirable to provide an expandable implant that is able to be inserted into a skeletal space in a patient at a relatively small size and which is configured to be able to expand in a controlled, sequential fashion to dimensions desired by a medical practitioner. In particular, it is desirable to be able to restrict expansion in at least one direction in which the implant is able to expand during expansion of the implant in a perpendicular direction, in order to provide more control over the dimensions of the finally expanded implant.


Furthermore, it would be desirable to provide a method of expanding a skeletal space using an expandable implant in a sequential fashion that allows the dimensions of the expanded implant to be controlled.


SUMMARY

According to the present invention, there is provided an implant for a skeletal space, comprising:


a first contacting member;


a second contacting member;


at least one first expansion compartment; and


at least one second expansion compartment;


wherein the implant is expandable from an insertion configuration to an expanded configuration,


wherein the implant has a first dimension in a first direction and a second dimension in a second direction in the insertion configuration, and wherein the first direction is substantially perpendicular to the second direction,


wherein the implant is configured such that:

    • during expansion of the at least one first expansion compartment, the at least one first expansion compartment cooperates with at least one of the first and second contacting members to cause the first dimension of the implant to increase without substantially causing a change in the second dimension of the implant; and
    • during expansion of the at least one second expansion compartment, the at least one second expansion compartment cooperates with at least one of the first and second contacting members to cause the second dimension of the implant to increase.


As such, the implant can be expanded in the first direction to achieve the required first dimension for the implant within a skeletal space without changing the second dimension of the implant and then subsequently can be expanded in the second direction to achieve the required second dimension of the implant within the skeletal space. An advantage of the implant is that it allows expansion in at least one dimension of the implant to be restricted during expansion of the implant in another dimension. Having the ability to select the direction in which the dimension of the implant is able to expand, provides a medical practitioner with improved control over expanding the implant to the appropriate dimensions within the skeletal space.


The implant may be configured such that during expansion of the at least one second expansion compartment, the at least one second expansion compartment cooperates with at least one of the first and second contacting members to cause the second dimension of the implant to increase without substantially causing a change in the first dimension of the implant. As such, the implant can be expanded in the first direction to achieve the required first dimension for the implant within a skeletal space without changing the second dimension of the implant and then subsequently can be expanded in the second direction to achieve the required second dimension of the implant within the skeletal space without affecting the previously obtained first dimension. Alternatively, the implant may be expanded initially in the second direction with subsequent expansion in the first direction. In this way, the implant provided has an advantage of being able to be expanded in a controlled fashion so that both first and second dimensions of the implant may be optimised.


The implant may be manufactured by any appropriate means. For example, the implant may be manufactured by manufacturing each of the first and second contacting members as separate and distinct components and then coupling these together. An exemplary method for making the implants of the present invention may be based on the method described in WO 2009/092102, or any appropriate adaptation thereof known to a person skilled in the art.


The implant may be used in any appropriate skeletal space. The implant of the present invention may be used for replacement of material between or within bones, such as in the spine, long bones in the arms or legs, in the knee, hip, shoulder, finger or other joints. Alternatively, the implant of the present invention may be used for replacement of a section of bone, such as following removal of a portion of bone due to tumour treatment or injury. The skeletal space may correspond to a section of bone removed from a femur, tibia or fibula. The skeletal space may be defined by a void between a first portion and a second portion of the same bone. Alternatively, the skeletal space may be defined by a void between a first bone and a second bone. Preferably, the skeletal space is a void between a first bone and a second bone in a joint. Preferably, the skeletal space is an intervertebral space. The intervertebral space may arise from the absence of an intervertebral disc. The intervertebral space may be defined by the space between the superior surface of a first vertebra and an inferior surface of a second, adjacent vertebra.


The first direction and second direction are substantially perpendicular to each other. The first direction and second direction may be in any direction depending on the orientation of the implant. The first direction may correspond to the direction of the height, width or depth of the implant. The second direction may correspond to the direction of the height, width or depth of the implant. Preferably, the first direction corresponds to the width of the implant and the second direction corresponds to the height of the implant. In this arrangement, the extent of the expansion of the implant in the first direction may be selected according to the width of a skeletal space and the extent of the expansion of the implant in the second direction may be selected according to the distance between a first bone or first portion of bone and a second bone or second portion of bone defining the skeletal space. Where the skeletal space is an intervertebral space, the first direction may be an anterior-posterior (a-p) direction, a cranio-caudal (c-c) direction or a medial laterally (m-l) direction. Preferably, the first direction is an a-p direction and the second direction is a c-c direction.


The first and the second contacting members may be bone contacting members. The portion of bone which the first and second contacting members contact may be bare bone or may be covered in a material, such as a protective cap or a film layer to assist in engagement of the bone with the implant.


The first and the second contacting members may be substantially planar. Alternatively, they may be shaped, such as having a convex or a concave shaped in order to better align with the portion of the bone which they abut.


The first and second contacting members may have an outer surface that contacts bone which is smooth.


Alternatively, the outer surface of the first and second contacting members may have an outer surface that is undulating. The outer surface may comprise a plurality of teeth or spikes. In this way the implant may have improved stability within the skeletal space. In particular, there may be improved engagement between the implant and the bone due to friction between the bone and the plurality of teeth.


The first and second contacting members may be formed from any suitable biocompatible material including: a metal, such as cobalt-chromium-molybdenum (CCM) alloys, titanium, titanium alloys, stainless steel, aluminium; a ceramic such as zirconium oxide, silicone nitride; an allograft; an autograft; a metal-allograft composite; a polymer, such as polyaryl ether ketone (PAEK), polyether ether ketone (PEEK), polyether ketone ketone (PEKK), polyetherketone (PEK), polyetherketone ether-ketone-ketone (PEK-EKK); and polymers reinforced with a fiber, such as a carbon fiber.


The first and second contacting members may be coated in order to enhance the osteo-integration of the implant in the skeletal space. The first and second contacting members may also be coated with thin layer titanium using a physical or chemical vapour deposition process, by an anodic plasma chemical surface treatment comprising calcium and/or phosphorus in the titanium-oxide surface layer or may be sprayed with a titanium or hydroxyapatite (HA) plasma. In this way osteo-conductive properties may be enhanced.


The first and second expansion compartments may be an inflatable structure, such as a balloon, an expansion sack or an expansion bag. Preferably, the first expansion compartment is a balloon, preferably a double-walled balloon. Preferably, the second expansion compartment is a balloon, preferably a double-walled balloon. Preferably, the first and second expansion components are both balloons, preferably double-walled balloons.


The first and second expansion compartments may be manufactured from any suitable biocompatible material including, polyurethane, a polycarbonate urethane, a polycarbonate-silicone urethane copolymer, a polyamine, a polyethylene terephthalate, and a polycaprolactone.


The use of expansion compartments in the implant enables selective, sequential expansion of the implant. Furthermore, the expansion compartments allow the implant filling material to be safely retained in order to avoid the filling material spreading out of the implant and into sensitive and easily damaged body parts.


The implant may comprise a single first expansion compartment, two first expansion compartments, or more than two first expansion compartments. Preferably, the implant comprises two first expansion compartments.


The implant may comprise a single second expansion compartment, two second expansion compartments, or more than two second expansion compartments. Preferably, the implant comprises two second expansion compartments.


The first and second expansion compartments may be configured to be able to receive a filling material independently of one another. In this way, expansion of the first and second expansion compartments can occur selectively, which has an advantage of allowing improved control over the manner in which the implant expands.


Typically, the first and second expansion compartments may each be connected to separate removable catheters. Filling material may be introduced into the expansion compartment via a catheter. The first and second expansion compartments may each comprise an entry portion into which the filling material may be introduced. Once a required amount of filling material has been introduced into the expansion compartment, the catheter may be removed.


The filling material may be any suitable biocompatible material and may be rigid or elastic. The filling material may be a bone cement, a hydrogel, a polyvinyl alcohol, a sodium polyacrylate, an acrylate polymer, a methyl-methacrylate, a copolymer with an abundance of hydrophilic groups, p-vinyl pyrollidone, polyethyleneimine, a setting or curing hydrogel based copolymer such as polyethyleneimine, poly(diethylaminoethyl methacrylate), poly(ethylaminoethyl methacrylate), a thermally setting hydrogel based copolymer such as poly-N-isopropylacrylamide with polyethylene glycol, copolymers of polyethylene oxide and polypheneylene oxide, copolymers of polyethylene glycol and polylactides, an ionic setting hydrogel such as ethylacrylate, methacrylic acid, 1,4-butanediacrylate, or a PCU, PCU-silicone copolymer, silicone or other non-resorbable pure or elastic copolymer (for example, PCU's silicone end group modified PUs, RTV curing siloxane based elastomers).


The filling material may be curable, for example, the filling material may comprise a polymer and a cross-linking agent. The final dimensions and shape of the implant after expansion may be retained by hardening or cross-linking the filling material after the filling material has been introduced into the expansion compartment. In this way, the implant may be able to provide skeletal support where previously there had been a space.


The implant may comprise a first cavity defined in a region between the first contacting member and the second contacting member in which at least one of the second expansion compartments is housed.


The implant may further comprise a second cavity defined in a region between the first contacting member and the second contacting member in which a further second expansion compartment is housed.


The first contacting member may comprise two contacting components. Where the first contacting member comprises two contacting components, the implant further comprises a first expandable connection that links the two contacting components. The two contacting components of the first contacting member are arranged such that as the first dimension of the implant increases the first expandable connection expands and the contacting components move apart.


A third cavity may be defined in a region between the two contacting components of the first contacting member in which a first expansion compartment is housed. In this way, expansion of the first expansion compartment moves apart the two contacting components of the first contacting member.


The second contacting member may comprise two contacting components. Where the second contacting member comprises two contacting components, the implant further comprises a second expandable connection that links the two contacting components. The two contacting components of the second contacting member are arranged such that as the first dimension of the implant increases the first expandable connection expands and the contacting components move apart.


A fourth cavity may be defined in a region between the two contacting components of the second contacting member in which a first expansion compartment is housed. In this way, expansion of the first expansion compartment moves apart the two contacting components of the first contacting member.


The implant may comprise a third expandable connection that links the first contacting member to the second contacting member, wherein as the second dimension of the implant increases the third expandable connection expands.


The first, second or third expandable connections may comprise any elements that allow the contacting components or contacting members to which they are linked to move apart as described hereinabove. The expandable connections may comprise, for example, a mesh or a wire netting. The wire netting may comprise a plurality of individual link members. The individual link members may have a rectangular shape. The individual link members may have a trapezoidal shape.


The first and/or second expandable connections may comprise the at least one first expansion compartment described hereinabove. A first expansion compartment may be attached to each of the two components of one or both of the first and second contacting members such that on expansion of the first expansion compartment, the two components of the first or the second contacting members are moved apart by and remain linked together by the first expansion component. The third expandable connection may comprise the at least one second expansion compartment described hereinabove. A second expansion compartment may be attached to each of the first and second contacting members such that on expansion of the second expansion compartment, the first and second contacting members are moved apart by and remain linked together by the second expansion component.


The first, second and third expandable connections may allow expansion of the implant to any suitable dimension appropriate for the skeletal space in which the implant is being used. When the skeletal space is an intervertebral space, the expandable connections typically are each able to expand from about 0.3 mm to about 12 mm.


The first, second and third expandable connections may allow the first and second contacting members to adopt a shape that enables the implant to adapt to the shape of the skeletal space.


The implant may further comprise at least one third expansion compartment,


wherein the implant has a third dimension in a third direction in the insertion configuration, and the third direction is substantially perpendicular to each of the first and second directions,


wherein the implant is configured such that expansion of the at least one third expansion compartment causes the third dimension of the implant to increase without substantially causing a change in the first or second dimensions of the implant.


At least one, preferably both, of the first and second contacting members may each comprise four contacting components. The four contacting components may be arranged in a configuration such that there are two contacting components side by side in the first direction and two contacting components side by side in the third direction. The at least one third expansion compartment may be positioned between two contacting components in the third direction. Expansion of the third expansion compartment is able to move apart the two contacting components in the third direction. Preferably, the third expansion compartment is as hereinbefore described in relation to the first and second expansion compartments.


Where the first and second directions are height and width of the implant, the third direction corresponds to the depth of the implant. Preferably, where the skeletal space is an intervertebral space, the third direction is the m-l direction.


The implant may further comprise a first fixing for attaching the at least one first expansion compartment to the implant. The first expansion compartment may comprise an attachment portion, such as a hook portion, for cooperating with the first fixing and allowing attachment to the implant.


The implant may further comprise a second fixing for attaching the at least one second expansion compartment to the implant. The second expansion compartment may comprise an attachment portion, such as a hook portion, for cooperating with the second fixing and allowing attachment to the implant.


The first and second fixings may be arranged at an end of the implant away from the end at which the entry portion of the first and second expansion compartments is located.


The first and second fixings may be configured to allow detachment from the implant of the at least one first expansion compartment and the at least one second expansion compartment when the implant is in the expanded configuration. In this way, the position of the first or second expansion compartments may be manipulated to allow tilting of the first contacting member of the implant with respect to the second contacting member. In an embodiment where the first and/or second contacting members comprise two or more contacting components, relative movement of one or more contacting components within a plane of the first and/or second contacting members may be achieved.


Detachment of the first or second expansion compartment from the implant may also be advantageous in the event that the implant should be removed from the skeletal space. Removal of the first or second expansion compartments may allow the implant to reduce in size and adopt the insertion configuration, which would make removal from the skeletal space less damaging to the patients other body parts.


