Expandable inter-body device, system, and method

Information

  • Patent Grant
  • 11963881
  • Patent Number
    11,963,881
  • Date Filed
    Monday, May 3, 2021
    3 years ago
  • Date Issued
    Tuesday, April 23, 2024
    19 days ago
Abstract
The present disclosure provides for spinal implants deployable between a contracted position and an expanded position. The spinal implant may include an anterior endplate, a superior endplate, and an inferior endplate operably coupled to a moving mechanism. The first endplate and a second endplate each include at least one bone screw relief. The moving mechanism may include first and second trolleys configured to act against corresponding ramps. The moving mechanism may further include a first set screw and a second set screw opposite the first set screw configured to operably adjust a spacing between the first and second endplates upon simultaneous rotation of the first and second set screws along a rotation axis, and may also operably adjust an angle of inclination between the first and second endplates upon rotating either one of the first set screw and second set screw along the rotation axis.
Description
FIELD

The present disclosure generally relates to medical devices for the treatment of musculoskeletal disorders, and more particularly to a surgical device that includes an expandable spinal implant, systems for implanting and manipulating the expandable spinal implant, and a method for treating a spine.


BACKGROUND

Spinal disorders such as degenerative disc disease, disc herniation, osteoporosis, spondylolisthesis, stenosis, scoliosis and other curvature abnormalities, kyphosis, tumor, and fracture may result from factors including trauma, disease and degenerative conditions caused by injury and aging. Spinal disorders typically result in symptoms including pain, nerve damage, and partial or complete loss of mobility.


Non-surgical treatments, such as medication, rehabilitation and exercise can be effective, however, they may fail to relieve the symptoms associated with these disorders. Surgical treatment of these spinal disorders includes fusion, fixation, correction, discectomy, laminectomy and implantable prosthetics. As part of these surgical treatments, spinal constructs, such as, for example, bone fasteners, spinal rods and interbody devices can be used to provide stability to a treated region. For example, during surgical treatment, interbody devices may be introduced to a space between adjacent vertebral bodies (the interbody space) to properly space the vertebral bodies and provide a receptacle for bone growth promoting materials, e.g., grafting.


More recently, interbody devices have been introduced that provide additional capability beyond static spacing of the vertebral bodies. For example, some devices have expansion capability such that the implant may be introduced to the interbody space in a collapsed state and then expanded to produce additional spacing and, in some cases, introduce or restore curvature to the spine by expanding selectively. However, many existing expandable interbody designs have limited ranges of expansion.


An additional problem exists related to subsidence of spinal surfaces due to existing interbody devices having inadequately-sized load-bearing surfaces. In the case of expandable devices, the loads on the load-bearing surfaces, including loads generated during expansion of the implant, are often significant. An expandable implant with relatively large surface areas is needed to bear the loads, including the loads generated during implant expansion, in an attempt to avoid a need for follow-on surgery due to subsidence of spinal surfaces.


A further problem is instability of existing expandable interbody devices as they are expanded. Often, the load-bearing surfaces move relative to one another, as well as relative to an inserter, as the interbody device is expanded such that there is a risk of undesired shifts in the positioning of the interbody device within the interverterbral space. Additionally, and depending at least partly on the particular insertion technique employed, anatomical features such as the iliac crest and rib cage pose challenges to the adjustment of inter-body designs in situ.


The present disclosure seeks to address these and other shortcomings in the existing relevant arts.


SUMMARY

The techniques of this disclosure generally relate to highly adjustable interbody devices that are expandable to selectively increase/decrease a spacing distance between endplates of the interbody device and adjustable to selectively increase/decrease an angle of inclination between endplates of the interbody device.


In one aspect, the present disclosure provides an expandable spinal implant deployable between a contracted position and an expanded position. The spinal implant may include a superior endplate, where the superior endplate further includes a first outside surface and a first inside surface opposite the first outside surface. The first outside surface may include a first bone screw relief and a second bone screw relief. The first inside surface may include a first plurality of guide walls, a first proximal end and a first distal end opposite the first proximal end, first proximal ramps and first distal ramps disposed opposite the first proximal ramps, and a first lateral surface and a second lateral surface opposite the first lateral surface, and the first and second lateral surfaces may extend between the first proximal end and the first distal end. The spinal implant may also include a inferior endplate, where the inferior endplate further includes a second outside surface and a second inside surface opposite the second outside surface, the second inside surface including a second plurality of guide walls, a second proximal end and a second distal end opposite the second proximal end, second proximal ramps and second distal ramps disposed opposite the second proximal ramps, and a third lateral surface and a fourth lateral surface opposite the third lateral surface, and the third and fourth lateral surfaces may extend between the second proximal end and the second distal end. The spinal implant may include an anterior endplate having a plurality of bone screw apertures and a central aperture, for example. The spinal implant may further include a moving mechanism operably coupled to the superior endplate and the inferior endplate and positioned therebetween. The moving mechanism may further include a buttress block and a first trolley and a second trolley disposed on opposite sides of the buttress block, a rotatable first set screw and a rotatable second set screw opposite the first set screw The first set screw and second set screw may be operably configured to rotate in a first rotation direction and a second rotation direction about a rotation axis where the rotation axis projects in a longitudinal direction of the moving mechanism. In some embodiments, the first trolley is operably coupled to the first set screw and movable toward and away the buttress block in the longitudinal direction of the moving mechanism by rotation of the first set screw along the rotation axis, and the second trolley is operably coupled to the second set screw and movable toward and away the buttress block in the longitudinal direction of the moving mechanism by rotation of the second set screw along the rotation axis. The first trolley may further include a first side surface and a second side surface opposite the first side surface and include a first plurality of projections projecting from the first and second side surfaces. The second trolley may further include a third side surface and a fourth side surface opposite the third side surface and further include a second plurality of projections projecting from the third and fourth side surfaces. The first and second plurality of projections may correspond to a cross sectional shape of the first and second plurality of guide walls and may be operably coupled thereto, respectively, such that the first and second plurality of projections move along the first and second plurality of guide walls, respectively. In some embodiments, the moving mechanism may be configured to operably adjust a spacing between the superior and inferior endplates upon simultaneous rotation of the first and second set screws along the rotation axis, and the moving mechanism may be configured to operably adjust an angle of inclination between the superior and inferior endplates upon rotating either one of the first set screw or second set screw along the rotation axis.


In another aspect, the present disclosure provides for a moving mechanism that is further configured to increase a first distance between the superior endplate and the moving mechanism and also increase a second distance between the inferior endplate and the moving mechanism an equal amount upon simultaneous rotation of the first and second set screws in the first rotation direction. Additionally, the moving mechanism may decrease the first distance between the superior endplate and the moving mechanism and also decrease the second distance between the inferior endplate and the moving mechanism an equal amount upon simultaneous rotation of the first and second set screws in the second rotation direction. Furthermore, the moving mechanism may increase the angle of inclination between the superior and inferior endplates upon rotating at least one of the first set screw or second set screw along the rotation axis in the first direction, and may also decrease the angle of inclination of the superior and inferior endplates upon rotating at least one of the first set screw or second set screw along the rotation axis in the first direction.


In another aspect, the present disclosure provides that the first proximal ramps may include a first and second ramp disposed adjacent the first proximal end that project away from the first inside surface. The first distal ramps may include a third and fourth ramp disposed adjacent the first distal end that project away from the first inside surface, the second proximal ramps may include a fifth and sixth ramp disposed adjacent the second proximal end that project away from the second inside surface, and the second distal ramps include a seventh and eighth ramp disposed adjacent the second distal end that project away from the second inside surface.


In another aspect, the present disclosure provides that the first trolley may further include a first wedge projecting from the first side surface in a transverse direction of the moving mechanism and a second wedge projecting from the second side surface in the transverse direction of the moving mechanism, and the second trolley may further include a third wedge projecting from the third side surface in the transverse direction of the moving mechanism and a fourth wedge projecting from the fourth side surface in the transverse direction of the moving mechanism.


In another aspect, the present disclosure provides that the first wedge may include a first upper contact surface and a first lower contact surface, the second wedge may include a second upper contact surface and a second lower contact surface, the third wedge may include a third upper contact surface and a third lower contact surface, the fourth wedge may include a fourth upper contact surface and a fourth lower contact surface. Additionally, the first and second upper contact surfaces may contact the first proximal ramps and the first and second lower contact surfaces may contact the second proximal ramps, the third and fourth upper contact surfaces may contact the first distal ramps and the third and fourth lower contact surfaces may contact the second distal ramps.


In another aspect, the present disclosure provides that the first wedge may include a first curved upper contact surface and a first curved lower contact surface, the second wedge may include a second curved upper contact surface and a second curved lower contact surface, the third wedge may include a third curved upper contact surface and a third curved lower contact surface, and the fourth wedge may include a fourth curved upper contact surface and a fourth curved lower contact surface. Additionally, the first and second curved upper contact surfaces may contact the first proximal ramps and the first and second curved lower contact surfaces may contact the second proximal ramps, and the third and fourth curved upper contact surfaces may contact the first distal ramps and the third and fourth curved lower contact surfaces may contact the second distal ramps. Furthermore, the first through fourth curved upper surfaces and the first through fourth curved lower surfaces are configured to facilitate adjustment of the angle of inclination between the superior and inferior endplates upon rotating the first set screw along the rotation axis by enabling the respective curved surfaces to pivot on a corresponding ramp of the first and second proximal ramps and first and second distal ramps.


In another aspect, the present disclosure provides that the first and second wedges are configured to move along first and second inclined contact surfaces of the first and second proximal ramps, respectively, and the third and fourth wedges are configured to move along third and fourth inclined contact surfaces of the third and fourth distal ramps, respectively.


In another aspect, the present disclosure provides that the first inclined contact surfaces of the first proximal ramps are inclined with respect to the first inside surface of the superior endplate and extend away from the first inside surface by a first inclined distance and the second inclined contact surfaces of the second proximal ramps are inclined with respect to the second inside surface of the inferior endplate and extend away from the second inside surface by a second inclined distance. Additionally, the third inclined contact surfaces of the first distal ramps may be inclined with respect to the first inside surface of the superior endplate and extend away from the first inside surface by a third inclined distance and the fourth inclined contact surfaces of the second distal ramps may be inclined with respect to the second inside surface of the inferior endplate and extend away from the second inside surface by a second inclined distance. Furthermore, the first inclined distance may be greater than the third inclined distance and the second inclined distance may be greater than the fourth inclined distance thereby facilitating adjustment of the angle of inclination between the superior and inferior endplates upon rotating the first set screw along the rotation axis.


In another aspect, the present disclosure provides that each ramp of the first and second proximal ramps and first and second distal ramps includes a corresponding contact surface, and each guide wall of the first plurality of guide walls and each guide wall of the second plurality of guide walls extends in a parallel direction with at least one ramp of the first and second proximal ramps and first and second distal ramps.


In another aspect, the present disclosure provides that the superior and inferior endplates are pivotable in a lateral direction thereof with respect to the moving mechanism.


In another aspect, the present disclosure provides that the anterior endplate may include a pair of posts operably coupled to a pair of post retaining apertures of the moving mechanism, for example.


In another aspect, the present disclosure provides that a gap exists between a posterior side of the anterior endplate and an anterior side of the superior and inferior endplates, for example.


In another aspect, the present disclosure provides that the gap includes a continuous discontinuity between the posterior side of the anterior endplate and the anterior side of the superior and inferior endplates, for example.


In another aspect, the present disclosure provides that the anterior endplate includes at least one bone screw lock configured to prevent a bone screw from backing out of a corresponding bone screw aperture of the plurality of bone screw apertures, for example.


In another aspect, the present disclosure provides that the anterior endplate includes a plurality of attachment points configured to operably couple to an insertion tool, and the plurality of attachment points may be radially disposed around the central aperture, for example.


In another aspect, the present disclosure provides that the plurality of bone screw apertures includes a first, second, third, and fourth bone screw aperture, the first bone screw aperture comprises a first circular ring configured to orient a first bone screw such that it extends over the first bone screw relief without coming into contact with the first bone screw relief, and the second bone screw aperture comprises a second circular ring configured to orient a second bone screw such that it extends over the first bone screw relief without coming into contact with the first bone screw relief, for example Additionally, in various embodiments, the third bone screw aperture comprises a third circular ring configured to orient a third bone screw such that it extends over the third bone screw relief without coming into contact with the third bone screw relief, and the fourth bone screw aperture comprises a fourth circular ring configured to orient a fourth bone screw such that it extends over the fourth bone screw relief without coming into contact with the fourth bone screw relief, for example.


In another aspect, the present disclosure provides that the anterior endplate includes a first bone screw lock and a second bone screw lock, each of the first and second bone screw locks being rotatable between an unlocked position and a locked position, for example Additionally, in the locked position, the first bone screw lock prevents the first bone screw and third bone screw from backing out of the first bone screw aperture and third bone screw aperture, respectively, for example. Furthermore, in the locked position, the second bone screw lock prevents the second bone screw and fourth bone screw from backing out of the second bone screw aperture and fourth bone screw aperture, respectively, for example.


In another aspect, the present disclosure provides that the superior endplate has a concave surface profile with respect to the moving mechanism and the inferior endplate has a convex surface profile with respect to the moving mechanism.


In another aspect, the present disclosure provides for an interbody device deployable between a contracted position and an expanded position. The interbody device may include a spinal implant, the spinal implant having a longitudinal axis and a transverse axis perpendicular to the longitudinal axis, a proximal end and a distal end disposed on opposite ends of the transverse axis, and first and second lateral surfaces disposed on opposite ends of the longitudinal axis. The spinal implant may include: a superior endplate having an outside surface including a first bone screw relief and a second bone screw relief, where the superior endplate includes a first plurality of guide walls and a first plurality of inclined ramps, where each guide wall of the first plurality of guide walls extends along an inside surface of the superior endplate in a direction parallel to a contact surface of a corresponding inclined ramp of the first plurality of inclined ramps. The spinal implant may also include: an inferior endplate having an outside surface including a first bone screw relief and a second bone screw relief, the inferior endplate including a second plurality of guide walls and a second plurality of inclined ramps, each guide wall of the second plurality of guide walls extends along an inside surface of the inferior endplate in a direction parallel to a contact surface of a corresponding inclined ramp of the second plurality of inclined ramps. The spinal implant may further include an anterior endplate having a plurality of bone screw apertures, each bone screw aperture being configured to receive a corresponding bone screw therein and orient the corresponding bone screw such that the corresponding bone screw extends over a corresponding one of the first, second, third, and fourth bone screw reliefs without coming into contact with the corresponding bone relief, for example.


The spinal implant may further include a moving mechanism operably coupled to the superior endplate and the inferior endplate and positioned therebetween. The moving mechanism may further include: a first trolley and a second trolley disposed opposite the first trolley, the first and second trolleys having a plurality of projections and a plurality of wedges, where each projection may be configured to move along a corresponding guide wall of the first and second plurality of guide walls and each wedge may be configured to contact and move along a corresponding ramp of the first and second plurality of ramps. The expansion mechanism may further include a first set screw and a second set screw opposite the first set screw, the first set screw being operably coupled to the first trolley and the second set screw being operably coupled to the second trolley, the first set screw and second set screw may be configured to rotate in a first direction and a second direction about a rotation axis, the rotation axis projecting in a longitudinal direction of the moving mechanism in a parallel direction of the transverse axis of the spinal implant. The moving mechanism may further include an adjustment aperture exposing internal circumferential surfaces of the first and second screws, respectively. Additionally, the first screw may be configured to move the first trolley in the longitudinal direction of the moving mechanism by rotation of the first screw along the rotation axis and the second screw may be configured to move the second trolley in the longitudinal direction of the moving mechanism by rotation of the second set screw along the rotation axis. The moving mechanism may be configured to operably adjust a spacing between the superior and inferior endplates upon simultaneous rotation of the first and second set screws along the rotation axis, and may also operably adjust an angle of inclination between the superior and inferior endplates upon rotating either one of the first set screw and second set screw along the rotation axis.


In another aspect, the present disclosure provides for a spinal implant system adjustable in situ between vertebral bodies of a patient and deployable between a contracted position and an expanded position. The system may include a spinal implant having a longitudinal axis and a transverse axis perpendicular to the longitudinal axis, a proximal end and a distal end disposed on opposite ends of the transverse axis, and first and second lateral surfaces disposed on opposite ends of the longitudinal axis, the spinal implant may include: a superior endplate having an outside surface including a first bone screw relief and a second bone screw relief, where the superior endplate may include a first plurality of guide walls and a first plurality of inclined ramps, where each guide wall of the first plurality of guide walls extends along an inside surface of the superior endplate in a direction parallel to a contact surface of a corresponding inclined ramp of the first plurality of inclined ramps. The spinal implant may further include: an inferior endplate having an outside surface including a third bone screw relief and a fourth bone screw relief, the inferior endplate including a second plurality of guide walls and a second plurality of inclined ramps, where each guide wall of the second plurality of guide walls extends along an inside surface of the inferior endplate in a direction parallel to a contact surface of a corresponding inclined ramp of the second plurality of inclined ramps. The spinal implant may further include a moving mechanism operably coupled to the superior endplate and the inferior endplate and positioned therebetween, the moving mechanism may further include: a first trolley and a second trolley disposed opposite the first trolley, the first and second trolleys may have a plurality of projections and a plurality of wedges, each projection may be configured to move along a corresponding guide wall of the first and second plurality of guide walls and each wedge may be configured to contact and move along a corresponding ramp of the first and second plurality of ramps. The implant may further include an anterior endplate having a plurality of bone screw apertures, each bone screw aperture being configured to receive a corresponding bone screw therein and orient the corresponding bone screw such that it extends over a corresponding one of the first, second, third, and fourth bone screw reliefs without coming into contact with it, for example. The moving mechanism may further include a first set screw and a second set screw opposite the first set screw, the first set screw being operably coupled to the first trolley and the second set screw being operably coupled to the second trolley, the first set screw and second set screw may be configured to rotate in a first direction and a second direction about a rotation axis, the rotation axis projecting in a longitudinal direction of the moving mechanism in a parallel direction of the transverse axis of the spinal implant. The moving mechanism may further include an adjustment aperture exposing internal circumferential surfaces of the first and second screws. The system may further include a first surgical tool having a circumferential surface that corresponds to the internal circumferential surfaces of the first and second screws, the first surgical tool being configured to selectively rotate the first screw when inserted therein and rotate the first and second screws when inserted therein. Additionally, the first screw may be configured to move the first trolley in the longitudinal direction of the moving mechanism by rotation of the first screw along the rotation axis and the second screw may be configured to move the second trolley in the longitudinal direction of the moving mechanism by rotation of the second set screw along the rotation axis. Furthermore, the moving mechanism may be configured to operably adjust a spacing between the superior and inferior endplates upon simultaneous rotation of the first and second set screws along the rotation axis, and the moving mechanism may be configured to operably adjust an angle of inclination between the superior and inferior endplates upon rotating the first set screw or second set screw along the rotation axis.


The details of one or more aspects of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the techniques described in this disclosure will be apparent from the description and drawings, and from the claims.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1A is a perspective view of one embodiment of an expandable spinal implant in a fully contracted position in accordance with the principles of the present disclosure;



FIG. 1B is an exploded parts view of the embodiment of FIG. 1A in accordance with the principles of the present disclosure;



FIG. 1C is a perspective view of one embodiment of an expandable spinal implant in a contracted or closed configuration in accordance with the principles of the present disclosure;



FIG. 1D is a perspective view of one embodiment of an expandable spinal implant in an expanded or opened configuration in accordance with the principles of the present disclosure;



FIGS. 2A and 2B are a top down views of the embodiment of FIGS. 1A and 1B in accordance with the principles of the present disclosure;



FIGS. 2C and 2D are side views of the embodiment of FIGS. 1A and 1B in a contracted position in accordance with the principles of the present disclosure;



FIGS. 2E and 2F are side views of the embodiment of FIGS. 1A and 1B in an expanded position in accordance with the principles of the present disclosure;



FIG. 3A is a perspective view of one embodiment of an expandable spinal implant in a closed configuration in accordance with the principles of the present disclosure;



FIG. 3B is a perspective view of one embodiment of an expandable spinal implant in an expanded configuration in accordance with the principles of the present disclosure;



FIG. 4A is a top down view of the embodiment of FIGS. 2A-2C in accordance with the principles of the present disclosure;



FIG. 4B is a side view of the embodiment of FIGS. 2A-2C in a contracted position in accordance with the principles of the present disclosure;



FIG. 4C is a side view of the embodiment of FIGS. 2A-2C in a partially expanded and inclined position in accordance with the principles of the present disclosure;



FIG. 4D is a side view of the embodiment of FIGS. 2A-2C in a fully expanded position in accordance with the principles of the present disclosure;



FIG. 5A is a top down view of one embodiment in accordance with the principles of the present disclosure;



FIG. 5B is a front side view of the embodiment of FIG. 5A in accordance with the principles of the present disclosure;



FIG. 5C is an alternate side view of the embodiment of FIG. 5A in accordance with the principles of the present disclosure;



FIGS. 6A-6C are top down views of three exemplary footprint sizes of a top endplate in accordance with the principles of the present disclosure;



FIGS. 7A-7C are top down views of three exemplary footprint sizes of a bottom endplate in accordance with the principles of the present disclosure;



FIG. 8 is perspective view of one embodiment of an expandable spinal implant system in accordance with the principles of the present disclosure;



FIG. 9A is a cutout perspective showing a surgical tool in a first adjustment position where an exemplary spinal implant is in a contracted position;



FIG. 9B is a cutout perspective showing the surgical tool in the first adjustment position after adjusting the exemplary spinal implant from the contracted position to a first expanded position;



FIG. 10A is a cutout perspective showing the surgical tool in a second adjustment position where the exemplary spinal implant is in the first expanded position of FIG. 9B;



FIG. 10B is a cutout perspective showing the surgical tool in the second position after adjusting the exemplary spinal implant from the first expanded position to an expanded and angled position;



FIGS. 11A and 11B are perspective views of a moving mechanism in a contracted position and an expanded position, respectively, in accordance with the principles of the present disclosure;



FIGS. 12A and 12B are perspective views of the moving mechanism of FIGS. 11A and 11B in the contracted position and the expanded position, respectively, with a bottom endplate in accordance with the principles of the present disclosure;



FIGS. 13A and 13B are perspective views of the moving mechanism of FIGS. 12A and 12B in the contracted position and the expanded position, respectively, with a top endplate and the bottom endplate in accordance with the principles of the present disclosure;



FIGS. 14A and 14B are cut-out views of a moving mechanism in accordance with the principles of the present disclosure;



FIG. 15 is a cross section of the moving mechanism of FIGS. 14A and 14B along a longitudinal axis thereof in accordance with the principles of the present disclosure;



FIG. 16 is a perspective view of a top endplate and bottom endplate of one embodiment of an expandable spinal implant in accordance with the principles of the present disclosure;



FIG. 17 is an exploded view of the top endplate and bottom endplate of FIG. 16 in accordance with the principles of the present disclosure;



FIGS. 18A-18B are perspective views of a first surgical tool of an expandable spinal implant system in accordance with the principles of the present disclosure;



FIGS. 19A-19C are side views of first surgical tool and adjustment rod of an expandable spinal implant system, respectively, in accordance with the principles of the present disclosure;



FIG. 20 illustrates a perspective view of one embodiment of an expandable spinal implant system having anchoring screws in accordance with the principles of the present disclosure;



FIGS. 21A-21B illustrate a lateral side view and front side view, respectively, of one embodiment of an expandable spinal implant system having anchoring screws in accordance with the principles of the present disclosure;



FIG. 22A is a side view of a second surgical device suitable for use with the embodiment of FIG. 20 in accordance with the principles of the present disclosure;



FIG. 22B is a side view of an enlarged region of FIG. 22A in accordance with the principles of the present disclosure;



FIGS. 23A-23C are various perspective views of exemplary anchoring screws suitable for use with the embodiment of FIG. 20 in conjunction with the second surgical tool of FIGS. 22A-22B in accordance with the principles of the present disclosure;



FIGS. 24A-24D are various side views and top down views of exemplary bone grafts in accordance with the principles of the present disclosure;



FIG. 25A and FIG. 25B illustrate a first bent position and a second bent position, respectively, of one embodiment of an expandable spinal implant in accordance with the principles of the present disclosure;



FIGS. 26-28 illustrate a left side view, right side view, and front side view, respectively, of an installed expandable spinal implant positioned between adjacent vertebral bodies in accordance with the principles of the present disclosure;



FIG. 29A is a perspective view of one embodiment of an expandable spinal implant in accordance with the principles of the present disclosure;



FIG. 29B is an exploded view of the embodiment of FIG. 29A in accordance with the principles of the present disclosure;



FIG. 30A is a top down view of one embodiment of an expandable spinal implant in accordance with the principles of the present disclosure;



FIG. 30B is perspective view of one embodiment of an expandable spinal implant in accordance with the principles of the present disclosure;



FIG. 30C is a perspective view of one embodiment of an expandable spinal implant with a top endplate removed in accordance with the principles of the present disclosure;



FIG. 30D is an alternate perspective view of one embodiment of an expandable spinal implant with a top endplate removed in accordance with the principles of the present disclosure;



FIG. 30E is a top down view of one embodiment of a top endplate in accordance with the principles of the present disclosure;



FIG. 30F is a top down view of one embodiment of a bottom endplate in accordance with the principles of the present disclosure;



FIG. 31 is a perspective view of one embodiment of an expandable spinal implant system illustrating three alternate angular positions of an insertion tool in accordance with the principles of the present disclosure;



FIG. 32A is a top down view of one embodiment of an expandable spinal implant in accordance with the principles of the present disclosure;



FIG. 32B is a perspective view of the embodiment of FIG. 32A in accordance with the principles of the present disclosure;



FIG. 33A is a perspective view of one embodiment of an expandable spinal implant in accordance with the principles of the present disclosure;



FIG. 33B is a perspective view of the embodiment of FIG. 33A in an expanded position in accordance with the principles of the present disclosure;



FIG. 33C is a perspective view of the embodiment of FIG. 33A in a first tilted position in accordance with the principles of the present disclosure;



FIG. 33D is a perspective view of the embodiment of FIG. 33A in a second tilted position in accordance with the principles of the present disclosure;



FIG. 34 is a perspective view of one embodiment of an expandable spinal implant system in accordance with the principles of the present disclosure;



FIG. 35 is a perspective view of one embodiment of an expandable spinal implant system illustrating three alternate angular positions of an insertion tool in accordance with the principles of the present disclosure;



FIG. 36 is a perspective view of one embodiment of an expandable spinal implant including a screw guide endplate having at least one aperture configured to receive a anchoring screw therein;



FIG. 37 is a front view of the embodiment of FIG. 36;



FIGS. 38A and 38B are various perspective views of a screw guide endplate having at least one aperture configured to receive a anchoring screw therein;



FIGS. 39A and 39B are top down view of a top endplate and a bottom endplate including at least one slotted aperture configured to receive a anchoring screw therein;



FIG. 40 is a perspective view of one embodiment of an expandable spinal implant including a screw guide endplate having at least one aperture configured to receive a anchoring screw therein;



FIG. 41 is a front view of the embodiment of FIG. 40;



FIG. 42A is a front views of a screw guide endplate having at least one aperture configured to receive a anchoring screw therein;



FIG. 42B is a front view of the screw guide endplate of FIG. 42A including anchoring screws installed in each of the corresponding apertures;



FIG. 43A and FIG. 43B are various perspective views of a screw guide endplate having at least one aperture configured to receive a anchoring screw therein;



FIGS. 44A and 44B are top down views of a top endplate and a bottom endplate including at least one recessed portion configured to accommodate a anchoring screw;



FIG. 45 is a perspective view of an additional embodiment of an expandable spinal implant including an anterior endplate in accordance with the principles of the present disclosure;



FIG. 46 is an alternate perspective view of the embodiment of FIG. 45 in accordance with the principles of the present disclosure;



FIG. 47 is an exploded parts view diagram of the embodiment of FIG. 45 in accordance with the principles of the present disclosure;



FIG. 48A is a first view of a bottom endplate of the embodiment of FIG. 45 in accordance with the principles of the present disclosure;



FIG. 48B is a second view of a bottom endplate of the embodiment of FIG. 45 in accordance with the principles of the present disclosure;



FIG. 48C is a perspective view of the embodiment of FIG. 45 in the expanded position in accordance with the principles of the present disclosure;



FIG. 49 is a perspective view of the embodiment of FIG. 45 including a plurality of bone screws in accordance with the principles of the present disclosure;



FIG. 50 is an alternate perspective view of the embodiment of FIG. 45 including a plurality of bone screws in accordance with the principles of the present disclosure;



FIG. 51 is a rear perspective view of the embodiment of FIG. 45 including a plurality of bone screws in accordance with the principles of the present disclosure;



FIG. 52 is a side view of an example bone screw; and



FIG. 53 is a reference diagram illustrating various cardinal directions and planes with respect to a patient that the exemplary embodiments of FIGS. 1-44B may operate, adjust, and/or move along in accordance with the principles of the present disclosure.





DETAILED DESCRIPTION

The exemplary embodiments of, for example, an anterior expandable inter-body device, lateral expandable inter-body device, inter-body device systems, and inter-body device methods of use are discussed in terms of medical devices for the treatment of musculoskeletal disorders and more particularly, in terms of various inter-body devices suitable as spinal implants for anterior surgical techniques, oblique surgical techniques, and lateral surgical techniques. Exemplary embodiments are also discussed with related emphasis on specialized adjustment instruments such as, for example, an instrument capable of adjusting a spacing of the aforementioned various interbody devices between adjacent vertebrates of a spine by expansion and contraction as well as adjusting an angle of inclination with respect to the coronal plane and/or sagittal plane of a patient. Disclosed devices and systems may be capable of adjusting the curvature of a patient's spine for lordosis correction and a kyphosis correction. Likewise, an instrument capable of installing various anchoring screws is described in conjunction with disclosed inter-body devices.


As used herein, standard anatomical terms of location have their ordinary meaning as they would be understood by a person of ordinary skill in the art unless clearly defined or explained otherwise. It should be understood that various aspects disclosed herein may be combined in different combinations than the combinations specifically presented in the description and accompanying drawings. For example, characteristics of one embodiment may be combined or substituted with characteristics of another different embodiment unless those characteristics are clearly explained as being mutually exclusive. It should also be understood that, depending on the example, certain acts or events of any of the processes or methods described herein may be performed in a different sequence, may be added, merged, or left out altogether (e.g., all described acts or events may not be necessary to carry out the disclosed techniques and methods). In addition, while certain aspects of this disclosure are described as being performed by a single module or unit for purposes of clarity, it should be understood that the techniques of this disclosure may be performed by a combination of units or modules associated with, for example, a medical device.


In some embodiments, the present system includes an expandable spinal implant suitable for insertion for oblique techniques, postero-lateral procedures and/or transforaminal lumbar interbody fusions (sometimes referred to as TLIF procedures), direct posterior (sometimes referred to as PLIF procedures), direct lateral (sometimes referred to as DLIF procedures), anterior lumbar interbody fusions (sometimes referred to as ALIF procedures), or variations of these procedures, in which the present implant is inserted into an interverterbral space and then expanded in order to impart and/or augment a lordotic and/or kyphotic curve of the spine.


In some embodiments, the spinal implant system may also be employed to restore and/or impart sagittal balance to a patient by increasing and/or restoring an appropriate lordotic and/or kyphotic angle between vertebral bodies at a selected level where the spinal implant is implanted and expanded. Additionally, some embodiments may also be employed to restore and/or impart coronal balance for correction of, for example, scoliosis. In the various embodiments described, the spinal implant system may be useful in a variety of complex spinal procedures for treating spinal conditions beyond one-level fusions. Furthermore, the spinal implant system described in the enclosed embodiments may also be used as a fusion device with an expandable height for tailoring the implant to a particular interbody disc space to restore the spacing between adjacent vertebral bodies and facilitate spinal fusion between the adjacent vertebral bodies.


In some embodiments, and as mentioned above, the present disclosure may be employed to treat spinal disorders such as, for example, degenerative disc disease, disc herniation, osteoporosis, spondylolisthesis, stenosis, scoliosis and other curvature abnormalities, kyphosis, tumor and fractures. In some embodiments, the present disclosure may be employed with other osteal and bone related applications, including those associated with diagnostics and therapeutics. In some embodiments, the disclosed spinal implant system may be alternatively employed in a surgical treatment with a patient in a prone or supine position, and/or employ various surgical approaches to the spine, including anterior, posterior, posterior mid-line, direct lateral, postero-lateral oblique, and/or antero lateral oblique approaches, and in other body regions. The present disclosure may also be alternatively employed with procedures for treating the lumbar, cervical, thoracic, sacral and pelvic regions of a spinal column. The spinal implant system of the present disclosure may also be used on animals, bone models and other non-living substrates, such as, for example, in training, testing and demonstration.


The present disclosure may be understood more readily by reference to the following detailed description of the embodiments taken in connection with the accompanying drawing figures, which form a part of this disclosure. It is to be understood that this application is not limited to the specific devices, methods, conditions or parameters described and/or shown herein, and that the terminology used herein is for the purpose of describing particular embodiments by way of example only and is not intended to be limiting. In some embodiments, as used in the specification and including the appended claims, the singular forms “a,” “an,” and “the” include the plural, and reference to a particular numerical value includes at least that particular value, unless the context clearly dictates otherwise. Ranges may be expressed herein as from “about” or “approximately” one particular value and/or to “about” or “approximately” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. It is also understood that all spatial references, such as, for example, horizontal, vertical, top, upper, lower, bottom, left and right, are for illustrative purposes only and can be varied within the scope of the disclosure. For example, the references “upper” and “lower” are relative and used only in the context to the other, and are not necessarily “superior” and “inferior”. Generally, similar spatial references of different aspects or components, e.g., a “proximal end” of an end plate and a “proximal end” of a wedge, indicate similar spatial orientation and/or positioning, i.e., that each “proximal end” is situated on or directed towards the same end of the device. Further, the use of various spatial terminology herein should not be interpreted to limit the various insertion techniques or orientations of the implant relative to the positions in the spine.


As used in the specification and including the appended claims, “treating” or “treatment” of a disease or condition refers to performing a procedure that may include administering one or more drugs, biologics, bone grafts (including allograft, autograft, xenograft, for example) or bone-growth promoting materials to a patient (human, normal or otherwise or other mammal), employing implantable devices, and/or employing instruments that treat the disease, such as, for example, micro-discectomy instruments used to remove portions bulging or herniated discs and/or bone spurs, in an effort to alleviate signs or symptoms of the disease or condition. Alleviation can occur prior to signs or symptoms of the disease or condition appearing, as well as after their appearance. Thus, treating or treatment includes preventing or prevention of disease or undesirable condition (e.g., preventing the disease from occurring in a patient, who may be predisposed to the disease but has not yet been diagnosed as having it). In addition, treating or treatment does not require complete alleviation of signs or symptoms, does not require a cure, and specifically includes procedures that have only a marginal effect on the patient. Treatment can include inhibiting the disease, e.g., arresting its development, or relieving the disease, e.g., causing regression of the disease. For example, treatment can include reducing acute or chronic inflammation; alleviating pain and mitigating and inducing re-growth of new ligament, bone and other tissues; as an adjunct in surgery; and/or any repair procedure. Also, as used in the specification and including the appended claims, the term “tissue” includes soft tissue, ligaments, tendons, cartilage and/or bone unless specifically referred to otherwise. The term “bone growth promoting material” as used herein may include, but is not limited to: bone graft (autograft, allograft, xenograft) in a variety of forms and compositions (including but not limited to morselized bone graft); osteoinductive material such as bone morphogenetic proteins (BMP) (including but not limited to INFUSE® available from Medtronic) and alternative small molecule osteoinductive substances; osteoconductive materials such as demineralized bone matrix (DBM) in a variety of forms and compositions (putty, chips, bagged (including but not limited to the GRAFTON® family of products available from Medtronic)); collagen sponge; bone putty; ceramic-based void fillers; ceramic powders; and/or other substances suitable for inducing, conducting or facilitating bone growth and/or bony fusion of existing bony structures. Such bone growth promoting materials may be provided in a variety of solids, putties, liquids, colloids, solutions, or other preparations suitable for being packed or placed into or around the various implants 100, 200, 300 and embodiments described herein.