The implant may comprise a mechanism for engaging an implant holding and/or insertion instrument. The mechanism for engaging an implant holding and/or insertion instrument may comprise one or more grooves, apertures, mouldings, channels or projections arranged on the first or second contacting members. For example, the mechanism may be arranged to receive one or more pairs of blade springs of an implant holding and/or insertion instrument.


The implant may comprise one or more features, such as one or more form fit features, that assist the contacting components of the first and second contacting members to fit together prior to expansion of the first and/or second expansion compartments. These features are useful in order to help retain the implant in an insertion configuration during implantation. These features may comprise one or more grooves, apertures, mouldings, channels or projections arranged on the first or second contacting members to enable the first and second contacting members to retain their position relative to each other prior to expansion of the implant.


In accordance with the present invention, there is provided a method of expanding an implant in a skeletal space comprising:


inserting an expandable implant in a skeletal space, the implant comprising first and second expansion compartments;


expanding the first expansion compartment to expand a first dimension of the implant in a first direction; and


subsequently expanding the second expansion compartment to expand a second dimension of the implant in a second direction;


wherein the first direction is different to the second direction.


The first direction may be perpendicular to the second direction.


The method may comprise a step of arranging the first and second expansion compartments in the expandable implant prior to inserting the expandable implant in a skeletal space. Alternatively, the method may comprise a step of providing an implant in which the first and second expansion compartments have been arranged in the implant prior to insertion of the implant.


The method may comprise preventing substantially any expansion of the second dimension of the implant in a second direction during the step of expanding the first expansion compartment. Alternatively or in addition, the method may comprise preventing substantially any expansion of the first dimension of the implant in a first direction during the step of expanding the second expansion compartment.


The method may further comprise evaluating the position of the implant prior to expanding the second expansion compartment. Evaluation of the position of the implant may be achieved by using standard techniques such as fluoroscopy. A fluoroscope, also known as an image intensifier, may be used to evaluate the position of the implant intraoperatively and in real time. The implant may be engaged with an implant holding and/or insertion instrument during the evaluation. This has an advantage of allowing repositioning of the implant as appropriate.


Prior to insertion of the implant, the end portions of the bone at the edge of the skeletal plates may be cleaned. Furthermore, tissue may be removed from the skeletal space prior to insertion of the implant.


The skeletal space is as hereinbefore described. Preferably, the skeletal space is an intervertebral space. Where the skeletal space is an intervertebral space, the method preferably comprises a step of removing an intervertebral disc from the intervertebral space prior to the step of inserting the implant in the intervertebral space.


The implant may be inserted in an intervertebral space via abdominal, trans-psoas or extraforaminal approaches.


The implant used in the method of the present invention may have features as in any of the implants hereinbefore described.


The implant may comprise a first contacting member and a second contacting member. Preferably, the first and the second contacting members are bone contacting members. The implant may be configured such that in the step of expanding the first expansion compartment, the first expansion compartment cooperates with at least one of the first and second contacting members to cause the first dimension of the implant to increase. Alternatively or in addition, the implant may be configured such that in the step of expanding the second expansion compartment, the second expansion compartment cooperates with at least one of the first and second contacting members to cause the second dimension of the implant to increase.


In the method of the present invention, the implant may have at least two second expansion compartments, and the method may comprise expanding one second expansion compartment more than the other second expansion compartment in order to tilt the first contacting member with respect to the second contacting member.


According to the present invention there is provided a method of treating skeletal damage in a patient comprising implanting in a skeletal space an implant of the present invention.


According to the present invention there is provided a method of treating skeletal damage in a patient comprising inserting an implant of the present invention and expanding the implant according to the method of expanding a skeletal space hereinbefore described.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a top perspective view of an implant according to the present invention in an insertion configuration.



FIG. 2 is a cross-sectional view of the implant shown in FIG. 1 taken through the plane A-A.



FIG. 3 is a cross-sectional view of an implant shown in FIG. 1 positioned in an intervertebral space.



FIG. 4 is a cross-sectional view of the implant shown in FIG. 1 which has been expanded in a first direction.



FIG. 5 is a cross-sectional view of the implant shown in FIG. 1 which has been expanded in a first direction and in a second direction.



FIG. 6 is a rear perspective view of the implant shown in FIG. 1 in an insertion configuration.



FIG. 7 is a cross-sectional view of the implant shown in FIG. 1 taken through the plane B-B.



FIG. 8 is a rear perspective view of the implant shown in FIG. 1 which has been expanded in a first direction.



FIG. 9 is a rear perspective view of the implant shown in FIG. 1 which has been expanded in a first direction and in a second direction.



FIG. 10 is a cross-section view of an alternative implant according to the present invention in an insertion configuration.





DETAILED DESCRIPTION

Specific embodiments of the present invention are now described by way of example only with reference to the drawings. It will be recognised that features specified in one embodiment of the invention may be combined with other specified features to provide further embodiments.


With reference to FIGS. 1, 2 and 3, an implant (10) according to one embodiment of the present invention is shown in an insertion configuration. The implant has a front end (80) and a rear end (90). The implant (10) has a first contacting member (12) consisting of two contacting components (16, 18) linked by a first expandable connection (24) and a second contacting member (14) consisting of two contacting components (20, 22) linked by a second expandable connection (26). The first contacting member (12) and the second contacting member (14) are linked by a third expandable connection (28, 30).


The implant (10) has a first cavity (40) between one contacting component (18) of the first contacting member (10) and one contacting component (22) of the second contacting member (14) in which is housed a second expansion compartment (36). The implant (10) also has a second cavity (42) between the other contacting component (16) of the first contacting member (12) and the other contacting component (20) of the second contacting member (14) in which is housed a further second expansion compartment (38). The two second expansion compartments are in the form of longitudinally shaped balloons.


The implant (10) has a third cavity (44) between the contacting components (20, 22) of the second contacting member (14) in which are housed two first expansion compartments (32, 34). The first expansion compartments are in the form of longitudinally shaped balloons.


The contacting components (16, 18) of the first contacting member (12) each have a plurality of teeth (50) on their outermost surface. The contacting components (20, 22) of the second contacting member (14) each have a plurality of teeth (52) on their outermost surface.


The two first expansion compartments (32, 34) may be filled with filling material via a catheter (not shown) attached to an entry portion (54, 56) of each of the first expansion compartments.


The two second expansion compartments (36, 38) may be filled with filling material via a catheter (not shown) attached to an entry portion (58, 60) of each of the second expansion compartments.


The first contacting member (12) comprises a groove (61, 62) on the outer edge of each of the contacting components (16, 18) to which an implant holding and insertion instrument (not shown) can be attached to the implant (10).


The first contacting member (12) comprises recesses (64, 66) and the second contacting member comprises recesses (68, 70) to which an implant holding and insertion instrument (not shown) can be attached to the implant (10).


While in the insertion configuration, the implant (10) may be inserted into a skeletal space. FIGS. 2 and 3 show the implant (10) inserted into an intervertebral space (200) between a first vertebra (100) and a second vertebra (102). The implant (10) may be inserted into the intervertebral space (200) through a lateral incision in a patient. An implant holding and insertion instrument (not shown) engages with an arrangement of grooves (61, 62) and recesses (64, 66, 68, 70) on the implant (10) and the implant holding and insertion instrument is used to insert the implant into the intervertebral space (200). The implant holding and insertion instrument (not shown) is then detached from the implant (10). In the insertion configuration, the implant has a dimension d1 in a first direction and a dimension t1 in a second direction.


When inserted into the intervertebral space, the plurality of teeth (50) on the outermost surface of the first contacting member (12) engage with a surface (104) of the first vertebra (100) and the plurality of teeth (52) on the outermost surface of the second contacting member (14) engage with a surface (106) of the second vertebra (102).


With reference to FIGS. 4 and 5, which show features corresponding to those in FIGS. 2 and 3, the sequential expansion of the embodiment described in FIGS. 1 to 3, is effected by first simultaneously expanding the first expansion compartments (32, 34) with a filler material via catheters (not shown). Expansion of the first expansion compartments (32, 34) causes the first expandable connection (24) and the second expandable connection (26) to expand and the contacting components (16, 18) in the first contacting member (12) to move apart such that the implant has a dimension d2 in the first direction. The third expandable connection (28, 30) does not expand and the dimension t1 in the second direction remains unchanged. In this embodiment, the implant (10) is inserted such that the first direction corresponds to the a-p direction.


Subsequent to expansion of the first expansion compartments (32, 34), expansion in second direction, which corresponds to the c-c direction, is effected by simultaneously expanding the second expansion compartments (36, 38). Expansion of the second expansion compartments (36, 38) causes the third expandable connection (28, 30) to expand and the first and second contacting members (12, 14) to move apart such that the implant has a dimension t2 in the second direction. The dimension d2 in the second direction remains unchanged.


With reference to FIGS. 6 and 7 the first expansion compartments (32, 34) each comprise a hook portion (132, 134) that cooperates with first fixings (122, 124) positioned at the rear end (90) of the implant (10) to attach the first expansion compartments (32, 34) to the implant (10). The second expansion compartments (36, 38) each comprise a hook portion (130,136) that cooperates with second fixings (120, 126) positioned at the rear end (90) of the implant (10) to attach the second expansion compartments (36, 38) to the implant (10).


With reference to FIGS. 8 and 9, as the first expansion compartments (32, 34) expand, the contacting components (16, 18) of the first contacting member move apart, the contacting components (20, 22) of the second contacting member move apart and the first and second expandable connections (24, 26) expand. This expansion allows the hook portions (132, 134) of first expansion compartments (32, 34) to slide off the first fixings (122, 124) and hence the first expansion compartments (32, 34) detach from the implant (10).


As the second expansion compartments (36, 38) expand, the contacting components (16, 18) of the first contacting member move apart from the contacting components (20, 22) of the second contacting member and the third expandable connection (30) expands. This expansion allows the hook portions (130, 136) of the second expansion compartments (36, 38) to slide off the second fixings (120, 126) and hence the second expansion compartments (36, 38) detach from the implant (10).


With reference to FIG. 9, following detachment of the first and second expansion compartments (32, 34, 36, 38), the contacting components (16, 18) of the first contacting member (12) are able to tilt relative to each other and relative to the respective contacting components (20, 22) of the second contacting member (14).


With reference to FIG. 10, an implant (310) according to an alternative embodiment of the present invention is shown in an insertion configuration. The implant (310) has a first contacting member (312) consisting of two contacting components (316, 318) linked by a first expandable connection (324) and a second contacting member (314) consisting of two contacting components (320, 322) linked by a second expandable connection (326). The first contacting member (312) and the second contacting member (314) are linked by a third expandable connection (328, 330).


The implant (310) has a first cavity (340) between one contacting component (318) of the first contacting member (310) and one contacting component (322) of the second contacting member (314) in which is housed a second expansion compartment (336). The implant (310) also has a second cavity (342) between the other contacting component (316) of the first contacting member (310) and the other contacting component (320) of the second contacting member (314) in which is housed a further second expansion compartment (338).


The implant (310) has a third cavity (344) between the contacting components (320, 322) of the second contacting member (314) in which are housed two first expansion compartments (332, 334).


Expansion of the first expansion compartments (332, 334) causes the contacting components (320, 322) of the second contacting member (314) to move apart and the first and second expandable connections (324, 326) to expand. In this way, the implant (310) increases in dimension in a first direction (x). Due to the angled shape of the cavities (340, 342) between the first and second expansion members (312,314), expansion of the second expansion compartments (336, 338) causes the first contacting member (312) to move apart from the second contacting member (314), causing the third expandable connection (328, 330) to expand and, in addition, causes contacting components (316, 318) of the first contacting member (312) to move further apart and the first expandable connection (324) to further expand.


EXAMPLES

Embodiments of the present invention are now described, by way of illustration only, in the following examples. It will be understood that these examples are not limiting and that variations and modifications may be made within the spirit and scope of the invention as set out above and as defined in the following claims.


Example 1

Four separate catheter balloons (OPN NC® High Pressure PTCA Balloons from Sis Medical, having a highest rated burst pressure of 35 bar) were inserted into a bottom end of a cannulated implant holding and insertion instrument and pushed through the instrument such that part of the tubes connected to the catheter balloons were retained within the instrument but catheter balloons protruded from the top end of the instrument. The four balloons were subsequently inserted into an implant as shown in FIG. 1. The implant was mounted on the implant holding and insertion instrument using a pair of protruding blade springs which engaged with grooves on either side of the implant and retained the implant in a compressed, insertion configuration.


A lateral incision was made in a cadaveric specimen and residual intervertebral disc material was removed between the L3 and L4 vertebrae. The implant was inserted in a compressed, insertion configuration into the L3 to L4 intervertebral disc space.


A first inflation device (High Pressure Inflation Device from Sis Medical) was attached to the two balloons arranged to cause anterior-posterior expansion and a second inflation device of the same type was attached to the two balloons arranged to cause cranio-caudal expansion. The implant holding and insertion instrument was detached from the implant.


Water at a pressure of between 24 and 30 bar was introduced into the two balloons arranged to cause antero-posterior expansion using the first inflation device. The anterior-posterior dimension of the implant increased without causing any increase in the cranio-caudal dimension of the implant.


Subsequently, water at a pressure of between 24 and 30 bar was introduced into the two balloons arranged to cause cranio-caudal expansion using the second inflation device. The cranio-caudal dimension of the implant increased without causing any increase in the anterior-posterior dimension of the implant. A biomechanical study of the resulting expanded implant showed that it stabilized the L3 and L4 vertebrae.


Example 2

Four separate catheter balloons (OPN NC® High Pressure PTCA Balloons from Sis Medical, having a highest rated burst pressure of 35 bar) were inserted into a bottom end of a cannulated implant holding and insertion instrument and pushed through the instrument such that part of the tubes connected to the catheter balloons were retained within the instrument but catheter balloons protruded from the top end of the instrument. The four balloons were subsequently inserted into an implant as shown in FIG. 1. The implant was mounted on the implant holding and insertion instrument using a pair of protruding blade springs which engaged with grooves on either side of the implant and retained the implant in a compressed, insertion configuration.


A lateral incision was made in a cadaveric specimen and residual intervertebral disc material was removed between the L3 and L4 vertebrae. The implant was inserted in a compressed, insertion configuration into the L3 to L4 intervertebral disc space.


A first inflation device (High Pressure Inflation Device from Sis Medical) was attached to the two balloons arranged to cause anterior-posterior expansion and a second inflation device of the same type was attached to the two balloons arranged to cause cranio-caudal expansion. The implant holding and insertion instrument was detached from the implant.


Polymethyl methacrylate (PMMA) cement in a fluid state and at a pressure of between 24 and 30 bar was introduced into the two balloons arranged to cause anterior-posterior expansion using the first inflation device. The anterior-posterior dimension of the implant increased without causing any increase in the cranio-caudal dimension of the implant.


Subsequently, PMMA cement at a pressure of between 24 and 30 bar was introduced into the two balloons arranged to cause cranio-caudal expansion using the second inflation device. The cranio-caudal dimension of the implant increased without causing any increase in the anterior-posterior dimension of the implant.


The PMMA cement was cured. After curing of the PMMA cement, the tubes attached to the balloon catheters were removed. A biomechanical study of the resulting expanded implant showed that it stabilized the L3 and L4 vertebrae.

Claims
  • 1. An intervertebral implant expandable in at least a first direction, the implant comprising: a first bone contacting member defining a first bone contacting surface configured to face a first vertebra;a second bone contacting member defining a second bone contacting surface configured to face a second vertebra, the second bone contacting surface spaced from the first bone contacting surface in a second direction that is perpendicular to the first direction, wherein the implant is configured to be inserted into an intervertebral space in a third direction that is perpendicular to the first and second directions; andan expansion compartment positioned between the first and second bone contacting surfaces, wherein the expansion compartment is expandable so as to expand the implant along the first direction, wherein the expansion compartment comprises a coupling element configured to be coupled to a fixing member of one of the first and second bone contacting members, wherein expansion of the implant along the first direction causes the coupling element to detach from the fixing member thereby permitting at least a portion of the first bone contacting member to tilt relative to at least a portion of the second bone contacting member.
  • 2. The intervertebral implant of claim 1, wherein the first bone contacting member comprises a first component and a second component spaced from the first component along the first direction, the second bone contacting member comprises a third component and a fourth component spaced from the third component along the first direction, the at least a portion of the first bone contacting member is one of the first and second components, and the at least a portion of the second bone contacting member is one of the third and fourth components.
  • 3. The intervertebral implant of claim 2, wherein a select one of the first, second, third, and fourth components is restricted from tilting relative to another of the first, second, third, and fourth components when the coupling element is coupled to the fixing member, and the select one of the first, second, third, and fourth components is permitted to tilt relative to the another of the first, second, third, and fourth component when the coupling element is detached from the fixing member.
  • 4. The intervertebral implant of claim 3, wherein the expansion compartment is positioned between the third and fourth components in the first direction, the expansion compartment is elongate along the third direction, and the third and fourth components and the expansion compartment are collectively configured such that expansion of the expansion compartment increases a distance between the third and fourth components in the first direction so as to expand the implant in the first direction.
  • 5. The intervertebral implant of claim 4, further comprising a second expansion compartment that is positioned between the third and fourth components and is adjacent the first expansion compartment in the first direction.
  • 6. The intervertebral implant of claim 5, wherein the fixing member is a first protrusion defined by the third component, the first protrusion is elongate in the first direction, the coupling element is a first hook, the first hook is received over the first protrusion prior to expansion of the implant in the first direction, the fourth component defines a second protrusion elongate in the first direction and facing the first protrusion, the second expansion compartment comprises a second hook that is received over the second protrusion prior to expansion of the implant in the first direction, and the first and second hooks are configured to slide off the first and second protrusions, respectively, responsive to the distance between the third and fourth components increasing in the first direction.
  • 7. The intervertebral implant of claim 6, further comprising: a third expansion compartment positioned between the first and third components, wherein the third expansion compartment is expandable so as increase a distance between the first and third components in the second direction; anda fourth expansion compartment positioned between the second and fourth components, wherein the fourth expansion compartment is expandable so as to increase a distance between the second and fourth components in the second direction.
  • 8. The intervertebral implant of claim 7, wherein: the first component comprises a third protrusion elongate in the second direction;the second component comprises a fourth protrusion elongate in the second direction;the third expansion compartment comprises a third hook received over the third protrusion; andthe fourth expansion compartment comprises a fourth hook received over the fourth protrusion, the third hook is configured to slide off the third protrusion responsive to the distance between the first and third components increasing in the second direction, and the fourth hook is configured to slide off the fourth protrusion responsive to the distance between the second and fourth components increasing in the second direction.
  • 9. The intervertebral implant of claim 8, wherein each of the first, second, third, and fourth components is restricted from tilting relative to each of the other of the first, second, third, and fourth components when the first, second, third, and fourth hooks are received over the first, second, third, and fourth protrusions, respectively, and each of the first, second, third, and fourth components is permitted to tilt relative to each of the other of the first, second, third, and fourth components after the first, second, third, and fourth hooks slide off the first, second, third, and fourth protrusions, respectively.
  • 10. The intervertebral implant of claim 7, further comprising: a first expandable connection coupled to the first and second components; anda second expandable connection coupled to the third and fourth components, wherein each of the first and second expandable connections is expandable in the first direction.
  • 11. The intervertebral implant of claim 10, further comprising: a third expandable connection coupled to the first and third components; anda fourth expandable connection coupled to the second and fourth components, wherein each of the third and fourth expandable connections is expandable in the second direction.
  • 12. The intervertebral implant of claim 11, wherein each of the first, second, third, and fourth expandable connections comprises wire netting that includes a plurality of individual link members.
  • 13. The intervertebral implant of claim 7, wherein each of the first, second, third, and fourth expansion compartments comprises a balloon having an opening configured to receive filling material for causing expansion of the balloon.
  • 14. The intervertebral implant of claim 7, wherein the first and second components collectively define the first bone contacting surface, and the third and fourth components collectively define the second bone contacting surface.
  • 15. An intervertebral implant expandable in at least a first direction, the implant comprising: a first bone contacting member defining a first bone contacting surface configured to face a first vertebra;a second bone contacting member defining a second bone contacting surface configured to face a second vertebra, the second bone contacting surface spaced from the first bone contacting surface in a second direction that is perpendicular to the first direction, wherein the implant is configured to be inserted into an intervertebral space in a third direction that is perpendicular to the first and second directions; anda first expansion compartment positioned between the first and second bone contacting surfaces, the first expansion compartment comprising a coupling element configured to be coupled to a fixing member of one of the first and second bone contacting members, wherein the first expansion compartment is expandable so as to expand the implant along the first direction causing the coupling element to detach from the fixing member, thereby detaching the first expansion compartment from the one of the first and second bone contacting members,a second expansion compartment positioned between the first and second bone contacting members, wherein the second expansion compartment is expandable so as to move the first and second bone contacting surfaces away from one another in the second direction.
  • 16. The intervertebral implant of claim 15, wherein the second expansion compartment is positioned relative to the first and second bone contacting members so as to cause tilting of one of the first and second bone contacting surfaces relative to the other of the first and second bone contacting surfaces responsive to expansion of the second expansion compartment.
  • 17. The intervertebral implant of claim 16, wherein another of the first and second bone contacting members comprises a second fixing member, the second expansion compartment further comprises a second coupling element configured to be coupled to the second fixing member, and expansion of the implant along the second direction causes the second coupling element to detach from the second fixing member, thereby detaching the second expansion compartment from the other of the first and second bone contacting members.
  • 18. The intervertebral implant of claim 17, wherein the one of the first and second bone contacting members is permitted to tilt relative to the other of the first and second bone contacting members when the second coupling element is detached from the second fixing member.
  • 19. The intervertebral implant of claim 18, further comprising a third expansion compartment positioned between the first and second bone contacting members, the third expansion compartment spaced from the second expansion compartment in the first direction, wherein the third expansion compartment is expandable so as to move the first and second bone contacting surfaces away from one another in the second direction.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/569,105, now allowed, which claims the benefit to U.S. patent application Ser. No. 13/784,955, now U.S. Pat. No. 8,940,052, issued Jan. 27, 2015, which claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/675,975, filed Jul. 26, 2012, the contents of each of which are hereby incorporated by reference herein in their entirety.