The components of the expandable spinal implant systems described herein can be fabricated from biologically acceptable materials suitable for medical applications, including metals, synthetic polymers, ceramics and bone material and/or their composites. For example, the components of expandable spinal implant system, individually or collectively, can be fabricated from materials such as stainless steel alloys, commercially pure titanium, titanium alloys, Grade 5 titanium, super-elastic titanium alloys, cobalt-chrome alloys, stainless steel alloys, superelastic metallic alloys (e.g., Nitinol, super elasto-plastic metals, such as GUM METAL®), ceramics and composites thereof such as calcium phosphate (e.g., SKELITE™), thermoplastics such as polyaryletherketone (PAEK) including polyetheretherketone (PEEK), polyetherketoneketone (PEKK) and polyetherketone (PEK), carbon-PEEK composites, PEEK-BaSO4 polymeric rubbers, polyethylene terephthalate (PET), fabric, silicone, polyurethane, silicone-polyurethane copolymers, polymeric rubbers, polyolefin rubbers, hydrogels, semi-rigid and rigid materials, elastomers, rubbers, thermoplastic elastomers, thermoset elastomers, elastomeric composites, rigid polymers including polyphenylene, polyamide, polyimide, polyetherimide, polyethylene, epoxy, bone material including autograft, allograft, xenograft or transgenic cortical and/or corticocancellous bone, and tissue growth or differentiation factors, partially resorbable materials, such as, for example, composites of metals and calcium-based ceramics, composites of PEEK and calcium based ceramics, composites of PEEK with resorbable polymers, totally resorbable materials, such as, for example, calcium based ceramics such as calcium phosphate, tri-calcium phosphate (TCP), hydroxyapatite (HA)-TCP, calcium sulfate, or other resorbable polymers such as polyaetide, polyglycolide, polytyrosine carbonate, polycaprolactone and their combinations.


Various components of spinal implant system may be formed or constructed of material composites, including but not limited to the above-described materials, to achieve various desired characteristics such as strength, rigidity, elasticity, compliance, biomechanical performance, durability and radiolucency or imaging preference. The components of expandable spinal implant system, individually or collectively, may also be fabricated from a heterogeneous material such as a combination of two or more of the above-described materials. The components of the expandable spinal implant systems may be monolithically formed, integrally connected or include fastening elements and/or instruments, as described herein. For example, in some embodiments the expandable spinal implant systems may comprise expandable spinal implants 100, 200, 300 comprising PEEK and/or titanium structures with radiolucent markers (such as tantalum pins and/or spikes) selectively placed in the implant to provide a medical practitioner with placement and/or sizing information when the expandable spinal implant 100, 200, 300 is placed in the spine. The components of the expandable spinal implant system may be formed using a variety of subtractive and additive manufacturing techniques, including, but not limited to machining, milling, extruding, molding, 3D-printing, sintering, coating, vapor deposition, and laser/beam melting. Furthermore, various components of the expandable spinal implant system may be coated or treated with a variety of additives or coatings to improve biocompatibility, bone growth promotion or other features. For example, the endplates 110, 120, may be selectively coated with bone growth promoting or bone ongrowth promoting surface treatments that may include, but are not limited to: titanium coatings (solid, porous or textured), hydroxyapatite coatings, or titanium plates (solid, porous or textured).


The expandable spinal implant system may be employed, for example, with a minimally invasive procedure, including percutaneous techniques, mini-open and open surgical techniques to deliver and introduce instrumentation and/or one or more spinal implants at a surgical site within a body of a patient, for example, a section of a spine. In some embodiments, the expandable spinal implant system may be employed with surgical procedures, as described herein, and/or, for example, corpectomy, discectomy, fusion and/or fixation treatments that employ spinal implants to restore the mechanical support function of vertebrae. In some embodiments, the expandable spinal implant system may be employed with surgical approaches, including but not limited to: anterior lumbar interbody fusions (ALIF), posterior lumbar interbody fusion (PLIF), oblique lumbar interbody fusion, transforaminal lumbar interbody fusion (TLIF), various types of anterior fusion procedures, and any fusion procedure in any portion of the spinal column (sacral, lumbar, thoracic, and cervical, for example).


Generally in FIGS. 1-44B, five exemplary embodiments of an expandable spinal implants 100, 200, 300, 600, and 700 are shown (spinal implant 100 is highlighted in exemplary FIGS. 1-28, implant 200 is highlighted in exemplary FIGS. 29-31, implant 300 is highlighted in exemplary FIGS. 32-35, implant 600 is highlighted in exemplary FIGS. 36-39B, implant 700 is highlighted in FIGS. 40-44B). Exemplary embodiments of surgical tools 400, 450, and 500 are highlighted in exemplary FIGS. 8, 18-23C and disclosed in conjunction with an inter-body spinal implant system. For example, surgical tools 400, 450, and 500 are discussed concurrently with exemplary spinal implant 100. It shall be understood that the same or similar surgical tools highlighted in exemplary FIGS. 8, 18-23C may be employed with expandable spinal implants 200, 300, 600, and 700. Similar and/or identical numbering of corresponding elements may be used interchangeably between the various exemplary embodiments of an expandable spinal implants 100, 200, 300, 600, and 700 for ease of understanding and convenience in explanation. For example, moving mechanism 250 is predominately discussed concurrently with exemplary spinal implant 100 and is highlighted in exemplary FIGS. 9A-15 although the same or similar moving mechanism 250 may be employed with expandable spinal implants 200, 300, 600, and 700. FIG. 53 is provided solely as a reference illustration showing a patient 1 and various standard medical terms and orientations with respect to cardinal directions and planes of the body of patient 1 in which expandable spinal implants 100, 200, 300, 600, and 700 may act.


Referring generally to FIGS. 1-28 a first exemplary expandable spinal implant 100, moving mechanism 250, first surgical tool 400, and second surgical tool 500 are illustrated. Spinal implant 100 may be configured to be inserted in an intervertebral disc space between adjacent vertebral bodies accordingly to a variety of surgical techniques, e.g., anterior techniques, oblique techniques, and lateral techniques.



FIG. 1A shows the spinal implant 100 in a perspective view and FIG. 1B shows the spinal implant 100 in an exploded parts view. Exemplary spinal implant 100 includes a top endplate 110 (first endplate) and a bottom endplate 120 (second endplate) and a moving mechanism 250, which will be described in greater detail below. Spinal implant 100 includes a proximal end 101 and a distal end 102 opposite the proximal end 101, and a first lateral end 103 and a second lateral end 104 opposite the first lateral end 103. The first and second lateral ends 103, 104 extend between the proximal end 101 and the distal end 102. The proximal end 101 includes an exposed screw guide endplate 105 defining a corresponding screw guide aperture 107, which are disposed between endplates 110 and 120. The screw guide endplate 105 and guide aperture 107 will be described in greater detail below.


Top endplate 110 may include a first outside surface 111 and a first inside surface 112 opposite the first outside surface 111. Similarly, bottom endplate 120 may include a second outside surface 121 and a second inside surface 122. The outside surfaces 111, 121 may be configured to be positioned between and/or contact vertebral bodies in a patients spine and have various surface characteristics. For example, in some embodiments, outside surfaces 111 and 122 may have a substantially linear surface profiles extending across faces of textured surfaces thereof. In other embodiments, outside surfaces 111 and 122 may have curved surface profiles extending across faces of textured surfaces thereof. Further details of endplates 110, 120 will be described in greater detail below. Inside surfaces 111, 122, may surround moving mechanism 250 and have various contours, guides, cavities, and other operable characteristics that facilitate movement and/or provide mechanical advantage to other operable and movable corresponding parts to facilitate contraction, angular adjustment, lateral bending, absorption of compression forces, shear forces, etc. as will be explained in greater detail below.


In the exemplary embodiment, top endplate 110 includes a pair of first proximal ramps 114 and a pair of first distal ramps 116 opposite the first proximal ramps 114. Each ramp of the first proximal ramps 114 includes an inclined surface extending away from inside surface 112 and moving mechanism 250. Similarly, each ramp of first distal ramps 116 includes an inclined surface extending away from inside surface 112 and moving mechanism 250. Bottom endplate 120 includes a pair of second proximal ramps 124 and a pair of second distal ramps 126 opposite the second proximal ramps 124. Each ramp of the second proximal ramps 124 includes an inclined surface extending away from inside surface 122 and moving mechanism 250. Similarly, each ramp of second distal ramps 126 includes an inclined surface extending away from inside surface 112 and moving mechanism 250. Furthermore, each ramp 114, 116, 124, 126 includes a corresponding guide wall 130 extending along an inside surface thereof and extending in a direction substantially parallel to the inclined surface of the corresponding ramp.


Exemplary spinal implant 100 includes a moving mechanism 250 that is operably coupled to top endplate 110 and bottom endplate 120 as will be explained in greater detail below. Moving mechanism 250 includes a first set screw 252 and a corresponding first trolley 256 operably coupled thereto, and a second set screw 254 and a corresponding second trolley 258 operably coupled thereto. A first functional feature of moving mechanism 250 is that it is further configured to increase and decrease a spacing between the top and bottom endplates 110, 120 upon simultaneous rotation of the first and second set screws 252, 254 in a clockwise and counterclockwise direction, respectively. A second functional feature of moving mechanism 250 is that it is further configured to increase and decrease an angle of inclination between the top and bottom endplates 110, 120 upon rotation of the first set screw 252 in a clockwise and counterclockwise direction, respectively. Additional functions and attributes of moving mechanism 250 will be described in greater detail below.



FIG. 1C is a perspective view of spinal implant 100 in a contracted position and FIG. 1D is a perspective view of spinal implant 100 in an expanded position. In the contracted position of FIG. 1C, top endplate 110 and bottom endplate 120 are contracted to a fully closed position. In the expanded position of FIG. 1B, top endplate 110 and bottom endplate 120 are expanded to a mid-way position, i.e., endplates 110 and 120 can additionally expand if desired. In some embodiments, top endplate 110 may be referred to as an anterior wedge or anterior endplate and bottom endplate 120 may be referred to as a posterior wedge or posterior endplate.


As explained above, spinal implant 100 includes a proximal end 101 and a distal end 102 opposite the proximal end 101, and a first lateral end 103 and a second lateral end 104 opposite the first lateral end 103. It shall be understood that reference to other parts of spinal implant 100 may be in terms of the above orientation with reference to spinal implant 100 generally, e.g., endplate 110 may also include a proximal end 101 and a distal end 102 opposite the proximal end 101, and a first lateral end 103 and a second lateral end 104 opposite the first lateral end 103.



FIGS. 2A and 2B illustrate a top down view of spinal implant 100. Spinal implant 100 has a length L and a width W predominately defined by a footprint of endplates 110, 120. Spinal implant 100 has a first reference axis A1 and a second reference axis A2. First reference axis A1 may be understood as a projection passing through a central portion of guide aperture 107 in a direction parallel to an end surface of first and second lateral ends 103, 104, e.g., first reference axis A1 may pass through the center of spinal implant 100 in a width wise direction. Second reference axis A2 may be understood as a projection intersecting first reference axis A1 and passing through the center of spinal implant 100 in a length wise direction. Top endplate 110 may have a plurality of channels 111c spaced apart from one another and extending in a length wise direction thereof, e.g., in a direction parallel with reference axis A2. Similarly, bottom endplate 120 may have a plurality of channels 122c spaced apart from one another and extending in a length wise direction thereof, e.g., in a direction parallel with reference axis A2. In the exemplary embodiment, channels 111c, 122c may each have an inclined edge portion that assists with positioning the spinal implant 100 between vertebral bodies and provides a surface for promoting bone growth thereon.



FIGS. 2C and 2D illustrate spinal implant 100 in a side view in a contracted position and FIGS. 2E and 2F illustrate spinal implant 100 in a side view in an expanded position. It shall be understood that FIGS. 2C-2F schematically illustrate spinal implant 100 with some internal parts being illustrated or simplified and others being omit for ease of explanation. For example, FIGS. 2C-2F are illustrated schematically solely to assist in explaining various positions of first and second endplates 110, 120 with respect to one another. In the contracted position, a first height H1A of proximal end 101 may be about 10 mm and in the expanded position a second height H1B of proximal end 101 may be about 22 mm. In the contracted position, a first height H2A of distal end 102 may be about 7 mm and in the expanded position a second height H2B of distal end 102 may be about 12 mm. Additionally, in the contracted position, a first angle of inclination θ1 between endplates 110, 120 may be about 7° and in the expanded position a second angle of inclination θ2 between endplates 110, 120 may be about 25°. Although specific ranges are provided herein with reference to exemplary spinal implant 100, other embodiments may have alternate corresponding dimensions, i.e., height, from those provided above. Likewise, other embodiments may have alternate corresponding angles of inclination between endplates 110, 120.



FIGS. 3A and 3B are perspective view of an alternate embodiment of a second spinal implant 200. Spinal implant 200 may have the same characteristics or similar characteristics as spinal implant 100. As illustrated, spinal implant 200 includes a top patterned endplate 110a and a bottom patterned endplate 120a. Top patterned endplate 110a includes an outside surface 111 and an inside surface 112 opposite the outside surface 111. Similarly, bottom patterned endplate 120a includes a first outside surface 121 and a first inside surface 122 opposite the outside surface 111. As illustrated, the outside surface 111 includes a plurality of raised diamond shaped surfaces 111d (a diamond tread pattern) and a plurality of first openings 111a that may each have a diamond like shape, a circular shape, and/or a diamond like shape including chamfered or rounded corners. Although not visible in FIGS. 3A and 3B, it shall be understood that bottom patterned endplate 120a may also have a plurality of raised diamond shaped surfaces and a plurality of openings the same as or similar to the plurality of raised diamond shaped surfaces 111d and the plurality of first openings 111a of top patterned endplate 110a.


As illustrated, the plurality of first openings 111a are circular and disposed in a central region of top patterned endplate 110a, although they may have alternate shapes and/or be disposed in alternate locations in other embodiments. For example, first and second outside surfaces 111 and 122 may comprise various anti-migration, anti-expulsion, and/or osseointegration features including, but not limited to: ridges, teeth, pores, and coatings (including but not limited to porous titanium coatings such as those provided on Capstone PTC™ implants available from Medtronic). The endplates 110a, 120a may further comprise at least one second opening 115 defined therein, and configured to allow bone growth materials to be packed, placed, or loaded into spinal implant 200. In the exemplary embodiment a pair of second openings 115 are shown with each having a D like shape.



FIG. 4A illustrates spinal implant 200 in a top down view and each of FIGS. 4B-4D illustrate spinal implant 200 in a side view in a different respective position. FIG. 4B illustrates spinal implant 200 in a first position, FIG. 4C illustrates spinal implant 200 in a second position and FIG. 4D illustrates spinal implant 200 in a third position. In the first position, a first height H1A of proximal end 101 may be about 10 mm, in the second position a second height H1B of proximal end 101 may be about 18 mm, and in the third position a third height H1C of proximal end 101 may be about 18 mm. In the first position, a first height H2A of distal end 102 may be about 6 mm, in the second position a second height H2B of distal end 102 may be about 5 mm, and in the third position a third height H1C of distal end 102 may be about 11.8 mm (approximately 12 mm). Additionally, in the first position, a first angle of inclination θ1 between endplates 110a, 120a may be about 9°, in the second position a second angle of inclination θ2 between endplates 110a, 120a may be about 30°, and in the third position a third angle of inclination θ3 between endplates 110a, 120a may be about 13°. In some embodiments, the first position may correspond to a fully contracted position, the second position may correspond to a maximum inclination angle, and the third position may correspond to a fully expanded position. Although specific ranges are provided herein with reference to exemplary spinal implant 100, other embodiments may have alternate corresponding dimensions, i.e., height, from those provided above. Likewise, other embodiments may have alternate corresponding angles of inclination between endplates 110a, 120a.



FIG. 5A is a top down view of a spinal implant 300. Spinal implant 300 may have the same characteristics or similar characteristics as spinal implant 200 and spinal implant 100. FIGS. 5B and 5C are alternate side views of the embodiment of FIG. 5A. As illustrated spinal implant 300 includes a first reference axis A1 and a second reference axis A2. First reference axis A1 passes through the center of spinal implant 300 in a width wise direction and second reference axis A2 passes through the center of spinal implant 300 in a length wise direction. First and second reference axes A1 and A2 may be understood as linear projections that are perpendicular with respect to one another. Additionally, first reference axis A1 may pass through the center of guide aperture 107 and other components operably disposed therein, e.g., moving mechanism 250 as will be discussed in greater detail below.


As illustrated, spinal implant 300 includes a top curved endplate 110c and a bottom curved endplate 120c. The top curved endplate 110c features a concave surface profile with respect to the first and second reference axes A1 and A2 projecting thereunder. The concave surface profile is emphasized by the curved line thereabove. The bottom curved endplate 120 features a convex surface profile with respect to the first and second reference axes A1 and A2 projecting thereabove. The convex surface profile is emphasized by the curved line therebelow.



FIGS. 6A-6C are top down views of three exemplary footprint sizes of a first top endplate 110x, second top endplate 110y, and third top endplate 110z. It shall be understood that first, second, and third top endplates 110x, 110y, and 110z may be substituted for endplates 110, 110a, and 110c in accordance with the principles of the present disclosure. FIGS. 7A-7C are top down views of three exemplary footprint sizes of a first bottom endplate 120x, second bottom endplate 120y, and third bottom endplate 120z. It shall be understood that first, second, and third bottom endplates 120x, 120y, and 120z may be substituted for endplates 120, 120a, and 120c in accordance with the principles of the present disclosure. First top endplate 110x and first bottom endplate 120x may have a length of about 32 mm and a width of about 25 mm Second top endplate 110y and second bottom endplate 120y may have a length of about 37 mm and a width of about 29 mm. Third top endplate 110z and third bottom endplate 120z may have a length of about 42 mm and a width of about 32 mm. It shall be understood that first top endplate 110x and first bottom endplate 110y are suitable for patients with relatively small vertebrae, second top endplate 110y and second bottom endplate 110y are suitable for patients with relatively larger vertebrae than the previous example, and third top endplate 110z and third bottom endplate 110z are suitable for patients with relatively larger vertebrae than the previous two examples. In this way, spinal implants 100, 200, and 300 may be configured to have any of the exemplary footprint sizes explained above depending on a particular patient's vertebral anatomy. For example, as part of an initial assessment a surgeon may assess which of the available footprint sizes is best suited for a particular patient's vertebral anatomy. It shall be understood that the above exemplary footprint sizes are non-limiting exemplary embodiments and that other footprint sizes may be used with any of spinal implants 100, 200, 300 provided the chosen footprint size is suitable for a particular patient's anatomy. However, the three exemplary footprint sizes explained above are generally suitable for the majority of patients.