US Referenced Citations (1272)
Number Name Date Kind
1802560 Kerwin et al. Apr 1931 A
1924695 Olson Aug 1933 A
2077804 Monroe et al. Apr 1937 A
2121193 Hanicke Jun 1938 A
2173655 Neracher et al. Sep 1939 A
2243717 Godoy et al. May 1941 A
2381050 Hardinge et al. Aug 1945 A
2388056 Hendricks et al. Oct 1945 A
2485531 William et al. Oct 1949 A
2489870 William et al. Nov 1949 A
2570465 Lundholm et al. Oct 1951 A
2677369 Knowles et al. May 1954 A
3115804 Lee et al. Dec 1963 A
3312139 Di et al. Apr 1967 A
3486505 Morrison et al. Dec 1969 A
3489143 Halloran et al. Jan 1970 A
3698391 Mahony et al. Oct 1972 A
3760802 Fischer et al. Sep 1973 A
3805775 Fischer et al. Apr 1974 A
3811449 Gravlee et al. May 1974 A
3842825 Wagner Oct 1974 A
3848601 Ma et al. Nov 1974 A
3867728 Stubstad et al. Feb 1975 A
3986504 Avila Oct 1976 A
4013071 Rosenberg Mar 1977 A
4052988 Doddi et al. Oct 1977 A
4091806 Aginsky May 1978 A
4175555 Herbert Nov 1979 A
4236512 Aginsky Dec 1980 A
4262665 Roalstad et al. Apr 1981 A
4275717 Bolesky Jun 1981 A
4312353 Shahbabian Jan 1982 A
4341206 Perrett et al. Jul 1982 A
4349921 Kuntz Sep 1982 A
4350151 Scott Sep 1982 A
4369790 McCarthy Jan 1983 A
4401112 Rezaian Aug 1983 A
4401433 Luther Aug 1983 A
4409974 Freedland Oct 1983 A
4449532 Storz May 1984 A
4451256 Weikl et al. May 1984 A
4456005 Lichty Jun 1984 A
4463753 Gustilo Aug 1984 A
4488543 Tornier Dec 1984 A
4494535 Haig Jan 1985 A
4532660 Field Aug 1985 A
4537185 Stednitz Aug 1985 A
4545374 Jacobson Oct 1985 A
4573448 Kambin Mar 1986 A
4601710 Moll Jul 1986 A
4625725 Davison et al. Dec 1986 A
4629450 Suzuki et al. Dec 1986 A
4632101 Freedland Dec 1986 A
4640271 Lower Feb 1987 A
4641640 Griggs Feb 1987 A
4653489 Tronzo Mar 1987 A
4667663 Miyata May 1987 A
4686984 Bonnet Aug 1987 A
4688561 Reese Aug 1987 A
4721103 Freedland Jan 1988 A
4723544 Moore et al. Feb 1988 A
4743257 Tormala et al. May 1988 A
4759766 Buettner-Janz et al. Jul 1988 A
4760843 Fischer et al. Aug 1988 A
4790304 Rosenberg Dec 1988 A
4790817 Luther Dec 1988 A
4796612 Reese Jan 1989 A
4802479 Haber et al. Feb 1989 A
4815909 Simons Mar 1989 A
4827917 Brumfield May 1989 A
4858601 Glisson Aug 1989 A
4862891 Smith Sep 1989 A
4863476 Shepperd Sep 1989 A
4873976 Schreiber Oct 1989 A
4898186 Ikada et al. Feb 1990 A
4903692 Reese Feb 1990 A
4917554 Bronn Apr 1990 A
4940467 Tronzo Jul 1990 A
4959064 Engelhardt Sep 1990 A
4963144 Huene Oct 1990 A
4966587 Baumgart Oct 1990 A
4968317 Tormala et al. Nov 1990 A
4978334 Toye et al. Dec 1990 A
4978349 Frigg Dec 1990 A
4981482 Ichikawa Jan 1991 A
4988351 Paulos et al. Jan 1991 A
4994027 Farrell Feb 1991 A
5002557 Hasson Mar 1991 A
5011484 Breard Apr 1991 A
5013315 Barrows May 1991 A
5013316 Goble et al. May 1991 A
5059193 Kuslich Oct 1991 A
5062849 Schelhas Nov 1991 A
5080662 Paul Jan 1992 A
5084043 Hertzmann et al. Jan 1992 A
5092891 Kummer et al. Mar 1992 A
5098241 Aldridge et al. Mar 1992 A
5098433 Freedland Mar 1992 A
5098435 Stednitz et al. Mar 1992 A
5114407 Burbank May 1992 A
5116336 Frigg May 1992 A
5120171 Lasner Jun 1992 A
5122133 Evans Jun 1992 A
5122141 Simpson et al. Jun 1992 A
5123926 Pisharodi Jun 1992 A
5139486 Moss Aug 1992 A
5158543 Lazarus Oct 1992 A
5167663 Brumfield Dec 1992 A
5167664 Hodorek Dec 1992 A
5169400 Muhling et al. Dec 1992 A
5171278 Pisharodi Dec 1992 A
5171279 Mathews Dec 1992 A
5171280 Baumgartner Dec 1992 A
5176651 Allgood et al. Jan 1993 A
5176697 Hasson et al. Jan 1993 A
5178501 Carstairs Jan 1993 A
5183464 Dubrul et al. Feb 1993 A
5188118 Terwilliger Feb 1993 A
5195506 Hulfish Mar 1993 A
5201742 Hasson Apr 1993 A
5217462 Asnis et al. Jun 1993 A
5217486 Rice et al. Jun 1993 A
5224952 Deniega et al. Jul 1993 A
5234431 Keller Aug 1993 A
5241972 Bonati Sep 1993 A
5242410 Melker Sep 1993 A
5242447 Borzone Sep 1993 A
5246441 Ross et al. Sep 1993 A
5250049 Michael Oct 1993 A
5269797 Bonati et al. Dec 1993 A
5280782 Wilk Jan 1994 A
5286001 Rafeld Feb 1994 A
5290243 Chodorow et al. Mar 1994 A
5290312 Kojimoto et al. Mar 1994 A
5300074 Frigg Apr 1994 A
5304142 Liebl et al. Apr 1994 A
5308327 Heaven et al. May 1994 A
5308352 Koutrouvelis May 1994 A
5312410 Miller et al. May 1994 A
5312417 Wilk May 1994 A
5314477 Marnay May 1994 A
5324261 Amundson et al. Jun 1994 A
5334184 Bimman Aug 1994 A
5334204 Clewett et al. Aug 1994 A
5342365 Waldman Aug 1994 A
5342382 Brinkerhoff et al. Aug 1994 A
5344252 Kakimoto Sep 1994 A
5364398 Chapman et al. Nov 1994 A
5370646 Reese et al. Dec 1994 A
5370647 Graber et al. Dec 1994 A
5370661 Branch Dec 1994 A
5370697 Baumgartner Dec 1994 A
5382248 Jacobson et al. Jan 1995 A
5387213 Breard et al. Feb 1995 A
5387215 Fisher Feb 1995 A
5390683 Pishardi Feb 1995 A
5395317 Kambin Mar 1995 A
5395371 Miller et al. Mar 1995 A
5401269 Buttner-Janz et al. Mar 1995 A
5407430 Peters Apr 1995 A
5415661 Holmes May 1995 A
5424773 Saito Jun 1995 A
5425773 Boyd et al. Jun 1995 A
5443514 Steffee Aug 1995 A
5449359 Groiso Sep 1995 A
5449361 Preissman Sep 1995 A
5452748 Simmons et al. Sep 1995 A
5454790 Dubrul Oct 1995 A
5458641 Ramirez Jimenez Oct 1995 A
5464427 Curtis et al. Nov 1995 A
5470333 Ray Nov 1995 A
5472426 Bonati et al. Dec 1995 A
5474539 Costa et al. Dec 1995 A
5486190 Green Jan 1996 A
5496318 Howland et al. Mar 1996 A
5498265 Asnis et al. Mar 1996 A
5501695 Anspach, Jr. et al. Mar 1996 A
5505710 Dorsey, III Apr 1996 A
5507816 Bullivant Apr 1996 A
5512037 Russell et al. Apr 1996 A
5514180 Heggeness et al. May 1996 A
5520690 Errico et al. May 1996 A
5520896 de Graaf et al. May 1996 A
5522899 Michelson Jun 1996 A
5527312 Ray Jun 1996 A
5534029 Shima Jul 1996 A
5536127 Pennig Jul 1996 A
5540688 Navas Jul 1996 A
5540693 Fisher Jul 1996 A
5545164 Howland Aug 1996 A
5549610 Russell et al. Aug 1996 A
5554191 Lahille et al. Sep 1996 A
5556431 Buttner-Janz Sep 1996 A
5558674 Heggeness et al. Sep 1996 A
D374287 Goble et al. Oct 1996 S
5562738 Boyd et al. Oct 1996 A
5564926 Br.ang.nemark Oct 1996 A
5569248 Mathews Oct 1996 A
5569251 Baker et al. Oct 1996 A
5569290 McAfee Oct 1996 A
5569548 Koike et al. Oct 1996 A
5591168 Judet et al. Jan 1997 A
5609634 Voydeville Mar 1997 A
5609635 Michelson Mar 1997 A
5613950 Yoon Mar 1997 A
5618142 Sonden et al. Apr 1997 A
5618314 Harwin et al. Apr 1997 A
5624447 Myers Apr 1997 A
5626613 Schmieding May 1997 A
5628751 Sander et al. May 1997 A
5628752 Asnis et al. May 1997 A
5639276 Weinstock et al. Jun 1997 A
5643320 Lower et al. Jul 1997 A
5645589 Li Jul 1997 A
5645599 Samani Jul 1997 A
5647857 Anderson et al. Jul 1997 A
5649931 Bryant et al. Jul 1997 A
5653763 Errico Aug 1997 A
5658335 Allen Aug 1997 A
5662683 Kay Sep 1997 A
5665095 Jacobson Sep 1997 A
5665122 Kambin Sep 1997 A
5667508 Errico et al. Sep 1997 A
5669915 Caspar et al. Sep 1997 A
5676701 Yuan et al. Oct 1997 A
5683465 Shinn et al. Nov 1997 A
5693100 Pisharodi Dec 1997 A
5697977 Pisharodi Dec 1997 A
5702391 Lin Dec 1997 A
5707359 Bufalini Jan 1998 A
5713870 Yoon Feb 1998 A
5713903 Sander et al. Feb 1998 A
5716415 Steffee Feb 1998 A
5716416 Lin Feb 1998 A
5720753 Sander et al. Feb 1998 A
5725541 Anspach, III et al. Mar 1998 A
5725588 Errico et al. Mar 1998 A
5728097 Mathews Mar 1998 A
5728116 Rosenman Mar 1998 A
5735853 Olerud Apr 1998 A
5741282 Anspach, III et al. Apr 1998 A
5743881 Demco Apr 1998 A
5743912 Lahille et al. Apr 1998 A
5743914 Skiba Apr 1998 A
5749889 Bacich et al. May 1998 A
5752969 Cunci et al. May 1998 A
5762500 Lazarof Jun 1998 A
5762629 Kambin Jun 1998 A
5772661 Michelson Jun 1998 A
5772662 Chapman et al. Jun 1998 A
5772678 Thomason et al. Jun 1998 A
5776156 Shikhman Jul 1998 A
5782800 Yoon Jul 1998 A
5782832 Larsen et al. Jul 1998 A
5782865 Grotz Jul 1998 A
5792044 Foley et al. Aug 1998 A
5810721 Mueller et al. Sep 1998 A
5810821 Vandewalle Sep 1998 A
5810866 Yoon Sep 1998 A
5814084 Grivas et al. Sep 1998 A
5824094 Serhan et al. Oct 1998 A
5836948 Zucherman et al. Nov 1998 A
5846259 Berthiaume Dec 1998 A
5849004 Bramlet Dec 1998 A
5851216 Allen Dec 1998 A
5860973 Michelson Jan 1999 A
5860977 Zucherman et al. Jan 1999 A
5865848 Baker Feb 1999 A
5871485 Rao et al. Feb 1999 A
5873854 Wolvek Feb 1999 A
5876404 Zucherman et al. Mar 1999 A
5888223 Bray, Jr. Mar 1999 A
5888224 Beckers et al. Mar 1999 A
5888226 Rogozinski Mar 1999 A
5888228 Knothe et al. Mar 1999 A
5893850 Cachia Apr 1999 A
5893889 Harrington Apr 1999 A
5893890 Pisharodi Apr 1999 A
5895428 Berry Apr 1999 A
5902231 Foley et al. May 1999 A
5904696 Rosenman May 1999 A
5908422 Bresina Jun 1999 A
5928235 Friedl Jul 1999 A
5928244 Tovey et al. Jul 1999 A
5931870 Cuckler et al. Aug 1999 A
5935129 McDevitt et al. Aug 1999 A
5947999 Groiso Sep 1999 A
5948000 Larsen et al. Sep 1999 A
5954722 Bono Sep 1999 A
5954747 Clark Sep 1999 A
5957902 Teves Sep 1999 A
5957924 Törmälä et al. Sep 1999 A
5964730 Williams et al. Oct 1999 A
5964761 Kambin Oct 1999 A
5967783 Ura Oct 1999 A
5967970 Cowan et al. Oct 1999 A
5968044 Nicholson et al. Oct 1999 A
5968098 Winslow Oct 1999 A
5976139 Bramlet Nov 1999 A
5976146 Ogawa et al. Nov 1999 A
5976186 Bao et al. Nov 1999 A
5980522 Koros et al. Nov 1999 A
5984927 Wenstrom, Jr. et al. Nov 1999 A
5984966 Kiema et al. Nov 1999 A
5989255 Pepper et al. Nov 1999 A
5989291 Ralph et al. Nov 1999 A
5993459 Larsen et al. Nov 1999 A
5997510 Schwemberger Dec 1999 A
5997538 Asnis et al. Dec 1999 A
5997541 Schenk Dec 1999 A
6001100 Sherman et al. Dec 1999 A
6001101 Augagneur et al. Dec 1999 A
6004327 Asnis et al. Dec 1999 A
6005161 Brekke et al. Dec 1999 A
6007519 Rosselli Dec 1999 A
6007566 Wenstrom, Jr. Dec 1999 A
6007580 Lehto et al. Dec 1999 A
6010513 Tormala et al. Jan 2000 A
6015410 Törmälä et al. Jan 2000 A
6019762 Cole Feb 2000 A
6022352 Vandewalle Feb 2000 A
6030162 Huebner Feb 2000 A
6030364 Durgin et al. Feb 2000 A
6033406 Mathews Mar 2000 A
6036701 Rosenman Mar 2000 A
6039761 Li Mar 2000 A
6039763 Shelokov Mar 2000 A
6045579 Hochshuler Apr 2000 A
6048309 Flom et al. Apr 2000 A
6048342 Zucherman et al. Apr 2000 A
6053935 Brenneman et al. Apr 2000 A
6066142 Serbousek et al. May 2000 A
6068630 Zucherman et al. May 2000 A
6068648 Cole et al. May 2000 A