FIG. 8 is a perspective view of one embodiment of an expandable spinal implant system 1000 in accordance with the principles of the present disclosure. First surgical tool 400 includes a handle 402, shaft 404, tip 406, locking mechanism 408, and adjustment knob 452. Tip 406 is configured to be inserted inside of guide aperture 107 and operably connected to spinal implant 100. First surgical tool 400 is configured to perform a variety of functions for operably manipulating spinal implant 100. For example, first surgical tool 400 is configured to operably engage with spinal implant 100 via a secured connection such that a spinal implant 100 may be inserted between vertebral bodies of a patient according to anterior surgical techniques, oblique surgical techniques, and lateral surgical techniques. Additionally, first surgical tool 400 is configured to operably engage with spinal implant 100 to adjust spinal implant 100 from a contracted position to an expanded position and vice-versa. Furthermore, first surgical tool 400 is configured to operably engage with spinal implant 100 to adjust an angle of inclination between endplates 110, 120. Further still, spinal implant 100 may be adjusted in situ between vertebral bodies after spinal implant 100 is inserted into a patient. Additional attributes of the surgical tool will be disclosed below with reference to FIGS. 18A-19B



FIG. 9A is a cutout perspective showing first surgical tool 400 in a first adjustment position where the spinal implant 100 is in a contracted position and FIG. 9B is a cutout perspective showing first surgical tool 400 in the first adjustment position after adjusting the spinal implant 100 from the contracted position to a first expanded position. As illustrated, tip 406 is inserted through guide aperture 107 and into moving mechanism 250. Moving mechanism 250 includes a first set screw 252 and a second set screw 254 having respective internal cavities configured to operably receive tip 406. In some embodiments, first set screw 252 may be referred to as an anterior screw and second set screw 254 may be referred to as a posterior screw. The first and second set screws 252, 254 have a helical thread pitch that corresponds to keyed projections of first and second trolleys 256, 258, respectively. In the exemplary embodiment, the second set screw 254 has a reverse thread pitch and a shorter length than first set screw 252. In some embodiments, the thread pitch may be an M6 thread pitch, however other embodiments may have other thread pitches.


Each internal cavity of set screws 252, 254 comprises an internal circumferential surface that is keyed to the outside circumferential surface 456 of tip 406 of first surgical tool 400. For example, the outside circumferential surface 456 may resemble the geometry of the tip of a torx driver, hex driver, or the like and the internal circumferential surfaces of the first and second set screws 252, 254 may resemble the geometry of the cavity of the head of a torx screw, hex screw, or the like. In some embodiments, the internal circumferential surfaces of the first and second set screws 252, 254 may be configured for a Torx T20 driver or the like, however other embodiments may be differently sized. In other embodiments, the connection between the outer circumferential surface 456 and the inner circumferential surfaces of first and second set screws 252, 254 may comprise a variety of drive interfaces including but not limited to: multi-lobular drives; hexalobular drives; cross or Phillips head drives; straight or “flat head” drives; square or other polygonal drives; and/or combinations thereof. It shall be understood that any suitable geometrical shape or surface profile may be used by the exemplary embodiments disclosed herein provided the outside circumferential surface 456 is operably keyed to engage with the internal circumferential surfaces of the first and second set screws 252, 254.


In the exemplary embodiment, outside circumferential surface 456 is engaged with both the first and second set screws 252, 254 and when first surgical tool 400 is rotated in a first direction (clockwise direction) the outside circumferential surface 456 translates both set screws 252, 254 thereby causing the first and second trolleys 256, 258 to move away from one another in opposite directions. In turn, the first and second trolleys 256, 258 cause the top and bottom endplates 110, 120 to move apart from one another an equal amount in the expansion direction indicated by the arrows. The expansion direction may be a generally vertical direction projecting away from and perpendicular to the generally horizontal direction of a rotation axis of the moving mechanism. Likewise, when first surgical tool 400 is rotated in a second direction (counter-clockwise direction) the outside circumferential surface 456 translates both set screws 252, 254 thereby causing the first and second trolleys 256, 258 to move towards one another (not illustrated). In turn, the first and second trolleys 256, 258 urge the top and bottom endplates 110, 120 to move towards one another an equal amount in a contraction direction (not illustrated). The contraction direction may be a generally vertical direction projecting towards and perpendicular to the generally horizontal direction of the rotation axis of the moving mechanism. In summary, when positioning the first surgical tool 400 in the first position and rotating the first surgical tool 400 in either the first or second direction the moving mechanism 250 operably adjusts a spacing between the top and bottom endplates by simultaneous rotation of the first and second set screws 252, 254 along the rotation axis.



FIG. 10A is a cutout perspective showing first surgical tool 400 in a second adjustment position where the spinal implant 100 is in the first expanded position of FIG. 9B. As illustrated, first surgical tool 400 is retracted from moving mechanism 250 such that the outside circumferential surface 456 is only engaged with the first set screw 252, i.e., first surgical tool 400 is in the second position. When first surgical tool 400 is in the second position and rotated in a first direction (clockwise direction) the outside circumferential surface 456 translates only the first set screw 252 thereby causing only the first trolley 256 to move towards the proximal end 101 of spinal implant 100 and allowing the second trolley 258 to remain stationary in place. In turn, the first trolley 256 urges the proximal end 101 of top and bottom endplates 110, 120 thereby causing top and bottom endplates 110, 120 to move apart from one another at the proximal end 101 in the direction shown by the arrows thereby increasing an angle of inclination between the top and bottom endplates 110, 120. Likewise, when first surgical tool 400 is in the second position and is rotated in the second direction (counter-clockwise direction) the outside circumferential surface 456 translates only the first set screw 252 thereby causing the first trolley 256 to move towards the stationary second trolley 258. In effect, the top and bottom endplates 110, 120 move towards one another at the proximal end 101 (not illustrated) thereby decreasing an angle of inclination between the top and bottom endplates 110, 120. In summary, when positioning the first surgical tool 400 in the second position and rotating the first surgical tool 400 in either the first or second direction the moving mechanism 250 operably adjusts an angle of inclination between the top and bottom endplates 110, 120 upon rotating the first set screw along the rotation axis.



FIGS. 11A and 11B are perspective views of a moving mechanism 250 in a contracted position and an expanded position, respectively. Moving mechanism 250 is suitable for use in any exemplary embodiments disclosed herein. As illustrated moving mechanism 250 includes a screw guide housing 105a coupled to screw guide endplate 105 (not illustrated) and a central buttress block 257. Screw guide housing 105a may operably retain first and second screws 252, 254 therein and thereby define a rotation axis of moving mechanism 250 projecting in a longitudinal direction thereof. First and second trolleys 256, 258 are operably coupled to first and second set screws 252, 254 and are further configured to move along outside surfaces of screw guide housing 105a upon rotation of first and second set screws 252, 254.


First trolley 256 includes a first beveled edge 256a and a second beveled edge 256b opposite the first beveled edge 256a, the first and second beveled edges 256a, 256b are disposed on opposite sides of the rotation axis of the moving mechanism 250. Second trolley 258 includes a third beveled edge 258a and a fourth beveled edge 258b (not illustrated) opposite the third beveled edge 258a, the third and fourth beveled edges 258a, 258b are disposed on opposite sides of the rotation axis of the moving mechanism 250. Additionally, first trolley 256 has a first side surface and a second side surface opposite the first side surface, the first and second side surfaces being on opposite sides of the rotation axis of the moving mechanism 250. Likewise, second trolley 256 has a third side surface and a fourth side surface opposite the third side surface, the third and fourth side surfaces being on opposite sides of the rotation axis of the moving mechanism 250. Furthermore, buttress block 257 has a seventh and eighth side surface opposite the seventh side surface, the seventh and eighth side surfaces being on opposite sides of the rotation axis of the moving mechanism 250.


First trolley 256 includes a first plurality of projections 256c, the second trolley 258 includes a second plurality of projections 258c, and the buttress block 257 includes a third plurality of projections 257c. In the exemplary embodiment, first trolley 256 has two projections 256c projecting perpendicularly out from first side surface and two projections 256c projecting perpendicularly out from second side surface. Likewise, second trolley 258 has two projections 258c projecting perpendicularly out from third side surface and two projections 258c projecting perpendicularly out from fourth side. Furthermore, buttress block 257 has two projections 257c projecting perpendicularly out from seventh side surface and two projections 258c projecting perpendicularly out from eighth side surface. The first and second plurality of projections 256c, 258c may be conically shaped projections having a dome like shape or a hemispherical shape, for example. In the non-limiting exemplary embodiment, each projection of the first and second plurality of projections 256c, 258c comprises a hemispherical projection having a flat surface that coincides with a corresponding surface of one of the first through fourth beveled edges 256a, 256b, 258a, 258b. However, other embodiments may have other shapes and/or surface profiles as may be consistent with the disclosure herein.


First trolley 256 includes a first plurality of wedges 256d and second trolley 258 includes a second plurality of wedges 258d. For example, first trolley 256 includes a first wedge 256d projecting away from the first side surface in a transverse direction of the moving mechanism 250 and a second wedge 256d projecting away from the second side surface in the transverse direction of the moving mechanism. Likewise, second trolley 258 includes a third wedge 258d projecting away from the third side surface in a transverse direction of the moving mechanism 250 and a fourth wedge 258d projecting away from the fourth side surface in the transverse direction of the moving mechanism. In the exemplary embodiment, each wedge of the first plurality of wedges 256d includes a corresponding upper contact surface 256e and a corresponding lower contact surface 256f and each respective upper contact surface 256e meets a corresponding lower contact surface 256f at an apex point (not labeled). Likewise each wedge of the second plurality of wedges 258d includes a corresponding upper contact surface 258e and a corresponding lower contact surface 258f and each respective upper contact surface 258e meets a corresponding lower contact surface 258f at an apex point (not labeled). In the exemplary embodiment, each upper contact surface 256e, 258e and each lower contact surface 256f, 258f has a curved surface profile. For example, each upper contact surface 256e, 258e is concave with respect to a corresponding apex point and each lower contact surface 256f, 258f is convex with respect to a corresponding apex point.



FIGS. 12A and 12B are perspective views of moving mechanism 250 of FIGS. 11A and 11B in the contracted position and the expanded position, respectively, shown with an exemplary bottom endplate 120. FIGS. 13A and 13B are perspective views of the moving mechanism 250 of FIGS. 12A and 12B in the contracted position and the expanded position, respectively, with a top endplate 110 and a bottom endplate 120. It shall be understood that FIGS. 12A-13B schematically moving mechanism 250 with some internal parts being illustrated or simplified and others being omit for ease of explanation. For example, FIGS. 12A-13B are illustrated schematically solely to assist in explaining operable characteristics of moving mechanism 250. FIGS. 12A and 12B show bottom endplate 120 having a pair of second proximal ramps 124 and a pair of second distal ramps 126 disposed opposite the pair of second proximal ramps 124. Each ramp of second proximal ramps 124 may include a first inclined contact surface 124a extending away from buttress block 257 and inclined with respect to an inside surface 122 of endplate 120. Similarly, each ramp of second distal ramps 126 may include a second inclined contact surface 126a extending away from buttress block 257 and inclined with respect to an inside surface 122 of endplate 120. In the exemplary embodiment, the first inclined contact surfaces extend a first length (first distance) and the second inclined contact surfaces extend a second length (second distance) and the first length is greater than the second length.



FIGS. 13A and 13B show top endplate 110 having a pair of first proximal ramps 114 and a pair of first distal ramps 116 disposed opposite the pair of first proximal ramps 114. Each ramp of first proximal ramps 114 may include a third inclined contact surface 114a extending away from buttress block 257 and inclined with respect to an inside surface 112 of endplate 110. Similarly, each ramp of first distal ramps 116 may include a fourth inclined contact surface 116a extending away from buttress block 257 and inclined with respect to an inside surface 112 of endplate 110. In the exemplary embodiment, the third inclined contact surfaces extend a third length (third distance) and the fourth inclined contact surfaces extend a fourth length (fourth distance) and the third length is greater than the fourth length.


Each ramp of ramps 114, 116, 124, 126 may have an inside surface disposed adjacent to and facing the rotation axis of moving mechanism 250 and an outside surface opposite the inside surface and facing away from the rotation axis of moving mechanism 250. Additionally, each ramp of ramps 114, 116, 124, 126 may include a corresponding guide wall 130, which is best illustrated in FIGS. 12A and 17. Each guide wall 130 may extend along the inside surface of a corresponding ramp in a parallel direction to the corresponding contact surface. For example, with reference to FIGS. 12A-13B, guide wall 130 extends along the inside surface of proximal ramp 124 in a direction that is substantially parallel to first inclined contact surface 124a. As best understood with reference to FIGS. 12A-12B, each bottom most projection 256c of the first trolley 256 is disposed inside of a corresponding guide wall 130 of the second proximal ramps 124. Likewise, each bottom most projection 258c of the second trolley 258 is disposed inside of a corresponding guide wall 130 of the second distal ramps 126. Similarly, although not directly visible, in FIGS. 13A-13B each top most projection 256c of the first trolley 256 is disposed inside of a corresponding guide wall 130 of first proximal ramps 114. Likewise, each top most projection 258c of second trolley 258 is disposed inside of a corresponding guide wall 130 of first distal ramps 116.


With reference to FIGS. 13A and 13B, when first surgical tool 400 is in the first position and translates first and second screws 252, 254 in the first direction the first and second trolleys 256, 258 move away from one another in opposite directions and the top endplate 110 and bottom endplate 120 move away from one another as the spinal implant 100 expands. For example, in some embodiments, beveled edges 256a, 256b of the first trolley 256 act against endplates 110, 120 at a proximal end 101 thereof and the first plurality of wedges 256d contact and slide along a corresponding ramp of the first and second first proximal ramps 114, 124. However, in other embodiments, 256e and 256f may act against inclined contact surface 124a in lieu of providing beveled edges 256a, 256b. In some embodiments, beveled edges 258a, 258b of the second trolley 258 act against endplates 110, 120 at a distal end 102 thereof and the second plurality of wedges 258d contact and slide along a corresponding ramp of the first and second first distal ramps 116, 126. However, in other embodiments, 258e and 258f may push against inclined contact surface 126a in lieu of providing beveled edges 256a, 256b. Additionally, each projection 256c of the first trolley 256 slides along a corresponding guide wall 130 of the first and second first proximal ramps 114, 124 and each projection 258c of the second trolley 258 slides along a corresponding guide wall 130 of the first and second distal ramps 116, 126. Furthermore, during the expansion of spinal implant 100 each projection 257c of buttress block 257 may slide vertically in a corresponding vertical guide wall 130a (see FIG. 17) of the top and bottom endplates 110, 120. In this way, the spinal implant 100 moves from a contracted position to an expanded position. It shall be understood that movement of spinal implant from the expanded position to the contracted position occurs in substantially the same way.


When first surgical tool 400 is in the second position and translates only the first screw 252 in the first direction the first trolley 256 moves away from buttress block 257 and stationary second trolley 258 and an angle of inclination between the top endplate 110 and bottom endplate 120 increases. For example, beveled edges 256c of first trolley 256 may push against endplates 110, 120 at a proximal end 101 thereof and/or the first plurality of wedges 256d may contact and slide along a corresponding ramp of the first and second first proximal ramps 114, 124 as explained above. Additionally, each projection 256c of the first trolley 256 slides along a corresponding guide wall 130 of the first and second first proximal ramps 114, 124 as explained above. The second trolley 258 remains stationary with beveled edges 258a, 258b remaining in contact with endplates 110, 120 at a distal end 102 thereof and the second plurality of wedges 258d remaining in contact with a corresponding ramp of the first and second distal ramps 116, 126. Due to first trolley 256 acting against endplates 110, 120 by moving away from buttress block 127 and second trolley 258 remaining stationary the second plurality of wedges 258d pivot along a corresponding ramp of the first and second distal ramps 116, 126 and each projection 258c of the second trolley 258 pivots and/or incrementally slides along a corresponding guide wall 130 of the first and second first distal ramps 116, 126. Furthermore, during the expansion of spinal implant 100 each projection 257c of buttress block 257 may slide vertically up and down in a corresponding vertical guide wall 130a (see FIG. 17) of the top and bottom endplates 110, 120 as necessary. In this way, a distance between endplates 110, 120 at the proximal end 101 is increased and a distance between endplates 110, 120 at the distal end 102 is minutely decreased thereby adjusting an angle of inclination between top endplate 110 and bottom endplate 120. Those with skill in the art, will appreciate that in disclosed exemplary embodiments first set screw 252 is longer than second set screw 254 thereby providing more room for travel of the first trolley 256 such that the first trolley 256 may enable a greater distance of travel between endplates 110, 120 at the proximal end 101 than second trolley 258 enables at the distal end 102.



FIGS. 14A and 14B are cut-out views of a moving mechanism 250 in relation to a top endplate 110. As shown, moving mechanism 250 includes a rotation axis R1 projecting in a longitudinal direction thereof and extending in a transverse direction of endplate 110 (from proximal side 101 to distal side 102). Rotation axis R1 projects through the center of set screws 252, 254. Moving mechanism 250 includes a transverse axis T1 intersecting a center of rotation axis and projecting perpendicular to rotation axis R1 through buttress block 257.



FIG. 15 illustrates a cross section of moving mechanism 250 taken along rotation axis R1. As shown, first set screw 252 is operably coupled with first trolley 256 by a plurality of keyed projections 256k (thread pattern) that correspond to the pitch pattern of first set screw 252. Second set screw 254 is operably coupled with second trolley 258 by a plurality of keyed projections 258k (thread pattern). First set screw 252 includes a first internal circumferential surface 252a and second set screw 254 includes a second internal circumferential surface. The buttress block 257 includes an interior retention cavity 257b where a first retaining portion 252r of first set screw 252 and a second retaining portion 254r of second set screw 254 are retained. Interior retention cavity 257b may be an internal cavity spanning the inside circumference of buttress block 257 and configured to enable first set screw 252 and second set screw 254 to freely rotate along the rotation axis R1 while preventing first set screw 252 and second set screw 254 from traveling in the longitudinal direction of moving mechanism 250.



FIG. 16 is a perspective view of a top endplate 110 and bottom endplate 120 of spinal implant 100 and FIG. 17 is an exploded view of the top endplate 110 and bottom endplate 120 of FIG. 16. In the exemplary embodiment, when spinal implant 100 is in the closed position, inside surface 112 of top endplate 110 and inside surface 124 of bottom endplate 120 are nested or partially nested with respect to one another. For example, FIG. 16 shows first proximal ramps 114 of top endplate 110 inset from second proximal ramps 124 of bottom endplate 120. Additionally, top endplate 110 includes a first plurality of recesses 110n that allow corresponding components of bottom endplate 120a to nest inside of when spinal implant 100 is in the contracted position. For example, FIG. 16 shows second proximal ramps 124 nested inside of recess 110n. In some embodiments, recesses 110n may be referred to as nested recesses for convenience in explanation.


Top endplate 110 and/or bottom endplate 120 may optionally include at least one anchoring aperture 129. In the exemplary embodiment, top endplate 110 includes a pair of top anchoring apertures 129a, 129b, that pass through top endplate 110 at an inclined angle with respect to outside surface 111 of top endplate 110. Similarly, bottom endplate 120 includes a pair of bottom anchoring apertures 129c, 129d that pass through bottom endplate 120 at an inclined angle with respect to outside surface 121 of endplate 120. Each anchoring aperture 129 of the plurality of anchoring apertures 129a-129d is disposed adjacent an outside surface of a corresponding ramp 114, 116 however exemplary embodiments are not limited to the specific location shown in FIG. 17.