6074390 Zucherman et al. Jun 2000 A
6080193 Hochshuler et al. Jun 2000 A
6083244 Lubbers et al. Jul 2000 A
6090112 Zucherman et al. Jul 2000 A
6102914 Bulstra et al. Aug 2000 A
6102950 Vaccaro Aug 2000 A
6106557 Robioneck et al. Aug 2000 A
6113637 Gill et al. Sep 2000 A
6113638 Williams et al. Sep 2000 A
6117174 Nolan Sep 2000 A
6123711 Winters Sep 2000 A
6126661 Faccioli et al. Oct 2000 A
6126663 Hair Oct 2000 A
6127597 Beyar et al. Oct 2000 A
6129762 Li Oct 2000 A
6129763 Chauvin et al. Oct 2000 A
6146384 Lee et al. Nov 2000 A
6146387 Trott et al. Nov 2000 A
6149652 Zucherman et al. Nov 2000 A
6152926 Zucherman et al. Nov 2000 A
6156038 Zucherman et al. Dec 2000 A
6159179 Simonson Dec 2000 A
6161350 Espinosa Dec 2000 A
6162234 Freedland et al. Dec 2000 A
6162236 Osada Dec 2000 A
6168595 Durham et al. Jan 2001 B1
6168597 Biedermann et al. Jan 2001 B1
6175758 Kambin Jan 2001 B1
6176882 Biedermann et al. Jan 2001 B1
6179794 Burras Jan 2001 B1
6179873 Zientek Jan 2001 B1
6183471 Zucherman et al. Feb 2001 B1
6183472 Lutz Feb 2001 B1
6183474 Bramlet et al. Feb 2001 B1
6183517 Suddaby Feb 2001 B1
6190387 Zucherman et al. Feb 2001 B1
6193757 Foley et al. Feb 2001 B1
6197041 Shichman et al. Mar 2001 B1
6200322 Branch et al. Mar 2001 B1
6206826 Mathews et al. Mar 2001 B1
6206922 Zdeblick et al. Mar 2001 B1
6213957 Milliman et al. Apr 2001 B1
6217509 Foley et al. Apr 2001 B1
6221082 Marino et al. Apr 2001 B1
6228058 Dennis et al. May 2001 B1
6231606 Graf et al. May 2001 B1
6235030 Zucherman et al. May 2001 B1
6238397 Zucherman et al. May 2001 B1
6245107 Ferree Jun 2001 B1
6248108 Tormala et al. Jun 2001 B1
6251111 Barker et al. Jun 2001 B1
6264676 Gellman et al. Jul 2001 B1
6267765 Taylor et al. Jul 2001 B1
6267767 Strobel et al. Jul 2001 B1
6280444 Zucherman et al. Aug 2001 B1
6287313 Sasso Sep 2001 B1
6293909 Chu et al. Sep 2001 B1
6293952 Brosens et al. Sep 2001 B1
6296647 Robioneck et al. Oct 2001 B1
6302914 Michelson Oct 2001 B1
6306136 Baccelli Oct 2001 B1
6319254 Giet et al. Nov 2001 B1
6319272 Brenneman et al. Nov 2001 B1
6332882 Zucherman et al. Dec 2001 B1
6332883 Zucherman et al. Dec 2001 B1
6332895 Suddaby Dec 2001 B1
6346092 Leschinsky Feb 2002 B1
6348053 Cachia Feb 2002 B1
6355043 Adam Mar 2002 B1
6361537 Anderson Mar 2002 B1
6361538 Fenaroli et al. Mar 2002 B1
6361557 Gittings et al. Mar 2002 B1
6364897 Bonutti Apr 2002 B1
6368350 Erickson et al. Apr 2002 B1
6368351 Glenn Apr 2002 B1
6371971 Tsugita et al. Apr 2002 B1
6371989 Chauvin et al. Apr 2002 B1
6375682 Fleischmann et al. Apr 2002 B1
6379355 Zucherman et al. Apr 2002 B1
6379363 Herrington et al. Apr 2002 B1
6387130 Stone May 2002 B1
6409766 Brett Jun 2002 B1
6409767 Perice et al. Jun 2002 B1
6419676 Zucherman et al. Jul 2002 B1
6419677 Zucherman et al. Jul 2002 B2
6419704 Ferree Jul 2002 B1
6419705 Erickson Jul 2002 B1
6419706 Graf Jul 2002 B1
6423061 Bryant Jul 2002 B1
6423067 Eisermann Jul 2002 B1
6425919 Lambrecht Jul 2002 B1
6428541 Boyd et al. Aug 2002 B1
6428556 Chin Aug 2002 B1
6436140 Liu et al. Aug 2002 B1
6436143 Ross et al. Aug 2002 B1
6440154 Gellman et al. Aug 2002 B2
6440169 Elberg et al. Aug 2002 B1
6443989 Jackson Sep 2002 B1
6447527 Thompson et al. Sep 2002 B1
6447540 Fontaine et al. Sep 2002 B1
6450989 Dubrul et al. Sep 2002 B2
6451019 Zucherman et al. Sep 2002 B1
6451020 Zucherman et al. Sep 2002 B1
6454806 Cohen et al. Sep 2002 B1
6454807 Jackson Sep 2002 B1
6458134 Songer et al. Oct 2002 B1
6468277 Justin et al. Oct 2002 B1
6468309 Lieberman Oct 2002 B1
6468310 Ralph et al. Oct 2002 B1
6471724 Zdeblick et al. Oct 2002 B2
6475226 Belef et al. Nov 2002 B1
6478029 Boyd et al. Nov 2002 B1
6478796 Zucherman et al. Nov 2002 B2
6485491 Farris et al. Nov 2002 B1
6485518 Cornwall et al. Nov 2002 B1
6488693 Gannoe et al. Dec 2002 B2
6488710 Besselink Dec 2002 B2
6489309 Singh et al. Dec 2002 B1
6491714 Bennett Dec 2002 B1
6494860 Rocamora et al. Dec 2002 B2
6494883 Ferree Dec 2002 B1
6494893 Dubrul et al. Dec 2002 B2
6500178 Zucherman et al. Dec 2002 B2
6506192 Gertzman et al. Jan 2003 B1
6511481 von Hoffmann et al. Jan 2003 B2
6514256 Zucherman et al. Feb 2003 B2
6517543 Berrevoets et al. Feb 2003 B1
6517580 Ramadan et al. Feb 2003 B1
6520907 Foley et al. Feb 2003 B1
6527774 Lieberman Mar 2003 B2
6527803 Crozet Mar 2003 B1
6527804 Gauchet et al. Mar 2003 B1
6540747 Marino Apr 2003 B1
6544265 Lieberman Apr 2003 B2
6547793 McGuire Apr 2003 B1
6547795 Schneiderman Apr 2003 B2
6551319 Lieberman Apr 2003 B2
6551322 Lieberman Apr 2003 B1
6554831 Rivard et al. Apr 2003 B1
6554852 Oberlander Apr 2003 B1
6558389 Clark et al. May 2003 B2
6558424 Thalgott May 2003 B2
6562046 Sasso May 2003 B2
6562049 Norlander et al. May 2003 B1
6562074 Gerbec et al. May 2003 B2
6575979 Cragg Jun 2003 B1
6576016 Hochshuler et al. Jun 2003 B1
6579293 Chandran Jun 2003 B1
6582390 Sanderson Jun 2003 B1
6582431 Ray Jun 2003 B1
6582433 Yun Jun 2003 B2
6582437 Dorchak et al. Jun 2003 B2
6582441 He et al. Jun 2003 B1
6582453 Tran et al. Jun 2003 B1
6582468 Gauchet Jun 2003 B1
6585730 Foerster Jul 2003 B1
6585740 Schlapfer et al. Jul 2003 B2
6589240 Hinchliffe Jul 2003 B2
6589249 Sater et al. Jul 2003 B2
6592553 Zhang et al. Jul 2003 B2
6595998 Johnson et al. Jul 2003 B2
6596008 Kambin Jul 2003 B1
6599297 Carlsson et al. Jul 2003 B1
6607530 Carl et al. Aug 2003 B1
6610091 Reiley Aug 2003 B1
6610094 Husson Aug 2003 B2
6613050 Wagner et al. Sep 2003 B1
6616678 Nishtala et al. Sep 2003 B2
6620196 Trieu Sep 2003 B1
6626944 Taylor Sep 2003 B1
6632224 Cachia et al. Oct 2003 B2
6635059 Randall et al. Oct 2003 B2
6635362 Zheng Oct 2003 B2
6641564 Kraus Nov 2003 B1
6641614 Wagner et al. Nov 2003 B1
6645248 Casutt Nov 2003 B2
6648890 Culbert et al. Nov 2003 B2
6648893 Dudasik Nov 2003 B2
6648917 Gerbec et al. Nov 2003 B2
6652527 Zucherman et al. Nov 2003 B2
6655962 Kennard Dec 2003 B1
6666891 Boehm, Jr. et al. Dec 2003 B2
6669698 Tromanhauser et al. Dec 2003 B1
6669729 Chin Dec 2003 B2
6673074 Shluzas Jan 2004 B2
6676664 Al-Assir Jan 2004 B1
6676665 Foley et al. Jan 2004 B2
6679833 Smith et al. Jan 2004 B2
6682535 Hoogland Jan 2004 B2
6685706 Padget et al. Feb 2004 B2
6685742 Jackson Feb 2004 B1
6689152 Balceta et al. Feb 2004 B2
6692499 Tormala et al. Feb 2004 B2
6695842 Zucherman et al. Feb 2004 B2
6695851 Zdeblick et al. Feb 2004 B2
6699246 Zucherman et al. Mar 2004 B2
6699247 Zucherman et al. Mar 2004 B2
6706070 Wagner et al. Mar 2004 B1
6712819 Zucherman et al. Mar 2004 B2
6716247 Michelson Apr 2004 B2
6719760 Dorchak et al. Apr 2004 B2
6719796 Cohen et al. Apr 2004 B2
6723096 Dorchak et al. Apr 2004 B1
6723126 Berry Apr 2004 B1
6730126 Boehm, Jr. et al. May 2004 B2
6733093 Deland et al. May 2004 B2
6733460 Ogura May 2004 B2
6733532 Gauchet et al. May 2004 B1
6733534 Sherman May 2004 B2
6733535 Michelson May 2004 B2
6733635 Ozawa et al. May 2004 B1
6740090 Cragg et al. May 2004 B1
6740093 Hochschuler et al. May 2004 B2
6740117 Ralph et al. May 2004 B2
6743166 Berci et al. Jun 2004 B2
6743255 Ferree Jun 2004 B2
6746451 Middleton et al. Jun 2004 B2
6752831 Sybert et al. Jun 2004 B2
6761720 Senegas Jul 2004 B1
6770075 Howland Aug 2004 B2
6773460 Jackson Aug 2004 B2
6790210 Cragg et al. Sep 2004 B1
6793656 Mathews Sep 2004 B1
6793678 Hawkins Sep 2004 B2
6796983 Zucherman et al. Sep 2004 B1
6805685 Taylor Oct 2004 B2
6805695 Keith et al. Oct 2004 B2
6805714 Sutcliffe Oct 2004 B2
6808526 Magerl et al. Oct 2004 B1
6808537 Michelson Oct 2004 B2
6821298 Jackson Nov 2004 B1
6830589 Erickson Dec 2004 B2
6835205 Atkinson et al. Dec 2004 B2
6835206 Jackson Dec 2004 B2
6852129 Gerbec et al. Feb 2005 B2
6855167 Shimp Feb 2005 B2
6863673 Gerbec et al. Mar 2005 B2
6875215 Taras et al. Apr 2005 B2
6881229 Khandkar et al. Apr 2005 B2
6887243 Culbert May 2005 B2
6890333 von Hoffmann et al. May 2005 B2
6893464 Kiester May 2005 B2
6893466 Trieu May 2005 B2
6902566 Zucherman et al. Jun 2005 B2
6908465 von Hoffmann et al. Jun 2005 B2
6916323 Kitchens Jul 2005 B2
6921403 Cragg et al. Jul 2005 B2
6923811 Carl et al. Aug 2005 B1
6929606 Ritland Aug 2005 B2
6936071 Marnay et al. Aug 2005 B1
6936072 Lambrecht et al. Aug 2005 B2
6942668 Padget et al. Sep 2005 B2
6945975 Dalton Sep 2005 B2
6946000 Senegas et al. Sep 2005 B2
6949100 Venturini Sep 2005 B1
6951561 Warren et al. Oct 2005 B2
6953477 Berry Oct 2005 B2
6955691 Chae et al. Oct 2005 B2
6969404 Ferree Nov 2005 B2
6969405 Suddaby Nov 2005 B2
6972035 Michelson Dec 2005 B2
6997929 Manzi et al. Feb 2006 B2
7004945 Boyd et al. Feb 2006 B2
7018412 Ferreira et al. Mar 2006 B2
7018415 McKay Mar 2006 B1
7018416 Hanson et al. Mar 2006 B2
7025746 Tal Apr 2006 B2
7029473 Zucherman et al. Apr 2006 B2
7037339 Houfburg et al. May 2006 B2
7041107 Pohjonen et al. May 2006 B2
7048736 Robinson et al. May 2006 B2
7060068 Tromanhauser et al. Jun 2006 B2
7063701 Michelson Jun 2006 B2
7063702 Michelson Jun 2006 B2
7066960 Dickman Jun 2006 B1
7066961 Michelson Jun 2006 B2
7070601 Culbert et al. Jul 2006 B2
7074203 Johanson et al. Jul 2006 B1
7083650 Moskowitz et al. Aug 2006 B2
7087083 Pasquet et al. Aug 2006 B2
7094239 Michelson Aug 2006 B1
7094257 Mujwid et al. Aug 2006 B2
7094258 Lambrecht et al. Aug 2006 B2
7101375 Zucherman et al. Sep 2006 B2
7114501 Johnson et al. Oct 2006 B2
7118572 Bramlet et al. Oct 2006 B2
7118579 Michelson Oct 2006 B2
7118598 Michelson Oct 2006 B2
7128760 Michelson Oct 2006 B2
7153305 Johnson et al. Dec 2006 B2
D536096 Hoogland et al. Jan 2007 S
7156876 Moumene et al. Jan 2007 B2
7163558 Senegas et al. Jan 2007 B2
7172612 Ishikawa Feb 2007 B2
7179294 Eisermann et al. Feb 2007 B2
7201751 Zucherman et al. Apr 2007 B2
7211112 Baynham et al. May 2007 B2
7217293 Branch May 2007 B2
7220280 Kast et al. May 2007 B2
7223292 Messerli et al. May 2007 B2
7226481 Kuslich Jun 2007 B2
7226483 Gerber et al. Jun 2007 B2
7235101 Berry et al. Jun 2007 B2
7238204 Le Couedic et al. Jul 2007 B2
7250060 Trieu Jul 2007 B2
7267683 Sharkey et al. Sep 2007 B2
7282061 Sharkey et al. Oct 2007 B2
7306628 Zucherman et al. Dec 2007 B2
7309357 Kim Dec 2007 B2
7326211 Padget et al. Feb 2008 B2