FIGS. 18A-18B are perspective views of a first surgical tool 400 of an adjustable spinal implant system in accordance with the principles of the present disclosure. FIGS. 19A-19B are side views of the first surgical tool 400 and a corresponding adjustment rod 450 configured for insertion inside of first surgical tool 400. Tip 406 is configured to connect to spinal implant 100 such that spinal implant 100 is securely attached to first surgical tool 400 by engaging locking mechanism 408. Similarly, tip 406 is configured to disconnect from spinal implant 100 such that spinal implant 100 is no longer securely attached to first surgical tool 400 by disengaging locking mechanism 408. For example, FIG. 19A shows tip 406 in a first locking position with tip grips 406a being expanded for gripping onto spinal implant 100 and FIG. 19B shows tip 406 in a second locking position with tip grips 406a being retracted. Locking mechanism 408 is configured to toggle between the first locking position and second locking position. In some embodiments, when locking mechanism 408 is engaged in the first locking position spinal implant 100 is fixedly coupled to first surgical tool 400 such that it will not rotate. This may be advantageous for initial positioning of spinal implant 100 between vertebral bodies during surgery. Additionally, first surgical tool 400 includes a positioning mechanism 410 configured to position adjustment rod 450 in a first position and a second position (see FIG. 19A). First surgical tool 400 may also include a push button 420 to toggle between positioning adjustment rod 450 in a first position to engage both first and second set screws 252, 254 and a second position to engage only the first set screw 252 (see FIG. 18B). Furthermore, in some embodiments first surgical tool 400 may include a window 421 to identify whether both first and second set screws 252254 are engaged for parallel expansion/contraction of spinal implant 100 or whether only the first set screw 252 is engaged for adjusting an angle of inclination of spinal implant 100.


In the exemplary embodiment, first surgical tool 400 includes a central shaft aperture 409 extending through handle 402, shaft 404, and tip 406. Central shaft aperture 409 is configured to receive adjustment rod 450 therein such that adjustment knob 452 is rotatable therein and protrudes, at least partly, from both ends. Adjustment rod 450 includes an adjustment knob 452, first and second positioning surfaces 453, 454 and keyed circumferential surface 456. When adjustment rod 450 is positioned within central shaft aperture 409, adjustment knob 452 protrudes from one end and keyed circumferential surface 456 protrudes from the other end (see FIG. 14). With adjustment rod 450 inserted within central shaft aperture 409 positioning mechanism 410 can extend and retract adjustment rod 450 in the longitudinal direction of shaft 409. As explained above with respect to FIGS. 13A and 13B, when first surgical tool 400 is in the first position, keyed circumferential surface 456 may rotate first and second set screws 252, 254 along the rotation axis and when first surgical tool 400 is in the second position, keyed circumferential surface 456 may rotate only the first set screw 252 along the rotation axis. In some embodiments, positioning mechanism 410 is configured to be toggled between a first position and a second position where it can act against positioning surfaces 453, 454 to extend and retract adjustment rod 450 in the longitudinal direction of shaft 409. For example, in the first position positioning mechanism 410 may extend adjustment rod 450 from tip 406 to an extended position where circumferential surface 456 may engage with internal circumferential surfaces of the first and second set screws 252, 254. In the second position, positioning mechanism 410 may retract adjustment rod 450 through tip 406 to a partially retracted position where circumferential surface 456 may only engage with internal circumferential surface of the first set screw 252. An internal gearing of positioning mechanism 410 may include internal locking pins and surfaces that act against positioning surfaces 453, 454 such that when an exposed turn dial knob of positioning mechanism 410 is turned to a particular position, the internal locking pins and surfaces act against the inclined and recessed surfaces of positioning surfaces 453, 454.


Additionally, in some embodiments, first surgical tool 400 may be configured to receive adjustment rods 450 of varying lengths having varying outside circumferential surfaces 456 and positioning surfaces 453, 454. For example, first surgical tool 400 may be configured to receive a first relatively shorter adjustment rod 450 optimized for use for a spinal implant 100 using corresponding relatively smaller endplates 110, 120 of FIGS. 6A-7C and a corresponding smaller moving mechanism 250 having a relatively shorter longitudinal axis optimized for such relatively shorter endplates 110x, 120x. For example still, first surgical tool 400 may be configured to receive a second relatively longer adjustment rod 450 optimized for use for a spinal implant 100 using corresponding relatively larger endplates 110z, 120z of FIGS. 6A-7C and a corresponding larger moving mechanism 250 having a relatively longer longitudinal axis optimized for such relatively longer endplates 110z, 120z.


Additionally, in some embodiments, first surgical tool 400 may be configured to receive multiple types of adjustment rods 450. In at least one embodiment, first surgical tool 400 may receive a first adjustment rod 450 with an outside circumferential surface 456 that is configured to engage (1) both the first and second set screws 252, 254 at the same time and (2) the first set screw 252. For example, the first adjustment rod 450 may be toggled between (1) a first position where outside circumferential surface 456 is fully extended and configured to engage both the first and second set screws 252, 254, and (2) a second position where outside circumferential surface 456 is partially extended (and/or partially retracted) to engage only the first set screw 252. In an alternate embodiment, first surgical tool 400 may receive a second adjustment rod 450 with an outside circumferential surface 456 that is configured to engage only one set screw 252, 254 at a time. For example, the outside circumferential surface 456 may have an engagement surface with a longitudinal length that corresponds to a single set screw 252, 254 such that it only engages with a single set screw 252, 254 at a time. For example, the second adjustment rod 450 may be toggled between (1) a first position where outside circumferential surface 456 is fully extended and configured to engage the second set screw 254 independently of the first set screw 252 and (2) a second position where outside circumferential surface 456 is partially extended (and/or partially retracted) to engage only the first set screw 252. At least one advantage of having first surgical tool 400 being configured to receive multiple types of adjustment rods 450 of varying lengths and having outside circumferential surfaces of different lengths is that a surgeon can quickly and easily select the appropriate adjustment rod 450. For example, a surgeon may select first adjustment rod 450 to expand/contract a spacing between endplates 110, 120 by the same or substantially the same amount while maintaining the angle of inclination between endplates 110, 120, i.e., by engaging both first and second set screws 252, 254. Additionally, a surgeon may select second adjustment rod 450 to selectively increase/decrease an angle of inclination between endplates of spinal implant 100 at the proximate side 101 and the distal side 102 independently, i.e., by only engaging one of first and second set screws 252, 254 at a time. For example still, the second adjustment rod 450 may be configured to adjust spinal implant 100 to enable anterior expansion separately from enabling posterior expansion which may enable spinal implant 100 to be placed in kyphosis as is consistent with above explained embodiments.


Furthermore, in some embodiments, first surgical tool 400 is configured to operate in three modes. In the first mode, tip grips 406a are securely connected to spinal implant 100. In the second mode, adjustment rod 450 may be positioned in a first position such that upon selective rotation of adjustment knob 452 a spacing between endplates 110, 120 selectively increase/decrease in minute increments. For example, by rotating each of first set screw 252 and second set screw 254. In the third mode, adjustment rod 450 may be positioned in a second position such that upon selective rotation of adjustment knob 452 an angle of inclination between endplates 110, 120 may selectively increase/decrease in minute increments. For example, by only rotating first set screw 252 an angle of inclination between endplates 110, 120 may increase/decrease by moving one side of the endplates 110,120 towards/away from each other and moving the opposite side of the endplates 110,120 in an opposite direction. In some embodiments, this may also happen by only rotating second set screw 254. For example, first surgical tool 400 may have a relatively short circumferential engagement surface 456 that will only engage a single one of the internal circumferential surfaces of first or second set 252, 254 at a time.



FIG. 20 illustrates a perspective view of one embodiment of an expandable spinal implant 100 including a plurality of anchoring screws 510. In some embodiments, anchoring screws 510 may be referred to as bone screws. In the exemplary spinal implant 100, top endplate 110 includes a first anchoring screw 510a, and a second anchoring screw 510b opposite the first anchoring screw 510a that each extend through a corresponding aperture. For example, first and second anchoring screws 510a, 510b pass through a corresponding aperture of top endplate 110 configured to orient them at an inclined angle with respect to outside surface 111 of top endplate 110. Similarly, bottom endplate 120 includes a third anchoring screw 510c, and a fourth anchoring screw 510d that each extend through a corresponding aperture. Anchoring screws 510c, 510d project from a proximal end 101 of spinal implant 100 at an inclined angle towards distal end 102. For example, third and fourth anchoring screws 510c, 510d pass through a corresponding aperture of bottom endplate 120 configured to orient them at an inclined angle with respect to outside surface 121 of bottom endplate 120. However, it shall be understood that in other embodiments at least one aperture may orient a corresponding anchoring screw 510a, 510b, 510c, 510d at any angle with respect to the corresponding endplate 110, 120 consistent with the disclosure herein. Anchoring screws 510a-510d are configured to anchor into corresponding adjacent vertebral bodies.



FIGS. 21A-21B illustrate a lateral side view and front side view, respectively, of one embodiment of an expandable spinal implant system in which anchoring screws 510a-510d are anchored into adjacent vertebral bodies. As illustrated, anchoring screws 510a, 510b project out from top endplate 110 of spinal implant 100 from a proximal end 101 at an inclined angle towards distal end 102 thereby anchoring into a top vertebral body V1. Similarly, anchoring screws 510a, 510b project out from bottom endplate 120 of spinal implant 100 from a proximal end 101 at an inclined angle towards distal end 102 thereby anchoring into a bottom vertebral body V2. As used herein, a pair of vertebral bodies, adjacent vertebral bodies, and/or first and second vertebral bodies may refer to, e.g., top vertebral body V1 and bottom vertebral body V2.



FIG. 22A is a side view of a second surgical tool 500 suitable for use with disclosed embodiments and systems herein, e.g., to drive anchoring screws 510a-510d. FIG. 22B is a side view of an enlarged region of FIG. 22A. Exemplary, second surgical tool 500 includes a ratcheting drive shaft 555, a positioning handle 520, a tip portion 530, a drive shaft housing 540, and a trigger 550. Ratcheting drive shaft 555 may be configured to connect and disconnect with a ratcheting handle (not shown) and rotate within ratcheting drive shaft housing 540. For example, the drivable connection may comprise a variety of drive interfaces including but not limited to: multi-lobular drives; hexalobular drives; cross or Phillips head drives; straight or “flat head” drives; square or other polygonal drives; and/or combinations thereof. Positioning handle 520 may be configured to assist with maintaining and controlling the second surgical tool 500, e.g., in view of torque transmitted through ratcheting drive shaft 555. Tip portion 530 is angled at a degree β with respect to a longitudinal direction of drive shaft housing 540. In some embodiments, tip portion 530 is angled such that the degree β corresponds to the inclination of anchoring screws 510a-510d and the inclination of anchoring aperture 129. For example, anchoring apertures 129 may be inclined about 30°-50°, and more particularly about 40°, with respect to an outside surface 111, 121 of endplates 110, 120. This arrangement may be advantageous for driving anchoring screws 510a-510d while spinal implant 100 is positioned between adjacent vertebral bodies. Tip portion 530 may secure anchoring screw 510 in an internal cavity therein such that anchoring screw 510 may not disconnect during initial positioning of anchoring screw 510. For example, tip portion 530 may have a flexible elastic member configured to securely retain a head portion of anchoring screw 510. Tip portion 530 may, however, release anchoring screw 510 when anchoring screw is sufficiently anchored into an anatomical feature, such as a vertebrae for example. This feature may be particularly advantageous during surgery for maintaining the anchoring screw 510 in tip portion 530 such that anchoring screw 510 does not uncouple from tip portion 530 when initially positioning anchoring screw 510 in an anchoring aperture, for example anchoring aperture 129. Additionally, in some embodiments tip portion 530 is operably coupled with trigger 550 such that trigger 550 may disconnect anchoring screw 510 when anchoring screw 510 is installed. In some embodiments, trigger 550 may not be necessary because tip portion 530 may self-release anchoring screw 510 after installation.



FIGS. 23A-23C are various perspective views of exemplary anchoring screws suitable for use with disclosed embodiments herein in conjunction with the second surgical tool 500. FIG. 23A shows a trocar tip anchoring screw 510e, FIG. 23B shows a flutes or fluted tip anchoring screw 510f, and FIG. 23C shows a speed anchoring screw 510g. Each anchoring screw 510e-510g may have a thread pitch and sizing that corresponds to a size of anchoring aperture 129. Trocar tip anchoring screw 510e includes an angled tip portion 510e-1 and a thread pattern including threads 510e-2. Threads 510e-2 may be spaced back from angled tip portion 510e-1 which may facilitate with aligning anchoring screw 510e with anchoring aperture 129. For example, in some embodiments, threads 510e-2 are spaced back about 3 mm from angled tip portion 510e-1. Fluted tip anchoring screw 510f includes a cutting tip 510f-1 and a thread pattern included threads 510f-2. Cutting tip 510f-1 may extend a relatively long distance from the beginning of threads 510f-2 such that the cutting tip 510f-1 may pre-drill into an adjacent vertebral body before the threads 510f-2 engage with anchoring aperture 129. For example, in some embodiments, threads 510f-2 are spaced back about 8 mm from cutting tip 510f-1. Speed anchoring screw 510g includes a conical tip 510g-1 and a thread pattern including threads 510g-2. Different from trocar tip anchoring screw 510e and fluted tip anchoring screw 510f, threads 510g-2 of speed anchoring screw 510g may begin immediately adjacent conical tip 510g-1.



FIGS. 24A-24D are various side views and top down views of exemplary bone graft areas in accordance with the principles of the present disclosure. In the side view of FIG. 24A, first and second regions R1, and R2 are shown where bone growth material may be grafted and/or bone growth promoting materials may be used. In the top down view of FIG. 24B, third and fourth regions R3, R4 are shown where bone growth material may be grafted and/or bone growth promoting materials may be used. In some embodiments, third and fourth regions R3, R4 overlap vertically with first and second regions R1, and R2. In FIGS. 24C and 24D an exemplary grafting section GS is shown. Grafting section GS may be grafted to an endplate 110, 120. In some embodiments, grafting section GS may be filled with a bone growth material having a resultant surface area ranging from about 140 mm2 to about 180 mm, and more particularly about 160 mm2. For example, the bone growth material may extend through the grafting section GS three dimensionally and have a corresponding surface area ranging from about 140 mm2 to about 180 mm2, and more particularly about 160 mm2. Consistent with disclosed embodiments herein, the open arrangement of spinal implant 100 and endplates 110, 120 in particular is advantageous for direct segmental fusion techniques. For example, the superior and inferior vertebral endplates allow the creation of a fusion bone bridge to solidify a segment. Additionally, the expandable and contractible nature of spinal implant 100 lends to bone packing techniques after positioning and adjusting spinal implant 100 between vertebral bodies. For example, after spinal implant 100 is positioned between adjacent vertebral bodies, spinal implant 100 may be packed with bone material in situ. In some embodiments, the endplate 110 may be considered a direct superior vertebral endplate and endplate 120 may be considered an inferior vertebral endplate where such endplates are configured to allow for a fusion bone bridge there through to solidify a segment.


In some embodiments, the spinal implant system includes an agent, including but not limited to the bone growth promoting materials described herein, which may be disposed, packed, coated or layered within, on or about the components and/or surfaces of the spinal implant system. In some embodiments the bone growth promoting material may be pre-packed in the interior of spinal implant 100, and/or may be packed during or after implantation of the implant via a tube, cannula, syringe or a combination of these or other access instruments. Additionally, bone growth promoting material may be further tamped into spinal implant 100 before, during or after implantation. In some embodiments, the bone growth promoting material and/or directly grafted material may enhance fixation of spinal implant 100 with adjacent bony structures. In some embodiments, the agent may include one or a plurality of therapeutic agents and/or pharmacological agents for release, including sustained release, to treat, for example, pain, inflammation and degeneration.



FIGS. 25A and 25B illustrate spin implant 100 in a first bent position and a second bent position, respectively. FIG. 25A shows spinal implant 100 where top endplate 110 is bent in a first lateral direction with respect to bottom endplate 120. FIG. 25B shows spinal implant 100 where top endplate 110 is bent in a second lateral direction, opposite the first lateral direction, with respect to bottom endplate 120. As explained in greater detail above, the various disclosed projections, guide walls, cavities, recesses, etc. are configured such that spinal implant 100 may allow for lateral bending to some predetermined degree. For example, projections 256c, 257c, 258c may pivot laterally in guide walls 130 to accommodate some degree of lateral bending. In this way, top endplate 110 and bottom endplate 120 may be configured to laterally bend with respect one another in a first direction and a second direction by a predetermined amount. However, in other embodiments it may be desirable for spinal implant 100 to be rigid in the lateral direction and for no lateral bending to be permissible.



FIGS. 26-28 illustrate a left side view, right side view, and front side view, respectively, of an installed expandable spinal implant 100 positioned between adjacent vertebral bodies according to various surgical techniques, e.g., anterior techniques, oblique techniques, lateral techniques. For example, FIGS. 26-28 show spinal implant 100 after being installed according to an anterior lumbar interbody fusion (ALIF) technique.


Spinal implant systems of the present disclosure can be employed with a surgical arthrodesis procedure, such as, for example, an interbody fusion for treatment of an applicable condition or injury of an affected section of a spinal column and adjacent areas within a body, such as, for example, intervertebral disc space between adjacent vertebrae, and with additional surgical procedures and methods. In some embodiments, spinal implant systems can include an intervertebral implant that can be inserted between adjacent vertebral bodies to space apart articular joint surfaces, provide support for and maximize stabilization of vertebrae. In some embodiments, spinal implant systems may be employed with one or a plurality of vertebra.


Consistent with the disclosed embodiments herein, a medical practitioner may obtain access to a surgical site including vertebrae such as through incision and retraction of tissues. Spinal implant systems of the present disclosure can be used in any existing surgical method or technique including open surgery, mini-open surgery, minimally invasive surgery and percutaneous surgical implantation, whereby vertebrae are accessed through a mini-incision, retractor, tube or sleeve that provides a protected passageway to the area, including, for example, an expandable retractor wherein the sleeve is formed from multiple portions that may be moved apart or together and may be inserted with the portions closed or together and then expanded to allow for insertion of implants of larger size than the closed cross section of the unexpanded retractor portions. In one embodiment, the components of the spinal implant system are delivered through a surgical pathway to the surgical site along a surgical approach into intervertebral disc space between vertebrae. Various surgical approaches and pathways may be used.


As will be appreciated by one of skill in the art, a preparation instrument (not shown) may be employed to remove disc tissue, fluids, adjacent tissues and/or bone, and scrape and/or remove tissue from endplate surfaces of a first vertebra and/or endplate surface of a second vertebra in preparation for or as part of the procedures utilizing a system of the present disclosure. In some embodiments, the footprint of spinal implant 100 is selected after trialing using trialing instruments (not shown) that may approximate the size and configuration of spinal implant 100. In some embodiments, such trials may be fixed in size and/or be fitted with moving mechanisms 250 similar to embodiments described herein. In some embodiments, spinal implant 100 may be visualized by fluoroscopy and oriented before introduction into intervertebral disc space. Furthermore, first and second surgical tools 400, 500, and spinal implant 100 may be fitted with fiducial markers to enable image guided surgical navigation to be used prior to and/or during a procedure.


Components of a spinal implant systems of the present disclosure can be delivered or implanted as a pre-assembled device or can be assembled in situ. In one embodiment, spinal implant 100 is made of a single piece construction that may not be disassembled without destroying the device. In other embodiments, spinal implant 100 may comprise removable parts. Components of spinal implant system including implant 10, 20, 30 may be expanded, contracted, completely or partially revised, removed or replaced in situ. In some embodiments, spinal implant 100 can be delivered to the surgical site via mechanical manipulation and/or a free hand technique.


Additionally, components of spinal implant 100 can include radiolucent materials, e.g., polymers. Radiopaque markers may be included for identification under x-ray, fluoroscopy, CT or other imaging techniques. Furthermore, first and second surgical tools 400, 500 may be radiolucent and may optionally include markers added at a tip portion thereof to permit them to be seen on fluoroscopy/x-ray while advancing into the patient. At least one advantage to having spinal implant 100 is that a medical practitioner can verify the positioning of spinal implant 100 relative to adjacent vertebral bodies and make further adjustments to the spacing between endplates 110, 120, angle of inclination between endplates 110, 120, and the overall positioning of the device within a patient's body. In this way, spinal implant 100 may correct alignment of a patient's spine in a sagittal plane.



FIG. 29A is a perspective view of a second embodiment of an expandable spinal implant 200 in accordance with the principles of the present disclosure. Aspects of second spinal implant 100 may be the same as, substantially the same as, or similar to spinal implant 100. Additionally, second spinal implant 200 may be used in previously disclosed systems and methods. Accordingly, duplicative description thereof will be omitted.



FIG. 29B is an exploded view illustrating second spinal implant 200. Second spinal implant 200 a top endplate 110 (first endplate) and a bottom endplate 120 (second endplate) and a moving mechanism 2500, which will be described in greater detail below. The proximal end 101 includes a screw guide endplate 1050 disposed between endplates 110 and 120. In some embodiments, screw guide endplate 1050 may be pivotable left-right and up-down to accommodate insertion of first surgical tool 400 from an off angle position. For example, screw guide endplate 1050 may accommodate a surgical tool that is insert off angle (not axially aligned) in a range of about 1° to 20°, and more particularly about 1° to 15° in the horizontal and vertical directions. At least one advantage of this arrangement is that first surgical tool 400 may be inserted off angle with respect to guide aperture 107 of spinal implant 200.


In the exemplary embodiment, moving mechanism 2500 is operably coupled to top endplate 110 and bottom endplate 120 similarly as explained above. Moving mechanism 2500 differs from moving mechanism 250 in that moving mechanism 2500 may be miss aligned, for example by about 5°, 10°, 15°, or 20° when compared to moving mechanism 250 of the first embodiment. In at least one embodiment, moving mechanism 2500 is misaligned about 15° to facilitate insertion and posterior adjustment by reconnection posteriorly. In the exemplary embodiment, moving mechanism 2500 operates by the same principles as moving mechanism 250 although the interior contours of top endplate 110 and bottom endplate 120 are shifted to allow moving mechanism 2500 to be miss aligned.



FIG. 30A is a top down view of spinal implant 200 contrasting an embodiment where moving mechanism 2500 is miss aligned. As illustrated, spinal implant 200 has a first reference axis B1 and a second reference axis B2. First reference axis B1 may be understood as a projection where moving mechanism 2500 is not miss aligned and where moving mechanism 2500 is in a centered position. Second reference axis B2 may be understood as a projection passing through a central portion of guide aperture 107 through moving mechanism 2500 when moving mechanism 2500 is miss aligned inside of endplates 110, 120 to an off-centered position.


Referring generally to FIGS. 30B-30F, a modified embodiment of spinal implant 200 where moving mechanism 2500 is miss aligned is disclosed. In the disclosed embodiment, moving mechanism 2500 features the same parts as moving mechanism 250 and operates under the same principles as explained previously. In the disclosed embodiment, moving mechanism 2500 is miss aligned by about 15° when compared with moving mechanism 250 of spinal implant 100. In other embodiments, moving mechanism 2500 may be miss aligned within any suitable range, e.g., from about 5° to 25°. FIG. 30C is a perspective view of the embodiment of FIG. 30B with a top endplate 110 removed for ease of understanding. As illustrated, moving mechanism 2500 is misaligned and the top and bottom endplates 110, 120 have a different geometry to accommodate the miss aligned moving mechanism 2500. Top and bottom endplates 110, 120 may feature the same or substantially the same characteristics as previously disclosed. FIG. 30D is an alternate perspective view of the embodiment of FIG. 30B with a top endplate 110 removed for ease of understanding. FIG. 30E is a top down view of an exemplary top endplate 110 for use with the embodiment of FIG. 30B and FIG. 30F is a top down view of an exemplary bottom endplate 120 for use with the embodiment of FIG. 30B.



FIG. 31 is a perspective view of spinal implant 200 in an installed position between vertebral bodies and three alternate positions of first surgical tool 400. FIG. 31 shows how first surgical tool 400 may be inserted into guide aperture 107 off angle with respect to first reference axis B1. Reference ring RR represents the extent of viable offset positions that first surgical tool 400 may be operably inserted in guide aperture 107. In some embodiments, first surgical tool 400 may be bent at a midsection area at 15° to enable a surgeon to adjust spinal implant 200 in such a way as to avoid anatomical features and organs, such as, for example the pelvic ring and iliac crest. Additionally, this advantage is further expanded upon when using a miss-aligned moving mechanism 2500 that is miss aligned by, for example, about 15°. Therefore, disclosed systems of spinal implant 200 are able to be manipulated by a surgeon via surgical tool 400 at the combined total angular extent the moving mechanism 2500 is offset and the angular extent the surgical tool is bent. In at least one embodiment, the total angular extent is about 30° on account of the moving mechanism 2500 being offset about 15° and the surgical tool 400 being bent about 15°.



FIG. 32A is a top down view of a third embodiment of an expandable spinal implant 300 in accordance with the principles of the present disclosure. FIG. 32B shows spinal implant 300 in a perspective view. Aspects of spinal implant 300 may be the same as, substantially the same as, or similar to spinal implant 100. Additionally, spinal implant 300 may be used in previously disclosed systems and methods. Accordingly, duplicative description thereof will be omitted.


In some embodiments, the sizing and orientation of top and bottom endplates 110, 120 and the sizing and orientation of moving mechanism 250d is particularly advantageous for lateral insertion techniques. Spinal implant 300 includes a first reference axis C1 and a second reference axis C2. Different than previous embodiments, first reference axis C1 may span a longitudinal length of spinal implant 300 and pass directly through a rotation axis of moving mechanism 250d. Second reference axis C2 may bisect spinal implant 300 transversely across the center thereof. Additionally, second reference axis C2 may intersect first reference axis C1 and project through a center of buttress block 257.


Spinal implant 300 may include a top endplate 110d and a bottom endplate 120d and a moving mechanism 250, which may be the same as or substantially the same as described above. Spinal implant 300 includes a proximal end 101 and a distal end 102 opposite the proximal end 101, and a first lateral end 103 and a second lateral end 104 opposite the first lateral end 103. The first and second lateral ends 103, 104 extend between the proximal end 101 and the distal end 102. The proximal end 101 includes an exposed screw guide endplate 105 defining a corresponding screw guide aperture 107, which are disposed between endplates 110d and 120d. The screw guide endplate 105 and guide aperture 107 may be the same as or substantially the same as described above.


Top endplate 110 may include a first outside surface 111d and a first inside surface 112d opposite the first outside surface 111d. Similarly, bottom endplate 120d may include a second outside surface 121d and a second inside surface 122d. The outside surfaces 111d, 121d may be configured to be positioned between and/or contact vertebral bodies in a patients spine and have various surface characteristics similar to those described above with reference to spinal implant 100. In some embodiments, outside surfaces 111d and 122d may have a substantially linear surface profile across faces of textured surfaces thereof. In other embodiments, outside surfaces 111d and 122d may have curved surface profiles across faces of textured surfaces thereof. Further details of endplates 110d, 120d will be described in greater detail below.


Inside surfaces 111d, 122d, may surround moving mechanism 250 and have various contours, guides, cavities, and other operable characteristics that facilitate movement and/or provide mechanical advantage to other operable and movable corresponding parts to facilitate contraction, angular adjustment, lateral bending, absorption of compression forces, shear forces, etc. as will be explained in greater detail below.


In the exemplary embodiment, top endplate 110d includes a pair of first proximal ramps 114d and a pair of first distal ramps 116d opposite the first proximal ramps 114d. Each ramp of the first proximal ramps 114d includes an inclined surface extending away from inside surface 112d and moving mechanism 250d. Similarly, each ramp of first distal ramps 116d includes an inclined surface extending away from inside surface 112d and moving mechanism 250d. Bottom endplate 120d includes a pair of second proximal ramps 124d and a pair of second distal ramps 126d opposite the second proximal ramps 124d. Each ramp of the second proximal ramps 124d includes an inclined surface extending away from inside surface 122d and moving mechanism 250d. Similarly, each ramp of second distal ramps 126d includes an inclined surface extending away from inside surface 11d1 and moving mechanism 250d.


Exemplary spinal implant 300 includes a moving mechanism 250d that is operably coupled to top endplate 110d and bottom endplate 120d, similarly as explained above with reference to spinal implant 100. Accordingly, duplicative description will not be repeated. A first functional feature of moving mechanism 250d is that it is further configured to increase and decrease a spacing between the top and bottom endplates 110d, 120d upon simultaneous rotation of first and second set screws 252, 254 in a clockwise and counterclockwise direction, respectively. A second functional feature of moving mechanism 250d is that it is further configured to increase and decrease an angle of inclination between top and bottom endplates 110d, 120d upon rotation of the first set screw 252 in a clockwise and counterclockwise direction, respectively.



FIG. 33A is a perspective view of spinal implant 300 in a contracted position and FIG. 33B is a perspective view of spinal implant 300 in an expanded position. In the contracted position of FIG. 33A, top endplate 110d and bottom endplate 120d are contracted to a fully closed position. In the expanded position of FIG. 33B, top endplate 110d and bottom endplate 120d are expanded an equal amount. Similarly as explained above with reference to spinal implant 100 and FIGS. 9A-9B when first surgical tool 400 is inserted in guide aperture 107 in a first position and rotated in a first direction (clockwise direction) the first and second trolleys 256, 258 move away from one another an equal amount in opposite directions. In turn, the first and second trolleys 256, 258 cause the top and bottom endplates 110d, 120d to move apart from one another an equal amount. Likewise, when first surgical tool 400 is rotated in a second direction (counter-clockwise direction) first and second trolleys 256, 258 cause the top and bottom endplates 110d, 120d to move towards one another an equal amount in a contraction direction (not illustrated). In summary, when positioning the first surgical tool 400 in the first position and rotating the first surgical tool 400 in either the first or second direction the moving mechanism 250d operably adjusts a spacing between the top and bottom endplates 110d, 120d. FIG. 33C is a perspective view of spinal implant 300 in a first angled position and FIG. 33D is a perspective view of spinal implant 300 in a second angled position. Spinal implant 300 may have the same or similar features as explained above with respect to spinal implants 100, 200. Spinal implant 300 may be capable of (1) expanding/contracting the proximal end while the distal end remains stationary, (2) expanding/contracting the distal end while the proximal end remains stationary, and (3) expanding/contracting both the proximal end and distal end simultaneously. Similarly as explained above with reference to spinal implant 100 and FIGS. 10A-10B when first surgical tool 400 is inserted in guide aperture 107 in a second position, and rotated in a first direction (clockwise direction) the first trolley 256 moves away from the proximal end 101 of spinal implant 100 and the second trolley 258 remains stationary in place. In effect, the top and bottom endplates 110d, 120d move towards one another at the distal end 102 (not shown) and move away from one another at the proximal end 101 thereby decreasing an angle of inclination between the top and bottom endplates 110, 120.


Likewise, when first surgical tool 400 is in the second position and is rotated in the second direction (counter-clockwise direction) the first trolley 256 moves towards the stationary second trolley 258. In effect, the top and bottom endplates 110d, 120d move towards one another at the proximal end 101 (not shown) thereby decreasing an angle of inclination between the top and bottom endplates 110d, 120d. In summary, when positioning the first surgical tool 400 in the second position and rotating the first surgical tool 400 in either the first or second direction the moving mechanism 250 operably adjusts an angle of inclination between the top and bottom endplates 110, 120 upon rotating the first set screw along the rotation axis.


In the contracted position of FIG. 33A, a first height between top endplate 110d and bottom endplate 120d on the proximal side 101 and distal side 102 is about 9 mm. In the first expanded position of FIG. 33B, a second height of spinal implant 300 between top endplate 110d and bottom endplate 120d on the proximal side 101 and distal side 102 is about 9 mm. Additionally, in the first expanded position of FIG. 33B, top endplate 110d is parallel with respect to bottom endplate 110d. In the first angled position of FIG. 33C, the top and bottom endplates 110d, 120d are contacting each other at the distal side 102 and are spaced apart from one another at the proximal side 101. For example, at the distal side 102, the height between top endplate 110d and bottom endplate 120d is about 9 mm. For example still, at the proximate side 101, the height between top endplate 110d and bottom endplate 120d is about 16 mm. Accordingly, an angle of inclination between top endplate 110d and bottom endplate 120d at the distal side 101 is about 11°. In the second angled position of FIG. 33D, the top and bottom endplates 110d, 120d are contacting each other at the proximal side 102 and are spaced apart from one another at the distal side 101. For example, at the proximal side 102, the height between top endplate 110d and bottom endplate 120d is about 9 mm. For example still, at the distal side 101, the height between top endplate 110d and bottom endplate 120d is about 16 mm. Accordingly, an angle of inclination between top endplate 110d and bottom endplate 120d at the proximal side 101 is about 11°.


In some embodiments, spinal implant 300 may comprise a three position inner drive shaft (not illustrated) complimentary to or in place of components of moving mechanism 250. The three position inner drive shaft may enable the first and second set screws 252, 254 to be adjusted independently from one another as well as enabling the first and second set screws 252, 254 to be adjusted concurrently or simultaneously. For example, first surgical tool 400 may have a relatively short circumferential surface 456 that will only engage one of the internal circumferential surfaces of first or second set screws 252, 254 at a time. For example still, another first surgical tool 400 having a relatively longer circumferential surface 456 may engage both of the internal circumferential surfaces of the first and second set screws 252, 254 at the same time. Consistent with disclosed embodiments, a surgeon can use a first surgical tool 400 having a relatively shorter circumferential surface 456 to perform angular adjustments of spinal implant 300 and then use a first surgical tool 400 having a relatively longer circumferential surface 456 to perform height adjustments of spinal implant 300. In other embodiments, spinal implant 300 may include a screw guide aperture 107 on both sides of the spinal implant 300 thereby providing access to the first set screw 252 independently from second set screw 254.



FIG. 34 is a perspective view of a spinal implant system utilizing spinal implant 300 and first surgical tool 400. In the exemplary system, spinal implant 300 is positioned in an installed position between vertebral bodies by first surgical tool 400 according to lateral insertion techniques as explained in greater detail above. First surgical tool 400 may operably adjust spinal implant 300 in situ between vertebral bodies as explained in greater above. For example, first surgical tool 400 may operably expand spinal implant 300 at a proximal side 101 and/or a distal side 102 thereof. In this way, spinal implant 300 may correct alignment of a patient's spine in a coronal plane.



FIG. 35 is a perspective view of a spinal implant system utilizing spinal implant 300 highlighting how first surgical tool 400 may manipulate spinal implant 300 from various angles. For example, spinal implant 300 may include the same, substantially the same, or similar components to moving mechanism 2500 as explained above. In the exemplary embodiment, first surgical tool 400 may be inserted into guide aperture 107 off angle with respect to first reference axis B1. Reference ring RR represents the extent of viable offset positions that first surgical tool 400 may be operably inserted in guide aperture 107. In some embodiments, first surgical tool 400 may be bent at a midsection area at 15° (not illustrated) to enable a surgeon to adjust spinal implant 300 in such a way as to avoid anatomical features and organs, such as, for example the pelvic ring and iliac crest.


Referring generally to FIGS. 36-39B an additional expandable spinal implant 600 is disclosed. Expandable spinal implant 600 may have the same, substantially the same, and/or similar components and attributes as spinal implants 100, 200, and 300 including general applicability with other relevant systems and surgical tools disclosed hereinabove. Spinal implant 600 may include a screw guide endplate 6150 having at least one aperture 610 configured to receive an anchoring screw 510 therein. Screw guide endplate 6150 may be relatively longer in length than screw guide endplate 150 discussed above and screw guide endplate 6150 may be operably coupled with moving mechanism 250 similarly as explained above with respect to spinal implants 100, 200, and 300.


In the illustrated embodiment, top endplate 110 and bottom endplate 120 may each have an accommodating portion 630 having a corresponding size and geometry to the end portions of screw guide endplate 6150 such that when spinal implant 600 is in the fully collapsed position the end portions of screw guide endplate 6150 will not increase a relative height of implant 600 in a fully collapsed position. For example, endplates 110, 120 may fully close without being impacted by screw guide endplate 6150 and therefore maintain a relatively compact size.



FIGS. 38A and 38B illustrate a front perspective view and a rear perspective view of an exemplary screw guide endplate 6150 having at least one aperture 610 configured to receive an anchoring screw 510 therein. In the illustrated embodiment, two apertures 610 are shown although embodiments in accordance with the principles of this disclosure may have any number of apertures 610. As illustrated, each aperture 610 may be configured to selectively receive a corresponding anchoring screw therein. The outside entrance to each aperture 610 may define two alternate guided paths. For example, a first guided path may be defined by the entrance to aperture 610 and a first exit aperture 610a and a second guided path may be defined by the entrance to aperture 610 and a second exit aperture 610b. In this way aperture 610 may be configured to orient one corresponding anchoring screw 510 at a time in either of a first orientation or a second orientation.