7326248 Michelson Feb 2008 B2
7335203 Winslow et al. Feb 2008 B2
7361140 Ries et al. Apr 2008 B2
7371238 Soboleski et al. May 2008 B2
7377942 Berry May 2008 B2
7400930 Sharkey et al. Jul 2008 B2
7410501 Michelson Aug 2008 B2
7413576 Sybert et al. Aug 2008 B2
7422594 Zander Sep 2008 B2
7434325 Foley et al. Oct 2008 B2
7445637 Taylor Nov 2008 B2
D584812 Ries Jan 2009 S
7473256 Assell et al. Jan 2009 B2
7473268 Zucherman et al. Jan 2009 B2
7476251 Zucherman et al. Jan 2009 B2
7488326 Elliott Feb 2009 B2
7503933 Michelson Mar 2009 B2
7507241 Levy et al. Mar 2009 B2
7517363 Rogers Mar 2009 B2
7520888 Trieu Apr 2009 B2
7547317 Cragg Jun 2009 B2
7556629 von Hoffmann et al. Jul 2009 B2
7556651 Humphreys et al. Jul 2009 B2
7569074 Eiserman et al. Aug 2009 B2
7588574 Assell et al. Sep 2009 B2
7618458 Biedermann et al. Nov 2009 B2
7621950 Globerman et al. Nov 2009 B1
7621960 Boyd et al. Nov 2009 B2
7625378 Foley Dec 2009 B2
7641657 Cragg Jan 2010 B2
7641670 Davison et al. Jan 2010 B2
7647123 Sharkey et al. Jan 2010 B2
7648523 Mirkovic et al. Jan 2010 B2
7670354 Davison et al. Mar 2010 B2
7674273 Davison et al. Mar 2010 B2
7682370 Pagliuca et al. Mar 2010 B2
7691120 Shluzas et al. Apr 2010 B2
7691147 Gutlin et al. Apr 2010 B2
7699878 Pavlov et al. Apr 2010 B2
7703727 Selness Apr 2010 B2
7717944 Foley et al. May 2010 B2
7722530 Davison May 2010 B2
7722612 Sala et al. May 2010 B2
7722674 Grotz May 2010 B1
7727263 Cragg Jun 2010 B2
7740633 Assell et al. Jun 2010 B2
7744599 Cragg Jun 2010 B2
7749270 Peterman Jul 2010 B2
7762995 Eversull et al. Jul 2010 B2
7763025 Assell et al. Jul 2010 B2
7763055 Foley Jul 2010 B2
7766930 DiPoto et al. Aug 2010 B2
7771473 Thramann Aug 2010 B2
7771479 Humphreys et al. Aug 2010 B2
7785368 Schaller Aug 2010 B2
7789914 Michelson Sep 2010 B2
7794463 Cragg Sep 2010 B2
7799032 Assell et al. Sep 2010 B2
7799033 Assell et al. Sep 2010 B2
7799036 Davison et al. Sep 2010 B2
7799083 Smith et al. Sep 2010 B2
D626233 Cipoletti et al. Oct 2010 S
7814429 Buffet et al. Oct 2010 B2
7819921 Grotz Oct 2010 B2
7824410 Simonson et al. Nov 2010 B2
7824429 Culbert et al. Nov 2010 B2
7824445 Biro et al. Nov 2010 B2
7837734 Zucherman et al. Nov 2010 B2
7846183 Blain Dec 2010 B2
7846206 Oglaza et al. Dec 2010 B2
7850695 Pagliuca et al. Dec 2010 B2
7850733 Baynham et al. Dec 2010 B2
7854766 Moskowitz et al. Dec 2010 B2
7857832 Culbert et al. Dec 2010 B2
7862590 Lim et al. Jan 2011 B2
7862595 Foley et al. Jan 2011 B2
7867259 Foley et al. Jan 2011 B2
7874980 Sonnenschein et al. Jan 2011 B2
7875077 Humphreys et al. Jan 2011 B2
7879098 Simmons Feb 2011 B1
7887589 Glenn et al. Feb 2011 B2
7892171 Davison et al. Feb 2011 B2
7892249 Davison et al. Feb 2011 B2
7901438 Culbert et al. Mar 2011 B2
7901459 Hodges et al. Mar 2011 B2
7909870 Kraus Mar 2011 B2
7922729 Michelson Apr 2011 B2
7931689 Hochschuler et al. Apr 2011 B2
7938832 Culbert et al. May 2011 B2
7951199 Miller May 2011 B2
7985231 Sankaran Jul 2011 B2
7993403 Foley et al. Aug 2011 B2
7998176 Culbert Aug 2011 B2
8021424 Beger et al. Sep 2011 B2
8021426 Segal et al. Sep 2011 B2
8025697 McClellan et al. Sep 2011 B2
8034109 Zwirkoski Oct 2011 B2
8043381 Hestad et al. Oct 2011 B2
8062375 Glerum et al. Nov 2011 B2
8075621 Michelson Dec 2011 B2
8105382 Olmos et al. Jan 2012 B2
8109977 Culbert et al. Feb 2012 B2
8118871 Gordon Feb 2012 B2
8128700 Delurio et al. Mar 2012 B2
8133232 Levy et al. Mar 2012 B2
8177812 Sankaran May 2012 B2
8192495 Simpson et al. Jun 2012 B2
8221501 Eiserman et al. Jul 2012 B2
8221502 Branch Jul 2012 B2
8221503 Garcia et al. Jul 2012 B2
8231681 Castleman et al. Jul 2012 B2
8236058 Fabian et al. Aug 2012 B2
8241358 Butler et al. Aug 2012 B2
8257442 Edie et al. Sep 2012 B2
8262666 Baynham et al. Sep 2012 B2
8262736 Michelson Sep 2012 B2
8267939 Cipoletti et al. Sep 2012 B2
8273128 Oh et al. Sep 2012 B2
8273129 Baynham et al. Sep 2012 B2
8287599 McGuckin Oct 2012 B2
8303663 Jimenez et al. Nov 2012 B2
8317866 Palmatier et al. Nov 2012 B2
8323345 Sledge Dec 2012 B2
8328852 Zehavi et al. Dec 2012 B2
8337559 Hansell et al. Dec 2012 B2
8353961 McClintock Jan 2013 B2
8366777 Matthis et al. Feb 2013 B2
8382842 Greenhalgh et al. Feb 2013 B2
8394129 Morgenstern Lopez et al. Mar 2013 B2
8398713 Weiman Mar 2013 B2
8403990 Dryer et al. Mar 2013 B2
8409291 Blackwell et al. Apr 2013 B2
8435298 Weiman May 2013 B2
8454617 Schaller Jun 2013 B2
8486148 Butler et al. Jul 2013 B2
8491657 Attia et al. Jul 2013 B2
8491659 Weiman Jul 2013 B2
8506635 Palmatier et al. Aug 2013 B2
8518087 Morgenstern et al. Aug 2013 B2
8518120 Glerum Aug 2013 B2
8535380 Greenhalgh et al. Sep 2013 B2
8551173 Lechmann et al. Oct 2013 B2
8556979 Glerum et al. Oct 2013 B2
8568481 Olmos et al. Oct 2013 B2
8579977 Fabian Nov 2013 B2
8579981 Lim Nov 2013 B2
8591585 McLaughlin et al. Nov 2013 B2
8597333 Morgenstern Lopez et al. Dec 2013 B2
8603170 Cipoletti et al. Dec 2013 B2
8623091 Suedkamp et al. Jan 2014 B2
8628576 Triplett et al. Jan 2014 B2
8628578 Miller et al. Jan 2014 B2
8632595 Weiman Jan 2014 B2
8663329 Ernst Mar 2014 B2
8668740 Rhoda et al. Mar 2014 B2
8679183 Glerum et al. Mar 2014 B2
8685098 Glerum et al. Apr 2014 B2
8696751 Ashley et al. Apr 2014 B2
8709086 Glerum et al. Apr 2014 B2
8715351 Pinto May 2014 B1
8721723 Hansell et al. May 2014 B2
8728160 Globerman et al. May 2014 B2
8753398 Gordon et al. Jun 2014 B2
8771360 Jimenez et al. Jul 2014 B2
8778025 Ragab et al. Jul 2014 B2
8795366 Varela Aug 2014 B2
8828085 Jensen Sep 2014 B1
8845731 Weiman Sep 2014 B2
8845732 Weiman Sep 2014 B2
8845734 Weiman Sep 2014 B2
8852242 Morgenstern Lopez et al. Oct 2014 B2
8852243 Morgenstern Lopez et al. Oct 2014 B2
8852279 Weiman Oct 2014 B2
8864833 Glerum et al. Oct 2014 B2
8888853 Glerum et al. Nov 2014 B2
8888854 Glerum et al. Nov 2014 B2
8900307 Hawkins et al. Dec 2014 B2
8926704 Glerum Jan 2015 B2
8936641 Cain Jan 2015 B2
8940052 Lechmann et al. Jan 2015 B2
9039771 Glerum et al. May 2015 B2
9078767 McLean Jul 2015 B1
9091488 Malandain Aug 2015 B2
9095446 Landry et al. Aug 2015 B2
9095447 Barreiro et al. Aug 2015 B2
9101488 Malandain Aug 2015 B2
9101489 Protopsaltis et al. Aug 2015 B2
9277928 Morgenstern Lopez Mar 2016 B2
9295562 Lechmann et al. Mar 2016 B2
9414934 Cain Aug 2016 B2
9433510 Lechmann et al. Sep 2016 B2
9510954 Glerum et al. Dec 2016 B2
9597197 Lechmann et al. Mar 2017 B2
20010012950 Nishtala et al. Aug 2001 A1
20010027320 Sasso Oct 2001 A1
20010037126 Stack et al. Nov 2001 A1
20010039452 Zucherman et al. Nov 2001 A1
20010049529 Cachia et al. Dec 2001 A1
20010049530 Culbert et al. Dec 2001 A1
20010056302 Boyer et al. Dec 2001 A1
20020001476 Nagamine et al. Jan 2002 A1
20020010070 Cales et al. Jan 2002 A1
20020032462 Houser et al. Mar 2002 A1
20020055740 Lieberman May 2002 A1
20020068976 Jackson Jun 2002 A1
20020068977 Jackson Jun 2002 A1
20020087152 Mikus et al. Jul 2002 A1
20020091387 Hoogland Jul 2002 A1
20020120335 Angelucci et al. Aug 2002 A1
20020128715 Bryan et al. Sep 2002 A1
20020128716 Cohen et al. Sep 2002 A1
20020138146 Jackson Sep 2002 A1
20020143331 Zucherman et al. Oct 2002 A1
20020143334 Hoffmann et al. Oct 2002 A1
20020143335 von Hoffmann et al. Oct 2002 A1
20020151895 Soboleski et al. Oct 2002 A1
20020151976 Foley et al. Oct 2002 A1
20020161444 Choi Oct 2002 A1
20020165612 Gerber et al. Nov 2002 A1
20020183848 Ray et al. Dec 2002 A1
20030004575 Erickson Jan 2003 A1
20030004576 Thalgott Jan 2003 A1
20030023305 McKay Jan 2003 A1
20030028250 Reiley et al. Feb 2003 A1
20030040799 Boyd et al. Feb 2003 A1
20030063582 Culbert Apr 2003 A1
20030065330 Zucherman et al. Apr 2003 A1
20030065396 Michelson Apr 2003 A1
20030069582 Culbert et al. Apr 2003 A1
20030078667 Manasas et al. Apr 2003 A1
20030083688 Simonson May 2003 A1
20030130739 Gerbec et al. Jul 2003 A1
20030135275 Garcia Jul 2003 A1
20030139648 Foley et al. Jul 2003 A1
20030139812 Garcia Jul 2003 A1
20030139813 Messerli et al. Jul 2003 A1
20030153874 Tal Aug 2003 A1
20030187431 Simonson Oct 2003 A1
20030208122 Melkent et al. Nov 2003 A1
20030208220 Worley et al. Nov 2003 A1
20030220643 Ferree Nov 2003 A1
20030229350 Kay Dec 2003 A1
20030233102 Nakamura et al. Dec 2003 A1
20030233145 Landry et al. Dec 2003 A1
20040006391 Reiley Jan 2004 A1
20040008949 Liu et al. Jan 2004 A1
20040019359 Worley et al. Jan 2004 A1
20040024463 Thomas et al. Feb 2004 A1
20040030387 Landry et al. Feb 2004 A1
20040049190 Biedermann et al. Mar 2004 A1
20040049223 Nishtala et al. Mar 2004 A1
20040054412 Gerbec et al. Mar 2004 A1
20040059350 Gordon et al. Mar 2004 A1
20040064144 Johnson et al. Apr 2004 A1
20040087947 Lim May 2004 A1
20040088055 Hanson et al. May 2004 A1
20040097924 Lambrecht et al. May 2004 A1
20040097941 Weiner et al. May 2004 A1
20040097973 Loshakove et al. May 2004 A1
20040106925 Culbert Jun 2004 A1
20040059339 Roehm, III et al. Jul 2004 A1
20040127906 Culbert et al. Jul 2004 A1
20040127991 Ferree Jul 2004 A1
20040133280 Trieu Jul 2004 A1
20040143284 Chin Jul 2004 A1
20040143734 Buer et al. Jul 2004 A1
20040147877 Heuser Jul 2004 A1
20040147950 Mueller et al. Jul 2004 A1
20040148027 Errico et al. Jul 2004 A1
20040153065 Lim Aug 2004 A1
20040153156 Cohen et al. Aug 2004 A1
20040158258 Bonati et al. Aug 2004 A1
20040162617 Zucherman et al. Aug 2004 A1
20040162618 Mujwid et al. Aug 2004 A1
20040172133 Gerber et al. Sep 2004 A1
20040172134 Berry Sep 2004 A1
20040186471 Trieu Sep 2004 A1
20040186482 Kolb et al. Sep 2004 A1
20040186570 Rapp Sep 2004 A1
20040186577 Ferree Sep 2004 A1
20040199162 von Hoffmann et al. Oct 2004 A1
20040215343 Hochschuler et al. Oct 2004 A1
20040215344 Hochschuler et al. Oct 2004 A1
20040220580 Johnson et al. Nov 2004 A1
20040225292 Sasso et al. Nov 2004 A1
20040225361 Glenn et al. Nov 2004 A1
20040230309 DiMauro Nov 2004 A1
20040243239 Taylor Dec 2004 A1
20040249466 Liu et al. Dec 2004 A1
20040254575 Obenchain et al. Dec 2004 A1
20040260297 Padget et al. Dec 2004 A1
20040266257 Ries et al. Dec 2004 A1
20050010292 Carrasco Jan 2005 A1
20050033289 Warren et al. Feb 2005 A1
20050033434 Berry Feb 2005 A1
20050038515 Kunzler Feb 2005 A1
20050043796 Grant et al. Feb 2005 A1
20050065610 Pisharodi Mar 2005 A1
20050090443 Fallin et al. Apr 2005 A1
20050090833 Di Poto Apr 2005 A1
20050102202 Linden et al. May 2005 A1
20050113916 Branch May 2005 A1
20050113917 Chae et al. May 2005 A1
20050113927 Malek May 2005 A1
20050118550 Turri Jun 2005 A1
20050119657 Goldsmith Jun 2005 A1
20050125062 Biedermann et al. Jun 2005 A1
20050130929 Boyd Jun 2005 A1
20050131406 Reiley et al. Jun 2005 A1
20050131409 Chervitz et al. Jun 2005 A1
20050131411 Culbert et al. Jun 2005 A1
20050131538 Chervitz et al. Jun 2005 A1
20050137595 von Hoffmann et al. Jun 2005 A1
20050143734 Cachia et al. Jun 2005 A1
20050149030 Serhan Jul 2005 A1
20050154467 Peterman et al. Jul 2005 A1
20050165398 Reiley Jul 2005 A1
20050165485 Trieu Jul 2005 A1
20050171552 Johnson et al. Aug 2005 A1
20050171608 Peterman et al. Aug 2005 A1
20050171610 Humphreys et al. Aug 2005 A1
20050177235 Baynham et al. Aug 2005 A1
20050177240 Blain Aug 2005 A1
20050182414 Manzi et al. Aug 2005 A1
20050182418 Boyd et al. Aug 2005 A1
20050187558 Johnson et al. Aug 2005 A1
20050187559 Raymond et al. Aug 2005 A1
20050203512 Hawkins et al. Sep 2005 A1
20050216026 Culbert Sep 2005 A1
20050222681 Richley et al. Oct 2005 A1
20050251142 von Hoffmann et al. Nov 2005 A1
20050256525 Warren et al. Nov 2005 A1
20050256576 Moskowitz et al. Nov 2005 A1
20050261769 Moskowitz et al. Nov 2005 A1
20050278026 Gordon et al. Dec 2005 A1
20050283238 Reiley Dec 2005 A1
20060004326 Collins et al. Jan 2006 A1
20060004457 Collins et al. Jan 2006 A1
20060004458 Collins et al. Jan 2006 A1
20060009778 Collins et al. Jan 2006 A1
20060009779 Collins et al. Jan 2006 A1
20060009851 Collins et al. Jan 2006 A1
20060015105 Warren et al. Jan 2006 A1
20060020284 Foley et al. Jan 2006 A1
20060030872 Culbert et al. Feb 2006 A1
20060036246 Carl et al. Feb 2006 A1
20060036256 Carl et al. Feb 2006 A1
20060036259 Carl et al. Feb 2006 A1
20060036323 Carl et al. Feb 2006 A1
20060036324 Sachs et al. Feb 2006 A1
20060041314 Millard Feb 2006 A1
20060052788 Thelen et al. Mar 2006 A1
20060058790 Carl et al. Mar 2006 A1
20060058807 Landry et al. Mar 2006 A1
20060058876 McKinley Mar 2006 A1
20060058880 Wysocki Mar 2006 A1
20060079908 Lieberman Apr 2006 A1
20060084977 Lieberman Apr 2006 A1
20060084988 Kim Apr 2006 A1
20060085010 Lieberman Apr 2006 A1
20060100706 Shadduck et al. May 2006 A1
20060100707 Stinson et al. May 2006 A1
20060106381 Ferree et al. May 2006 A1
20060119629 An et al. Jun 2006 A1
20060122609 Mirkovic et al. Jun 2006 A1
20060122610 Culbert et al. Jun 2006 A1
20060122701 Kiester Jun 2006 A1
20060122703 Aebi et al. Jun 2006 A1
20060129244 Ensign Jun 2006 A1
20060136062 DiNello et al. Jun 2006 A1
20060142765 Dixon et al. Jun 2006 A9
20060142776 Iwanari Jun 2006 A1
20060142858 Colleran et al. Jun 2006 A1
20060161166 Johnson et al. Jul 2006 A1
20060178743 Carter Aug 2006 A1
20060195103 Padget et al. Aug 2006 A1
20060206207 Dryer et al. Sep 2006 A1
20060217711 Stevens et al. Sep 2006 A1
20060229629 Manzi et al. Oct 2006 A1
20060235403 Blain Oct 2006 A1
20060235412 Blain Oct 2006 A1
20060235531 Buettner Oct 2006 A1
20060247634 Warner et al. Nov 2006 A1
20060253201 McLuen Nov 2006 A1
20060265075 Baumgartner et al. Nov 2006 A1
20060265077 Zwirkoski Nov 2006 A1
20060276899 Zipnick et al. Dec 2006 A1
20060276901 Zipnick et al. Dec 2006 A1
20060276902 Boyer, II et al. Dec 2006 A1
20060293662 Boyer et al. Dec 2006 A1
20060293663 Walkenhorst et al. Dec 2006 A1
20070010826 Rhoda Jan 2007 A1
20070010886 Banick et al. Jan 2007 A1
20070016191 Culbert et al. Jan 2007 A1
20070032790 Aschmann et al. Feb 2007 A1
20070055236 Hudgins et al. Mar 2007 A1
20070055377 Hanson et al. Mar 2007 A1
20070067035 Falahee Mar 2007 A1
20070073399 Zipnick et al. Mar 2007 A1
20070118132 Culbert et al. May 2007 A1
20070118222 Lang May 2007 A1
20070118223 Allard et al. May 2007 A1
20070123868 Culbert et al. May 2007 A1
20070123891 Ries et al. May 2007 A1
20070123892 Ries et al. May 2007 A1
20070129730 Woods et al. Jun 2007 A1
20070149978 Shezifi et al. Jun 2007 A1
20070162005 Peterson et al. Jul 2007 A1
20070168036 Ainsworth et al. Jul 2007 A1
20070173939 Kim et al. Jul 2007 A1
20070173940 Hestad et al. Jul 2007 A1
20070191954 Hansell et al. Aug 2007 A1
20070191959 Hartmann et al. Aug 2007 A1
20070198089 Moskowitz et al. Aug 2007 A1
20070203491 Pasquet et al. Aug 2007 A1
20070208423 Messerli et al. Sep 2007 A1
20070219634 Greenhalgh et al. Sep 2007 A1
20070233083 Abdou Oct 2007 A1
20070233089 DiPoto et al. Oct 2007 A1
20070233244 Lopez et al. Oct 2007 A1
20070270954 Wu Nov 2007 A1
20070270968 Baynham et al. Nov 2007 A1
20070276375 Rapp Nov 2007 A1
20070282449 de Villiers et al. Dec 2007 A1
20070299521 Glenn Dec 2007 A1
20080009877 Sankaran et al. Jan 2008 A1
20080015701 Garcia et al. Jan 2008 A1
20080021556 Edie Jan 2008 A1
20080021558 Thramann Jan 2008 A1
20080027550 Link et al. Jan 2008 A1
20080033440 Moskowitz et al. Feb 2008 A1
20080039846 Lee et al. Feb 2008 A1
20080058598 Ries et al. Mar 2008 A1
20080058944 Duplessis et al. Mar 2008 A1
20080065219 Dye Mar 2008 A1
20080077148 Ries et al. Mar 2008 A1
20080082172 Jackson Apr 2008 A1
20080082173 Delurio et al. Apr 2008 A1
20080097436 Culbert et al. Apr 2008 A1
20080103601 Biro et al. May 2008 A1
20080108996 Padget et al. May 2008 A1
20080132934 Reilly Jun 2008 A1
20080140207 Olmos Jun 2008 A1
20080147193 Matthis et al. Jun 2008 A1
20080161927 Savage Jul 2008 A1
20080167657 Greenhalgh Jul 2008 A1
20080177388 Patterson et al. Jul 2008 A1
20080183204 Greenhalgh et al. Jul 2008 A1
20080195209 Garcia et al. Aug 2008 A1
20080243251 Stad et al. Oct 2008 A1
20080243254 Butler Oct 2008 A1
20080249622 Gray Oct 2008 A1
20080255618 Fisher et al. Oct 2008 A1
20080262619 Ray Oct 2008 A1
20080281425 Thalgott Nov 2008 A1
20080287981 Culbert et al. Nov 2008 A1
20080287997 Altarac et al. Nov 2008 A1
20080300685 Carls et al. Dec 2008 A1
20080306537 Culbert Dec 2008 A1
20090005870 Hawkins et al. Jan 2009 A1
20090005873 Slivka et al. Jan 2009 A1
20090030423 Puno Jan 2009 A1
20090054991 Biyani Feb 2009 A1
20090069813 von Hoffmann et al. Mar 2009 A1
20090076610 Afzal Mar 2009 A1
20090099568 Lowry et al. Apr 2009 A1
20090105745 Culbert Apr 2009 A1
20090112320 Kraus Apr 2009 A1
20090112324 Refai et al. Apr 2009 A1
20090131986 Lee et al. May 2009 A1
20090149857 Culbert et al. Jun 2009 A1
20090164020 Janowski Jun 2009 A1
20090177284 Rogers et al. Jul 2009 A1
20090182429 Humphreys et al. Jul 2009 A1
20090192614 Beger et al. Jul 2009 A1
20090222096 Trieu Sep 2009 A1
20090222099 Liu et al. Sep 2009 A1
20090222100 Cipoletti et al. Sep 2009 A1
20090234398 Chirico et al. Sep 2009 A1
20090240335 Arcenio et al. Sep 2009 A1
20090248159 Aflatoon Oct 2009 A1
20090275890 Leibowitz et al. Nov 2009 A1
20090292361 Lopez et al. Nov 2009 A1
20100016905 Greenhalgh et al. Jan 2010 A1
20100040332 Van Den Meersschaut et al. Feb 2010 A1
20100076492 Warner et al. Mar 2010 A1
20100076559 Bagga Mar 2010 A1
20100082109 Greenhalgh et al. Apr 2010 A1
20100114147 Biyani May 2010 A1
20100174314 Mirkovic et al. Jul 2010 A1
20100179594 Theofilos et al. Jul 2010 A1
20100191336 Greenhalgh Jul 2010 A1
20100204795 Greenhalgh Aug 2010 A1
20100211176 Greenhalgh Aug 2010 A1
20100234956 Attia et al. Sep 2010 A1
20100262240 Chavatte et al. Oct 2010 A1
20100268231 Kuslich et al. Oct 2010 A1
20100286783 Lechmann et al. Nov 2010 A1
20100292700 Ries Nov 2010 A1
20100298938 Humphreys et al. Nov 2010 A1
20100324607 Davis Dec 2010 A1
20100331891 Culbert et al. Dec 2010 A1
20110004308 Marino et al. Jan 2011 A1
20110004310 Michelson Jan 2011 A1
20110015747 McManus et al. Jan 2011 A1
20110029082 Hall Feb 2011 A1
20110035011 Cain Feb 2011 A1
20110054538 Zehavi et al. Mar 2011 A1
20110071527 Nelson et al. Mar 2011 A1
20110093074 Glerum et al. Apr 2011 A1
20110098531 To Apr 2011 A1
20110098628 Yeung et al. Apr 2011 A1
20110130835 Ashley et al. Jun 2011 A1
20110130838 Morgenstern et al. Jun 2011 A1
20110144753 Marchek et al. Jun 2011 A1
20110153020 Abdelgany et al. Jun 2011 A1
20110172716 Glerum Jul 2011 A1
20110172774 Varela Jul 2011 A1
20110238072 Tyndall Sep 2011 A1
20110270261 Mast et al. Nov 2011 A1
20110270401 McKay Nov 2011 A1
20110282453 Greenhalgh et al. Nov 2011 A1
20110301711 Palmatier et al. Dec 2011 A1
20110301712 Palmatier et al. Dec 2011 A1
20110307010 Pradhan Dec 2011 A1
20110313465 Warren et al. Dec 2011 A1
20110320000 O'Neil Dec 2011 A1
20120004726 Greenhalgh et al. Jan 2012 A1
20120004732 Goel et al. Jan 2012 A1
20120022654 Farris et al. Jan 2012 A1
20120029636 Ragab et al. Feb 2012 A1
20120059474 Weiman Mar 2012 A1
20120059475 Weiman Mar 2012 A1
20120071977 Oglaza et al. Mar 2012 A1
20120071980 Purcell et al. Mar 2012 A1
20120083889 Purcell et al. Apr 2012 A1
20120123546 Medina May 2012 A1
20120150304 Glerum et al. Jun 2012 A1
20120150305 Glerum et al. Jun 2012 A1
20120158146 Glerum et al. Jun 2012 A1
20120158147 Glerum et al. Jun 2012 A1
20120158148 Glerum et al. Jun 2012 A1
20120185049 Varela Jul 2012 A1
20120197403 Merves Aug 2012 A1
20120197405 Cuevas et al. Aug 2012 A1
20120203290 Warren et al. Aug 2012 A1
20120203347 Glerum et al. Aug 2012 A1
20120215262 Culbert et al. Aug 2012 A1
20120226357 Varela Sep 2012 A1
20120232552 Morgenstern et al. Sep 2012 A1
20120232658 Morgenstern Lopez et al. Sep 2012 A1
20120265309 Glerum et al. Oct 2012 A1
20120277795 von Hoffmann et al. Nov 2012 A1
20120290090 Glerum et al. Nov 2012 A1
20120290097 Cipoletti et al. Nov 2012 A1
20120310350 Farris et al. Dec 2012 A1
20120310352 DiMauro et al. Dec 2012 A1
20120323328 Weiman Dec 2012 A1
20120330421 Weiman Dec 2012 A1
20120330422 Weiman Dec 2012 A1
20130006361 Glerum et al. Jan 2013 A1
20130023993 Weiman Jan 2013 A1
20130023994 Glerum Jan 2013 A1
20130030536 Rhoda et al. Jan 2013 A1
20130085572 Glerum et al. Apr 2013 A1
20130085574 Sledge Apr 2013 A1
20130116791 Theofilos May 2013 A1
20130123924 Butler et al. May 2013 A1
20130123927 Malandain May 2013 A1
20130138214 Greenhalgh et al. May 2013 A1
20130144387 Walker et al. Jun 2013 A1