Corresponding exemplary first and second orientations are illustrated in FIG. 37 which shows a first anchoring screw 510 (right anchoring screw) oriented upward at an inclined angle with respect to top endplate 110 and a second anchoring screw 510 (left anchoring screw) oriented downward at an inclined angle with respect to bottom endplate 120. Additionally, the first orientation may align a corresponding anchoring screw 510 such that it projects through a corresponding slotted aperture 640 of the first endplate 110 (see FIGS. 36 and 39A). Similarly, the second orientation may align a corresponding anchoring screw 510 such that it projects through a corresponding slotted aperture 640 of the second endplate 120 (see FIGS. 36 and 39B).


At least one advantage of the disclosed spinal implant 600 is that screw guide endplate 6150 and moving mechanism 250 may be configured such that the moving mechanism 250 can selectively adjust a spacing between the first and second endplates 110, 120 and adjust an angle of inclination between the first and second endplates while the at least one corresponding anchoring screw 510 is anchored within a corresponding vertebrae. For example, a surgeon may initially position spinal implant 600 between adjacent vertebrae of a patient and install a corresponding first anchoring screw 510 in a first orientation projecting through slotted aperture 640 of first endplate 110 and a corresponding second anchoring screw 510 in a second orientation projecting through slotted aperture 640 of second endplate 120. Next, the surgeon may continue to adjust the spacing and/or angle of inclination between endplates 110, 120 until the endplates 110, 120 are in the desired position. This is possible, at least partly, because the relative location of the screw guide endplate 6150 remains fixed due to the anchored anchoring screws 510 and the first and second endplates can freely expand/contract and/or incline/decline via moving mechanism 250 while anchoring screws 510 extend through slotted aperture 640 (which has a geometry such that the anchored anchoring screws 510 do not interfere with the movement of endplates 110, 120). For example, the endplates 110, 120 may freely move while anchoring screws 510 remain anchored in place in the corresponding vertebrae while also changing a relative positioning with respect to the slotted aperture 640 due to movement of endplates 110, 120.


Referring generally to FIGS. 40-44B an additional expandable spinal implant 700 is disclosed. Expandable spinal implant 700 may have the same, substantially the same, and/or similar components and attributes as spinal implants 100, 200, 300, and 600 including general applicability with other relevant systems and surgical tools disclosed hereinabove. Spinal implant 700 may include a screw guide endplate 7150 having at least one aperture 710 configured to receive an anchoring screw 510 therein. Screw guide endplate 7150 may be relatively longer in length than screw guide endplate 150 discussed above and screw guide endplate 7150 may be operably coupled with moving mechanism 250 similarly as explained above with respect to spinal implants 100, 200, and 300.


In the illustrated embodiment, top endplate 110 and bottom endplate 120 may each have an accommodating portion 730 having a corresponding size and geometry to the end portions of screw guide endplate 7150 such that when spinal implant 700 is in the fully collapsed position the end portions of screw guide endplate 7150 will not increase a relative height of implant 700 in a fully collapsed position. For example, endplates 110, 120 may fully close without being impacted by screw guide endplate 7150 and therefore maintain a relatively compact size.



FIGS. 42A and 42B illustrate an exemplary screw guide endplate 7150 with and without corresponding anchoring screws 510, respectively. FIGS. 43A and 43B illustrate a front perspective view and a rear perspective view of an exemplary screw guide endplate 7150 having at least one aperture 710 configured to receive an anchoring screw 510 therein. In the illustrated embodiment, four apertures 710 are shown, although embodiments in accordance with the principles of this disclosure may have any number of apertures 710.


As illustrated, each aperture 710 may be configured to selectively receive a corresponding anchoring screw 510 therein. The outside entrance to each aperture 710 may define a guided path configured to orient a corresponding anchoring screw 510 in an inclined position extending away from a proximal side of a corresponding endplate 110 or 120. For example, screw guide endplate 7150 may include a total of four apertures 710, and the four apertures 710 may include two top most apertures 710 and two bottom most apertures 710. In the disclosed embodiment, the two top most apertures 710 may be configured to incline a corresponding anchoring screw 510 with respect to top endplate 110 that extends away from a proximal side of implant 700 towards a distal side of implant 700. Similarly, the two bottom most apertures 710 may be configured to incline a corresponding anchoring screw 510 with respect to bottom endplate 120 that extends from a proximal side of implant 700 towards a distal side of implant 700. Corresponding orientations are illustrated in FIGS. 40, 41, and 42B which show two top anchoring screws 510 oriented upward at an inclined angle with respect to top endplate 110 and two bottom anchoring screws 510 oriented downward at an inclined angle with respect to bottom endplate 120. Alternatively, the screw holes in the plate may be arranged and numbered in various alternative designs including, instead of two holes on top and bottom, presenting a single hole in the center or on one side or the other on top and bottom, or two holes on one of the top or bottom and one hole on the opposite side, top or bottom. These screw holes may further include protrusions, threads or other features to control, guide, and/or retain the screws in place or include features such as retaining clips, springs, or covers to retain the screws in place once inserted. The screw holes may be of various shapes including cylindrical, conical, or designed to receive a bulbous or spherical screw head.



FIGS. 44A and 44B may illustrate a top endplate 110 and a bottom endplate 120, respectively, with an anchoring screw 510 in one corresponding aperture 710 and without an anchoring screw 510 in the other corresponding aperture 710 for ease of explanation. As illustrated, the top endplate 110 may include at least one anchoring screw 510 such that it projects through or across a corresponding recess 740 of the first endplate 110. Similarly, the bottom endplate 120 may include at least one anchoring screw 510 such that it projects through or across a corresponding recess 740 of the first endplate 110.


At least one advantage of the disclosed spinal implant 700 is that screw guide endplate 7150 and moving mechanism 250 may be configured such that the moving mechanism 250 can selectively adjust a spacing between the first and second endplates 110, 120 and adjust an angle of inclination between the first and second endplates while the at least one corresponding anchoring screw 510 is anchored within a corresponding vertebrae. For example, a surgeon may initially position spinal implant 700 between adjacent vertebrae of a patient and install at least one corresponding anchoring screw 510 in a first orientation projecting through or across a corresponding recess 740 of first endplate 110 and at least one corresponding anchoring screw 510 in a second orientation projecting through or across recess 740 of second endplate 120. Next, the surgeon may continue to adjust the spacing and/or angle of inclination between endplates 110, 120 until the endplates 110, 120 are in the desired position. This is possible, at least partly, because the relative location of the screw guide endplate 7150 remains fixed due to the anchored anchoring screws 510 and the first and second endplates can freely expand/contract and/or incline/decline via moving mechanism 250 while anchoring screws 510 extend through or across recess 740 (which has a geometry such that anchored anchoring screws 510 do not interfere with the movement of endplates 110, 120). For example, the endplates 110, 120 may freely move while anchoring screws 510 remain anchored in place in the corresponding vertebrae.



FIGS. 45 and 46 are perspective views of an additional embodiment of an expandable spinal implant 800 including an anterior endplate 810 in accordance with the principles of the present disclosure. In some embodiments, anterior endplate 810 may be referred to as a third endplate, or may be referred to as a medial, lateral, or posterior endplate depending upon orientation or approach employed and the specific configuration and shape of the implant and the location, side or end to which the third plate is affixed or located. FIG. 47 is an exploded parts view diagram of the embodiment of FIG. 45 in accordance with the principles of the present disclosure. Expandable spinal implant 800 may include the same, substantially the same, and/or similar features as the various above disclosed embodiments. For example, moving mechanism 250 may operate in the same, substantially the same, and/or similar manner as explained above. However, implant 800 may include an anterior endplate 810, a top endplate 820 (superior endplate), and a bottom endplate 830 (inferior endplate) having different characteristics as will be explained in further detail below.


Implant 800 may include an anterior side 800a, a posterior side 800p and two opposing lateral sides 800l, for example Additionally, the outside contours of implant 800 may include a top endplate 820 (superior endplate), bottom endplate 830 (inferior endplate) and an anterior endplate 810 (front endplate), for example. In various embodiments, the top endplate 820 and bottom endplate 830 may collectively define the posterior side 800p (rear side) of implant 800. Anterior endplate 810 may include a plurality of circular bone screw apertures 801, for example. In the example embodiment, four circular bone screw apertures 801 are disclosed although in other embodiments the number of bone screw apertures 801 may be more or less. For example, in some embodiments there may be an additional 5th and 6th bone screw aperture in the medial location of anterior endplate 810. In other embodiments, there may be a total of two bone screw apertures 801 including a left bone screw aperture 801 diagonally projecting over the top endplate 820 and a right bone screw aperture 801 diagonally projecting over the bottom endplate 820.


In various embodiments, each bone screw aperture 801 may include at least one circular ring portion 801a that facilitates seating of a bone screw 511 (see FIG. 52) and/or facilitates the alignment of a drill in a coaxial relationship, e.g., surgical tool 500 as disclosed above. For example, the ring portion 801a may define a bearing surface for seating an inclined surface 512 of an outdented rail 513 of a head portion of a bone screw 511, for example. In various embodiments, the ring portion 801a may have a size and shape generally corresponding to a size and shape of the inclined surface 512 and define an interior diameter that is less than a cross sectional diameter of the outdented rail 513. Additionally, in various embodiments, the ring portion 801a of bone screw apertures 801 may allow about +/−10° and in some embodiments about +/−5° of freedom to the corresponding bone screw 511 due to the inclined surface 512, for example.


Anterior endplate 810 may include at least one bone screw lock 803 for preventing bone screws 511 from backing out. For example, bone screw lock 803 may be a rotatable lock that may rotate about 90° between an open position and a closed position to prevent bone screws 511 from backing out, for example. In various embodiments, anterior endplate 810 may include at least one attachment point 805 for connecting implant 800 with a surgical tool. In the disclosed embodiment, a plurality of attachment points 805 are distributed around screw guide aperture 807. In the disclosed embodiment, six attachment points 805 are radially distributed around screw guide aperture 807 although other embodiments may have more or less, e.g. 2, 3, 4, 5, 7 or 8.


As understood best with reference to FIG. 47, anterior endplate 810, top endplate 820, and bottom endplate 830 may be operably coupled to moving mechanism 250. For example, moving mechanism 250 serves as a central attachment location for each of the endplates 810, 820, 830 and each of the endplates 810, 820, 830 may interact independently with moving mechanism 250, for example. In the disclosed embodiment, anterior endplate 810 may be operably coupled to moving mechanism 250 by inserting posts 855 into a corresponding post retaining aperture 255 having a size and shape configured to securely couple the two together. In various embodiments, posts 855 may extend from an inside surface of anterior endplate 810 in a direction towards the posterior side 800p of implant 800 and towards moving mechanism 250. In this way, anterior endplate 810 is independently secured to moving mechanism 250 from top endplate 820 and bottom endplate 830, for example.



FIGS. 48A and 48B are top down views of an example bottom endplate 830 of spinal implant 800. In various embodiments, bottom endplate 830 and top endplate 820 may include the same, substantially the same, and/or similar characteristics. In the example illustration, bottom endplate 830 may include a bone screw relief 832 for each corresponding bone screw aperture 801. For example, bone screw relief 832 comprises an arcuate channel and/or conical channel defining a portion of the outside surface of endplate 830. In some embodiments, the number of bone screw reliefs 832 may be more or less. For example, a single bone screw relief 832 or three bone screw reliefs 832. In some embodiments, the top endplate 820 may include a first bone screw relief 822 and the bottom endplate 830 may include a second bone screw relief 832 that project oppositely from one another in a diametrically opposed direction. Additionally, in the top down views of FIGS. 48A and 48B it is shown that a gap 840 (void space) exists between anterior endplate 810 and bottom endplate 830. The gap 840 between anterior endplate 810 and endplates 820, 830 may be present in both the expanded and contracted position. For example, as shown in FIG. 48C implant 800 is in an expanded position and a gap 840 is present between anterior endplate 810, top endplate 820, and bottom endplate 830. For example still, gap 840 may define a continuous discontinuity between the posterior side of the anterior endplate 810 and the anterior side of the top endplate 820 and bottom endplate 830.



FIG. 49 is a perspective view of spinal implant 800 in an expanded configuration including a plurality of bone screws 511 extending over corresponding bone screw apertures 801. In the example embodiment, when implant 800 is in the fully expanded position a trajectory of the bone screws 511 is unaffected by the top endplate 820 and/or bottom endplate 830. For example, the bone screw reliefs 822, 832 allow the implant 800 to fully expand without interfering with bone screws 511. For example still, bone screws 511 may be secured to a boney surface and only anchor implant 800 via bone screw apertures 801 of anterior endplate 810.



FIG. 50 is an alternate perspective view of the embodiment of FIG. 45 including a plurality of bone screws 511 that are prevented and/or suppressed from backing out due to bone screw locks 803. Bone screw locks 803 may be toggled between an unlocked position shown in FIG. 49 to a locked position shown in FIG. 50 by rotating the bone screw lock 803 about 90°. In operation, an end user such as a surgeon may place bone screws 511 through bone screw aperture 801 after the implant 800 is expanded to the desired height and inclination. Thereafter, the surgeon may move bone screw lock 803 from the unlocked position to the locked position to prevent bone screws 511 from backing out. In various embodiments, even after the bone screw lock 803 is engaged in the locked position the surgeon may drive bone screws 511. FIG. 51 is a rear perspective view of implant 800 including a plurality of bone screws 511.



FIG. 52 is an example side view of a bone screw 511. As illustrated in the embodiment of FIG. 52, bone screw 511 may include an inclined surface 512 extending around the circumference of bone screw 511 and terminating into a ring portion 513. In various embodiments, the ring portion 513 may have a size and shape generally corresponding to a size and shape of circular ring portions 801a of bone screw aperture 801, for example. Additionally, in various embodiments the cooperation between the circular ring portions 801a, inclined surface 512 and ring portion 513 may allow about +/−5° of freedom to the corresponding bone screw 511, for example.



FIG. 53 is a reference diagram illustrating various cardinal directions and planes with respect to a patient that various spinal implants disclosed herein may operate, adjust, and/or move along in accordance with the principles of the present disclosure.