20130144388 Emery et al. Jun 2013 A1
20130158663 Miller et al. Jun 2013 A1
20130158664 Palmatier et al. Jun 2013 A1
20130158667 Tabor et al. Jun 2013 A1
20130158668 Nichols et al. Jun 2013 A1
20130158669 Sungarian et al. Jun 2013 A1
20130173004 Greenhalgh et al. Jul 2013 A1
20130190876 Drochner et al. Jul 2013 A1
20130190877 Medina Jul 2013 A1
20130204371 McLuen et al. Aug 2013 A1
20130211525 McLuen et al. Aug 2013 A1
20130211526 Alheidt et al. Aug 2013 A1
20130310939 Fabian et al. Nov 2013 A1
20140025169 Lechmann et al. Jan 2014 A1
20140039622 Glerum et al. Feb 2014 A1
20140046333 Johnson et al. Feb 2014 A1
20140058513 Gahman et al. Feb 2014 A1
20140067073 Hauck Mar 2014 A1
20140094916 Glerum et al. Apr 2014 A1
20140100662 Patterson Apr 2014 A1
20140114423 Suedkamp et al. Apr 2014 A1
20140128977 Glerum et al. May 2014 A1
20140135934 Hansell et al. May 2014 A1
20140142706 Hansell et al. May 2014 A1
20140163682 Lott Jun 2014 A1
20140163683 Seifert et al. Jun 2014 A1
20140172106 To et al. Jun 2014 A1
20140180421 Glerum et al. Jun 2014 A1
20140228959 Niemiec et al. Aug 2014 A1
20140236296 Wagner et al. Aug 2014 A1
20140243981 Davenport et al. Aug 2014 A1
20140243982 Miller Aug 2014 A1
20140249629 Moskowitz et al. Sep 2014 A1
20140249630 Weiman Sep 2014 A1
20140257484 Flower et al. Sep 2014 A1
20140257486 Alheidt Sep 2014 A1
20140277204 Sandhu Sep 2014 A1
20140277139 Vrionis et al. Oct 2014 A1
20140303731 Glerum et al. Oct 2014 A1
20140303732 Rhoda et al. Oct 2014 A1
20140324171 Glerum et al. Oct 2014 A1
20150045894 Hawkins et al. Feb 2015 A1
20150066145 Rogers et al. Mar 2015 A1
20150094610 Morgenstern Lopez et al. Apr 2015 A1
20150094812 Marden et al. Apr 2015 A1
20150094813 Lechmann et al. Apr 2015 A1
20150112398 Morgenstern Lopez et al. Apr 2015 A1
20150173916 Cain et al. Jun 2015 A1
20150182347 Robinson Jul 2015 A1
20150216671 Cain et al. Aug 2015 A1
20150216672 Cain et al. Aug 2015 A1
20160045333 Baynham Feb 2016 A1
20160317317 Marchek et al. Mar 2016 A1
20160242929 Voellmicke et al. Aug 2016 A1
20160256291 Miller Sep 2016 A1
20160331546 Lechmann et al. Nov 2016 A1
20160367265 Morgenstern Lopez Dec 2016 A1
Foreign Referenced Citations (143)
Number Date Country
2005314079 Oct 2012 AU
1177918 Apr 1998 CN
101909548 Dec 2010 CN
2804936 Aug 1979 DE
3023353 Apr 1981 DE
3911610 Oct 1990 DE
4012622 Jul 1997 DE
19832798 Nov 1999 DE
20101793 May 2001 DE
202008001079 Mar 2008 DE
077159 Apr 1983 EP
0260044 Mar 1988 EP
282161 Sep 1988 EP
0433717 Jun 1991 EP
0525352 Feb 1993 EP
0611557 Aug 1994 EP
0625336 Nov 1994 EP
678489 Oct 1995 EP
0270704 Jun 1998 EP
1046376 Apr 2000 EP
0853929 Sep 2002 EP
1290985 Mar 2003 EP
1378205 Jul 2003 EP
1374784 Jan 2004 EP
1532949 May 2005 EP
1541096 Jun 2005 EP
1683593 Jul 2006 EP
1698305 Aug 2007 EP
1857064 Nov 2007 EP
1843723 Mar 2010 EP
2368529 Sep 2011 EP
2237748 Sep 2012 EP
1845874 Oct 2012 EP
2764851 Aug 2014 EP
2649311 Jan 1991 FR
2699065 Dec 1992 FR
2728778 Dec 1994 FR
2718635 Oct 1995 FR
2745709 Mar 1996 FR
2730159 Aug 1996 FR
2800601 Nov 1999 FR
2801189 Nov 1999 FR
2808182 Apr 2000 FR
2874814 Mar 2006 FR
2157788 Oct 1985 GB
2173565 Oct 1986 GB
06-500039 Jun 1994 JP
06-319742 Nov 1994 JP
07-502419 Mar 1995 JP
07-184922 Jul 1995 JP
10-85232 Apr 1998 JP
11-89854 Apr 1999 JP
2003-010197 Jan 2003 JP
2003-126266 May 2003 JP
2003-526457 Sep 2003 JP
2006-516456 Jul 2006 JP
2007-54666 Mar 2007 JP
2008-126085 Jun 2008 JP
2011-509766 Mar 2011 JP
2011-520580 Jul 2011 JP
4988203 Jul 2011 JP
5164571 Aug 2012 JP
64-52439 Dec 2012 JP
WO 9109572 Dec 1989 WO
WO 9304652 Mar 1993 WO
WO 1994004100 Mar 1994 WO
WO 1995031158 Nov 1995 WO
WO 9628100 Sep 1996 WO
WO 9700054 Jan 1997 WO
9942062 Aug 1999 WO
WO 9952478 Oct 1999 WO
WO 1999053871 Oct 1999 WO
WO 9962417 Dec 1999 WO
WO 2000012033 Mar 2000 WO
WO 0067652 May 2000 WO
WO 0076409 Dec 2000 WO
WO 2000074605 Dec 2000 WO
WO 0053127 Jan 2001 WO
WO 0101895 Jan 2001 WO
WO 2001001893 Jan 2001 WO
WO 0112054 Feb 2001 WO
WO 2001017464 Mar 2001 WO
0168004 Sep 2001 WO
WO 0180751 Nov 2001 WO
WO 0243601 Jun 2002 WO
2002085250 Oct 2002 WO
WO 0321308 Mar 2003 WO
WO 0343488 May 2003 WO
0357055 Jul 2003 WO
WO 2004008949 Jan 2004 WO
WO 2004064603 Aug 2004 WO
WO 2004078220 Sep 2004 WO
WO 2004078221 Sep 2004 WO
WO 2004098453 Nov 2004 WO
WO 2005112834 Dec 2005 WO
WO 2005112835 Dec 2005 WO
WO 2006017507 Feb 2006 WO
WO 2006047587 May 2006 WO
WO 2006058281 Jun 2006 WO
WO 2006063083 Jun 2006 WO
WO 2006065419 Jun 2006 WO
WO 2006081843 Aug 2006 WO
WO 2006108067 Oct 2006 WO
WO 2007028098 Mar 2007 WO
WO 2007048012 Apr 2007 WO
WO 2007119212 Oct 2007 WO
2008004057 Jan 2008 WO
WO 2007124130 Apr 2008 WO
WO 2008044057 Apr 2008 WO
WO 2008064842 Jun 2008 WO
WO 2008070863 Jun 2008 WO
WO 2007009107 Aug 2008 WO
WO 2009092102 Jul 2009 WO
WO 2009064787 Aug 2009 WO
WO 2009124269 Oct 2009 WO
WO 2009143496 Nov 2009 WO
WO 2009147527 Dec 2009 WO
WO 2009152919 Dec 2009 WO
WO 2010068725 Jun 2010 WO
WO 2010136170 Dec 2010 WO
WO 2010148112 Dec 2010 WO
WO 2011079910 Jul 2011 WO
WO 2011142761 Nov 2011 WO
WO 2011150350 Dec 2011 WO
WO 2012009152 Jan 2012 WO
WO 2012089317 Jul 2012 WO
2012122294 Sep 2012 WO
WO 2012135764 Oct 2012 WO
WO 2013006669 Jan 2013 WO
WO 2013023096 Feb 2013 WO
WO 2013025876 Feb 2013 WO
WO 2013043850 May 2013 WO
WO 2013062903 May 2013 WO
WO 2013082184 Jun 2013 WO
WO 2013158294 Oct 2013 WO
WO 2013173767 Nov 2013 WO
WO 2013184946 Dec 2013 WO
WO 2014018098 Jan 2014 WO
WO 2014026007 Feb 2014 WO
WO 2014035962 Mar 2014 WO
WO 2014088521 Jun 2014 WO
WO 2014116891 Jul 2014 WO
WO 2014144696 Sep 2014 WO
Non-Patent Literature Citations (28)
Entry
Chiang, Biomechanical Comparison of Instrumented Posterior Lumbar Interbody Fusion with One or Two Cages by Finite Element Analysis, Spine, 2006, pp. E682-E689, vol. 31(19), Lippincott Williams & Wilkins, Inc.
Folman, Posterior Lumbar Interbody Fusion for Degenerative Disc Disease Using a Minimally Invasive B-Twin Expandable Spinal Spacer, Journal of Spinal Disorders & Techniques, 2003, pp. 455-460, vol. 16(5).
Gore, Technique of Cervical Interbody Fusion, Clinical Orthopaedics and Related Research, 1984, pp. 191-195, No. 188.
Hunt, Expanable cage placement via a posterolateral approach in lumbar spine reconstructions, Journal of Neurosurgery: Spine, 2006, pp. 271-274, vol. 5.
Krbec, [Replacement of the vertebral body with an expansion implant (Synex)], Acta Chir Orthop Traumatol Cech, 2002, pp. 158-162, vol. 69(3).
Polikeit, the importance of the endplate for interbody cages in the lumbar spine, Eur Spine J, 2003, pp. 556-561, vol. 12.
Shin, Posterior Lumbar Interbody Fusion via a Unilateral Approach, Yonsei Medical Journal, 2006, pp. 319-325, vol. 47(3).
Hoogland, T. et al., Total Lumbar Intervertebral Disc Replacement: testing of a New Articulating Space in Human Cadaver Spines—24 1 Annual ORS, Dallas TX, Feb. 21-23, 1978, 8 pages.
Spine Solutions Brochure—Prodisc 2001, 16 pages.
Link SB Charite Brochure—Intervertebral Prosthesis 1988, 29 pages.
Alfen et al., “Developments in the Area of Endoscopic Spine Surgery”, European Musculoskeletal Review 2006, pp. 23-24. ThessysTM, Transforaminal Endoscopic Spine Systems, joi max Medical Solutions.
Brooks, M.D. et al., “Efficacy of Supplemental Posterior Transfacet Pedicle Device Fixation in the Setting of One- or Two-Level Anterior Lumbar Interbody Fusion”, retrieved Jun. 19, 2017, 6 pages.
Brochure for PERPOS PLS System Surgical Technique by Interventional Spine, 2008, 8 pages.
Paul D. Fuchs, “The use of an interspinous implant in conjunction with a graded facetectomy procedure”, Spine vol. 30, No. 11, pp. 1266-1272, 2005.
Iprenburg et al., “Transforaminal Endoscopic Surgery in Lumbar Disc Herniation in an Economic Crisis—The TESSYS Method”, US Musculoskeletal, 2008, pp. 47-49.
King, M.D., Don, “Internal Fixation for Lumbosacral Fusion”, The Journal of Bone and Joint Surgery, J. Bone Joint Surg Am., 1948; 30: 560-578.
Morgenstern R; “Transforaminal Endoscopic Stenosis Surgery—A Comparative Study of Laser and Reamed Foraminoplasty”, in European Musculoskeletal Review, Issue 1, 2009.
ProMap TM EMG Navigation Probe. Technical Brochure Spineology Inc., Dated May 2009.
Chin, Kingsley R., M.D. “Early Results of the Triage Medical Percutaneous Transfacet Pedicular BONE-LOK Compression Device for Lumbar Fusion”, accessed online Jul. 10, 2017, 10 pages.
Niosi, Christina A., “Biomechanical Characterization of the three-dimentinoal kinematic behavior of the Dynesys dynamic stabilization system: an in vitro study”, Eur Spine J. (2006) 15: pp. 913-922.
Manal Siddiqui, “The Positional Magnetic Resonance Imaging Changes in the Lumbar Spine Following Insertion of a Novel Interspinous Process Distraction Device”, Spine vol. 30, No. 23, pp. 2677-2682, 2005.
Vikram Talwar, “Insertion loads of the X STOP Interspinous Process Distraction System Designed to Treat Neurogenic Intermittent Claudication”, Eur Spine J. (2006) 15: pp. 908-912.
James F. Zucherman, “A Multicenter, Prospective, Randomized Trial Evaluating the X STOP Interspinous Process Decompression System for the Treatment of Neurogenic Intermittent Claudication”, Spine, vol. 30, No. 12, pp. 1351-1358, 2005.
Kambin et al., “Percutaneous Lateral Discectomy of the Lumbar Spine: A Preliminary Report”; Clin. Orthop.; 1983; 174: 127-132.
Medco Forum, “Percutaneous Lumbar Fixation Via PERPOS PLS System Interventional Spine”, Sep. 2008, vol. 15, No. 37.
Medco Forum, “Percutaneous Lumbar Fixation via PERPOS System From Interventional Spine”, Oct. 2007, vol. 14, No. 49.
Mahar et al., “Biomechanical Comparison of Novel Percutaneous Transfacet Device and a Traditional Posterior System for Single Level Fusion”, Journal of Spinal Disorders & Techniques, Dec. 2006, vol. 19, No. 8, pp. 591-594.
Gray's Anatomy, Crown Publishers, Inc., 1977, pp. 33-54.
Related Publications (1)
Number Date Country
20170042694 A1 Feb 2017 US
Provisional Applications (1)
Number Date Country
61675975 Jul 2012 US
Continuations (2)
Number Date Country
Parent 14569105 Dec 2014 US
Child 15337847 US
Parent 13784955 Mar 2013 US
Child 14569105 US