Claims
  • 1. An expandable spinal implant deployable between a contracted position and an expanded position, comprising: a superior endplate, the superior endplate including: a first outside surface and a first inside surface opposite the first outside surface, the first outside surface including at least one bone screw relief and the first inside surface including a first plurality of guide walls, a first proximal end and a first distal end opposite the first proximal end, first proximal ramps and first distal ramps disposed opposite the first proximal ramps, and a first lateral surface and a second lateral surface opposite the first lateral surface, the first and second lateral surfaces extending between the first proximal end and the first distal end;an inferior endplate, the inferior endplate including: a second outside surface and a second inside surface opposite the second outside surface, the second outside surface including at least one bone screw relief and the second inside surface including a second plurality of guide walls, a second proximal end and a second distal end opposite the second proximal end, second proximal ramps and second distal ramps disposed opposite the second proximal ramps, and a third lateral surface and a fourth lateral surface opposite the third lateral surface, the third and fourth lateral surfaces extending between the second proximal end and the second distal end;an anterior endplate including a plurality of bone screw apertures and a central aperture;a moving mechanism operably coupled to the anterior endplate, the superior endplate and the inferior endplate, the moving mechanism including: a buttress block and a first trolley and a second trolley disposed on opposite sides of the buttress block, a rotatable first set screw and a rotatable second set screw opposite the first set screw, the first set screw and second set screw being configured to rotate in a first rotation direction and a second rotation direction about a rotation axis projecting in a longitudinal direction of the moving mechanism,wherein the first trolley is operably coupled to the first set screw and movable toward and away the buttress block in the longitudinal direction of the moving mechanism by rotation of the first set screw along the rotation axis, the second trolley is operably coupled to the second set screw and movable toward and away the buttress block in the longitudinal direction of the moving mechanism by rotation of the second set screw along the rotation axis,wherein the first trolley includes a first side surface and a second side surface opposite the first side surface and has a first plurality of projections projecting from the first and second side surfaces, the second trolley includes a third side surface and a fourth side surface opposite the third side surface and has a second plurality of projections projecting from the third and fourth side surfaces,wherein the first and second plurality of projections correspond to a cross sectional shape of the first and second plurality of guide walls and are operably coupled thereto, respectively, such that the first and second plurality of projections move along the first and second plurality of guide walls, respectively,wherein the moving mechanism is configured to operably adjust a spacing between the superior and inferior endplates upon simultaneous rotation of the first and second set screws along the rotation axis, andwherein the moving mechanism is configured to operably adjust an angle of inclination between the superior and inferior endplates upon rotating either one of the first set screw and the second set screw along the rotation axis.
  • 2. The spinal implant of claim 1, wherein the moving mechanism is further configured to: increase a first distance between the superior endplate and the moving mechanism and increase a second distance between the inferior endplate and the moving mechanism an equal amount upon simultaneous rotation of the first and second set screws in the first rotation direction;decrease the first distance between the superior endplate and the moving mechanism and decrease the second distance between the inferior endplate and the moving mechanism an equal amount upon simultaneous rotation of the first and second set screws in the second rotation direction;increase the angle of inclination between the superior and inferior endplates upon rotating at least one of the first set screw or the second set screw along the rotation axis in the first direction; anddecrease the angle of inclination of the superior and inferior endplates upon rotating at least one of the first set screw or the second set screw along the rotation axis in the first direction.
  • 3. The spinal implant of claim 1, wherein: the first proximal ramps include a first and second ramp disposed adjacent the first proximal end that project away from the first inside surface,the first distal ramps include a third and fourth ramp disposed adjacent the first distal end that project away from the first inside surface,the second proximal ramps include a fifth and sixth ramp disposed adjacent the second proximal end that project away from the second inside surface, andthe second distal ramps include a seventh and eighth ramp disposed adjacent the second distal end that project away from the second inside surface.
  • 4. The spinal implant of claim 3, wherein: the first trolley further comprises a first wedge projecting from the first side surface in a transverse direction of the moving mechanism and a second wedge projecting from the second side surface in the transverse direction of the moving mechanism, andthe second trolley further comprises a third wedge projecting from the third side surface in the transverse direction of the moving mechanism and a fourth wedge projecting from the fourth side surface in the transverse direction of the moving mechanism.
  • 5. The spinal implant of claim 4, wherein: the first wedge includes a first upper contact surface and a first lower contact surface, the second wedge includes a second upper contact surface and a second lower contact surface, the third wedge includes a third upper contact surface and a third lower contact surface, the fourth wedge includes a fourth upper contact surface and a fourth lower contact surface,the first and second upper contact surfaces contact the first proximal ramps and the first and second lower contact surfaces contact the second proximal ramps, andthe third and fourth upper contact surfaces contact the first distal ramps and the third and fourth lower contact surfaces contact the second distal ramps.
  • 6. The spinal implant of claim 4, wherein: the first wedge includes a first curved upper contact surface and a first curved lower contact surface, the second wedge includes a second curved upper contact surface and a second curved lower contact surface, the third wedge includes a third curved upper contact surface and a third curved lower contact surface, the fourth wedge includes a fourth curved upper contact surface and a fourth curved lower contact surface,the first and second curved upper contact surfaces contact the first proximal ramps and the first and second curved lower contact surfaces contact the second proximal ramps,the third and fourth curved upper contact surfaces contact the first distal ramps and the third and fourth curved lower contact surfaces contact the second distal ramps, andthe first, second, third, and fourth curved upper surfaces and the first, second, third, and fourth curved lower surfaces are configured to facilitate adjustment of the angle of inclination between the superior and inferior endplates upon rotating the first set screw along the rotation axis by enabling the respective curved surfaces to pivot on a corresponding ramp of the first and second proximal ramps and first and second distal ramps.
  • 7. The spinal implant of claim 4, wherein: the first and second wedges are configured to move along first and second inclined contact surfaces of the first and second proximal ramps, respectively, andthe third and fourth wedges are configured to move along third and fourth inclined contact surfaces of the third and fourth distal ramps, respectively.
  • 8. The spinal implant of claim 7, wherein: the first inclined contact surfaces of the first proximal ramps are inclined with respect to the first inside surface of the superior endplate and extend away from the first inside surface by a first inclined distance and the second inclined contact surfaces of the second proximal ramps are inclined with respect to the second inside surface of the inferior endplate and extend away from the second inside surface by a second inclined distance,the third inclined contact surfaces of the first distal ramps are inclined with respect to the first inside surface of the superior endplate and extend away from the first inside surface by a third inclined distance and the fourth inclined contact surfaces of the second distal ramps are inclined with respect to the second inside surface of the inferior endplate and extend away from the second inside surface by a second inclined distance, andthe first inclined distance is greater than the third inclined distance and the second inclined distance is greater than the fourth inclined distance thereby facilitating adjustment of the angle of inclination between the superior and inferior endplates upon rotating the first set screw along the rotation axis.
  • 9. The spinal implant of claim 1, wherein: each ramp of the first and second proximal ramps and first and second distal ramps includes a corresponding contact surface, andeach guide wall of the first plurality of guide walls and each guide wall of the second plurality of guide walls extends in a parallel direction with at least one ramp of the first and second proximal ramps and first and second distal ramps.
  • 10. The spinal implant of claim 1, wherein the superior and inferior endplates are pivotable in a lateral direction thereof with respect to the moving mechanism.
  • 11. The spinal implant of claim 1, wherein the anterior endplate includes a pair of posts operably coupled to a pair of post retaining apertures of the moving mechanism.
  • 12. The spinal implant of claim 1, wherein a gap exists between a posterior side of the anterior endplate and an anterior side of the superior and inferior endplates.
  • 13. The spinal implant of claim 12, wherein the gap comprises a continuous discontinuity between the posterior side of the anterior endplate and the anterior side of the superior and inferior endplates.
  • 14. The spinal implant of claim 1, wherein the anterior endplate includes at least one bone screw lock configured to prevent a bone screw from backing out of a corresponding bone screw aperture of the plurality of bone screw apertures.
  • 15. The spinal implant of claim 1, wherein the anterior endplate includes a plurality of attachment points configured to operably couple to an insertion tool, the plurality of attachment points being radially disposed around the central aperture.
  • 16. The spinal implant of claim 1, wherein: the plurality of bone screw apertures includes a first, second, third, and fourth bone screw aperture,the at least one bone screw relief of the superior endplate includes a first bone screw relief and a second bone screw relief,the at least one bone screw relief of the inferior endplate includes a third bone screw relief and a fourth bone screw relief,the first bone screw aperture comprises a first circular ring configured to orient a first bone screw such that it extends over the first bone screw relief without coming into contact with the first bone screw relief,the second bone screw aperture comprises a second circular ring configured to orient a second bone screw such that it extends over the first bone screw relief without coming into contact with the first bone screw relief,the third bone screw aperture comprises a third circular ring configured to orient a third bone screw such that it extends over the third bone screw relief without coming into contact with the third bone screw relief, andthe fourth bone screw aperture comprises a fourth circular ring configured to orient a fourth bone screw such that it extends over the fourth bone screw relief without coming into contact with the fourth bone screw relief.
  • 17. The spinal implant of claim 16, wherein: the anterior endplate includes a first bone screw lock and a second bone screw lock, each of the first and second bone screw locks being rotatable between an unlocked position and a locked position,in the locked position, the first bone screw lock prevents the first bone screw and third bone screw from backing out of the first bone screw aperture and third bone screw aperture, respectively,in the locked position, the second bone screw lock prevents the second bone screw and fourth bone screw from backing out of the second bone screw aperture and fourth bone screw aperture, respectively.
  • 18. The spinal implant of claim 1, wherein the superior endplate has a concave surface profile with respect to the moving mechanism and the inferior endplate has a convex surface profile with respect to the moving mechanism.
  • 19. An interbody device deployable between a contracted position and an expanded position, the interbody device comprising: a spinal implant, the spinal implant having a longitudinal axis and a transverse axis perpendicular to the longitudinal axis, a proximal end and a distal end disposed on opposite ends of the spinal implant, and first and second lateral surfaces disposed on opposite sides of the spinal implant, the spinal implant comprising:a superior endplate having an outside surface including at least one bone screw relief, the superior endplate including a first plurality of guide walls and a first plurality of inclined ramps, each guide wall of the first plurality of guide walls extends along an inside surface of the superior endplate in a direction parallel to a contact surface of a corresponding inclined ramp of the first plurality of inclined ramps;an inferior endplate having an outside surface including at least one bone screw relief, the inferior endplate including a second plurality of guide walls and a second plurality of inclined ramps, each guide wall of the second plurality of guide walls extends along an inside surface of the inferior endplate in a direction parallel to a contact surface of a corresponding inclined ramp of the second plurality of inclined ramps;an anterior endplate comprising a plurality of bone screw apertures, each bone screw aperture being configured to receive a corresponding bone screw therein and orient the corresponding bone screw such that the corresponding bone screw extends over a corresponding one of the at least one bone screw relief of the superior endplate and the at least one bone screw relief of the inferior endplate;a moving mechanism operably coupled to the superior endplate and the inferior endplate and positioned therebetween, the moving mechanism including:a first trolley and a second trolley disposed opposite the first trolley, the first and second trolleys having a plurality of projections and a plurality of wedges, each projection being configured to move along a corresponding guide wall of the first and second plurality of guide walls and each wedge being configured to contact and move along a corresponding ramp of the first and second plurality of ramps;a first set screw and a second set screw opposite the first set screw, the first set screw being operably coupled to the first trolley and the second set screw being operably coupled to the second trolley, the first set screw and the second set screw being configured to rotate in a first direction and a second direction about a rotation axis, the rotation axis projecting in a longitudinal direction of the moving mechanism; andan adjustment aperture exposing internal circumferential surfaces of the first and second set screws, respectively,wherein the first set screw is configured to move the first trolley in the longitudinal direction of the moving mechanism by rotation of the first set screw along the rotation axis and the second set screw is configured to move the second trolley in the longitudinal direction of the moving mechanism by rotation of the second set screw along the rotation axis,wherein the moving mechanism is configured to operably adjust a spacing between the superior and inferior endplates upon simultaneous rotation of the first and second set screws along the rotation axis, andwherein the moving mechanism is configured to operably adjust an angle of inclination between the superior and inferior endplates upon rotating either one of the first set screw and second set screw along the rotation axis.
  • 20. A spinal implant system adjustable in situ between vertebral bodies of a patient and deployable between a contracted position and an expanded position, the system comprising: a spinal implant having a longitudinal axis and a transverse axis perpendicular to the longitudinal axis, a proximal end and a distal end disposed on opposite ends of the spinal implant, and first and second lateral surfaces disposed on opposite sides of the spinal implant, the spinal implant comprising:a superior endplate having an outside surface including at least one bone screw relief, the superior endplate including a first plurality of guide walls and a first plurality of inclined ramps, each guide wall of the first plurality of guide walls extends along an inside surface of the superior endplate in a direction parallel to a contact surface of a corresponding inclined ramp of the first plurality of inclined ramps;an inferior endplate having an outside surface including at least one bone screw relief, the inferior endplate including a second plurality of guide walls and a second plurality of inclined ramps, each guide wall of the second plurality of guide walls extends along an inside surface of the inferior endplate in a direction parallel to a contact surface of a corresponding inclined ramp of the second plurality of inclined ramps;an anterior endplate comprising a plurality of bone screw apertures, each bone screw aperture being configured to receive a corresponding bone screw therein and orient the corresponding bone screw such that it extends over a corresponding one of the at least one bone screw reliefs of the superior endplate and the at least one bone screw reliefs of the inferior endplate without coming into contact with it;a moving mechanism operably coupled to the anterior endplate, the superior endplate, and the inferior endplate and positioned therebetween, the moving mechanism including:a first trolley and a second trolley disposed opposite the first trolley, the first and second trolleys having a plurality of projections and a plurality of wedges, each projection being configured to move along a corresponding guide wall of the first and second plurality of guide walls and each wedge being configured to contact and move along a corresponding ramp of the first and second plurality of ramps;a first set screw and a second set screw opposite the first set screw, the first set screw being operably coupled to the first trolley and the second set screw being operably coupled to the second trolley, the first set screw and the second set screw being configured to rotate in a first direction and a second direction about a rotation axis, the rotation axis projecting in a longitudinal direction of the moving mechanism;an adjustment aperture exposing internal circumferential surfaces of the first and second set screws; anda first surgical tool having a circumferential surface that corresponds to the internal circumferential surfaces of the first and second set screws, the first surgical tool being configured to selectively rotate the first and second set screws when inserted therein,wherein the first set screw is configured to move the first trolley in the longitudinal direction of the moving mechanism by rotation of the first set screw along the rotation axis and the second set screw is configured to move the second trolley in the longitudinal direction of the moving mechanism by rotation of the second set screw along the rotation axis,wherein the moving mechanism is configured to operably adjust a spacing between the superior and inferior endplates upon simultaneous rotation of the first and second set screws along the rotation axis, andwherein the moving mechanism is configured to operably adjust an angle of inclination between the superior and inferior endplates upon rotating either one of the first set screw and the second set screw along the rotation axis.
Priority Claims (3)
Number Date Country Kind
PCT/IB2020/000932 Nov 2020 WO international
PCT/IB2020/000942 Nov 2020 WO international
PCT/IB2020/000953 Nov 2020 WO international
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation in part of U.S. patent application Ser. No. 17/123,889 filed Dec. 16, 2020 which claims priority to and incorporates by reference co-related patent applications, PCT/FR2020/000257, titled Expandable Inter-Body Device, System, and Method, filed Nov. 5, 2020; PCT/FR2020/000259, titled Screwdriver and Complimentary Screws, filed Nov. 5, 2020; and PCT/FR2020/000258, titled Expandable Inter-Body Device, System, and Method, filed Nov. 5, 2020. The contents of each are hereby incorporated in their entireties.

US Referenced Citations (978)
Number Name Date Kind
1677337 Grove Jul 1928 A
4401112 Rezaian Aug 1983 A
4553273 Wu Nov 1985 A
4636217 Ogilvie et al. Jan 1987 A
4716894 Lazzeri et al. Jan 1988 A
4759769 Hedman et al. Jul 1988 A
5059193 Kuslich Oct 1991 A
5171278 Pisharodi Dec 1992 A
5228811 Potter Jul 1993 A
5284483 Johnson et al. Feb 1994 A
5336223 Rogers Aug 1994 A
5390683 Pisharodi Feb 1995 A
5522899 Michelson Jun 1996 A
5554191 Lahille et al. Sep 1996 A
5575790 Chen et al. Nov 1996 A
5609635 Michelson Mar 1997 A
5653762 Pisharodi Aug 1997 A
5653763 Errico et al. Aug 1997 A
5658336 Pisharodi Aug 1997 A
5665122 Kambin Sep 1997 A
5693100 Pisharodi Dec 1997 A
5697977 Pisharodi Dec 1997 A
5702391 Lin Dec 1997 A
5702453 Rabbe et al. Dec 1997 A
5702455 Saggar Dec 1997 A
5797918 McGuire et al. Aug 1998 A
5800550 Sertich Sep 1998 A
5865848 Baker Feb 1999 A
5893890 Pisharodi Apr 1999 A
5931777 Sava Aug 1999 A
5941885 Jackson Aug 1999 A
5971987 Huxel et al. Oct 1999 A
5980522 Koros et al. Nov 1999 A
6045579 Hochshuler et al. Apr 2000 A
6074343 Nathanson et al. Jun 2000 A
6080193 Hochshuler et al. Jun 2000 A
6099531 Bonutti Aug 2000 A
6102949 Biedermann et al. Aug 2000 A
6102950 Vaccaro Aug 2000 A
6106557 Robioneck et al. Aug 2000 A
6113638 Williams et al. Sep 2000 A
6117174 Nolan Sep 2000 A
6132465 Ray et al. Oct 2000 A
6159211 Boriani et al. Dec 2000 A
6159244 Suddaby Dec 2000 A
6176882 Biedermann et al. Jan 2001 B1
6179873 Zientek Jan 2001 B1
6190414 Young et al. Feb 2001 B1
6193757 Foley et al. Feb 2001 B1
6217579 Koros Apr 2001 B1
6245108 Biscup Jun 2001 B1
6309421 Pisharodi Oct 2001 B1
6342074 Simpson Jan 2002 B1
6371989 Chauvin et al. Apr 2002 B1
6395031 Foley et al. May 2002 B1
6423063 Bonutti Jul 2002 B1
6432106 Fraser Aug 2002 B1
6436140 Liu et al. Aug 2002 B1
6443989 Jackson Sep 2002 B1
6443990 Aebi et al. Sep 2002 B1
6454806 Cohen et al. Sep 2002 B1
6454807 Jackson Sep 2002 B1
6461359 Tribus et al. Oct 2002 B1
6491724 Ferree Dec 2002 B1
6520991 Huene Feb 2003 B2
6520993 James et al. Feb 2003 B2
6524238 Velikaris et al. Feb 2003 B2
6527803 Crozet et al. Mar 2003 B1
6562074 Gerbec et al. May 2003 B2
6576016 Hochshuler et al. Jun 2003 B1
6623525 Ralph et al. Sep 2003 B2
6629998 Lin Oct 2003 B1
6635086 Lin Oct 2003 B2
6648917 Gerbec et al. Nov 2003 B2
6676703 Biscup Jan 2004 B2
6685742 Jackson Feb 2004 B1
6723126 Berry Apr 2004 B1
6770096 Bolger et al. Aug 2004 B2
6773460 Jackson Aug 2004 B2
6821298 Jackson Nov 2004 B1
6835206 Jackson Dec 2004 B2
6849093 Michelson Feb 2005 B2
6852129 Gerbec et al. Feb 2005 B2
6863673 Gerbec et al. Mar 2005 B2
6923814 Hildebrand et al. Aug 2005 B1
6926737 Jackson Aug 2005 B2
6953477 Berry Oct 2005 B2
6964687 Bernard et al. Nov 2005 B1
6974480 Messerli et al. Dec 2005 B2
6984234 Bray Jan 2006 B2
7112222 Fraser et al. Sep 2006 B2
7135043 Nakahara et al. Nov 2006 B2
7137997 Paul Nov 2006 B2
7172627 Fiere et al. Feb 2007 B2
7188626 Foley et al. Mar 2007 B2
7204853 Gordon et al. Apr 2007 B2
7232464 Mathieu et al. Jun 2007 B2
7238203 Bagga et al. Jul 2007 B2
7255700 Kaiser et al. Aug 2007 B2
7316532 Matthys-Mark Jan 2008 B2
7316714 Gordon et al. Jan 2008 B2
7407483 Perez-Cruet et al. Aug 2008 B2
7481766 Lee et al. Jan 2009 B2
7491168 Raymond et al. Feb 2009 B2
7537565 Bass May 2009 B2
7618456 Mathieu et al. Nov 2009 B2
7625394 Molz, IV et al. Dec 2009 B2
7635366 Abdou Dec 2009 B2
7637909 Lechot et al. Dec 2009 B2
7655046 Dryer et al. Feb 2010 B2
7678148 Peterman Mar 2010 B2
7703727 Selness Apr 2010 B2
7708778 Gordon et al. May 2010 B2
7708779 Edie et al. May 2010 B2
7727280 McLuen Jun 2010 B2
7753958 Gordon et al. Jul 2010 B2
7780594 Hutton Aug 2010 B2
7806932 Webb et al. Oct 2010 B2
7815682 Peterson et al. Oct 2010 B1
7819801 Miles et al. Oct 2010 B2
7824428 Mikkonen et al. Nov 2010 B2
7828849 Lim Nov 2010 B2
7846167 Garcia et al. Dec 2010 B2
7846207 Lechmann et al. Dec 2010 B2
7850731 Brittan et al. Dec 2010 B2
7850733 Baynham et al. Dec 2010 B2
7862616 Lechmann et al. Jan 2011 B2
7875076 Mathieu et al. Jan 2011 B2
7883542 Zipnick Feb 2011 B2
7892173 Miles et al. Feb 2011 B2
7909869 Gordon et al. Mar 2011 B2
7914559 Carls et al. Mar 2011 B2
7967821 Sicvol et al. Jun 2011 B2
7981031 Frasier et al. Jul 2011 B2
8016836 Corrao et al. Sep 2011 B2
8062375 Glerum et al. Nov 2011 B2
8105382 Olmos et al. Jan 2012 B2
8118870 Gordon et al. Feb 2012 B2
8118871 Gordon et al. Feb 2012 B2
8123810 Gordon et al. Feb 2012 B2
8147550 Gordon et al. Apr 2012 B2
8172903 Gordon et al. May 2012 B2
8182539 Tyber et al. May 2012 B2
8257442 Edie et al. Sep 2012 B2
8262570 White et al. Sep 2012 B2
8262662 Beardsley et al. Sep 2012 B2
8262710 Freedman et al. Sep 2012 B2
8287597 Pimenta et al. Oct 2012 B1
8303498 Miles et al. Nov 2012 B2
8303658 Peterman Nov 2012 B2
8303663 Jimenez et al. Nov 2012 B2
8317866 Palmatier et al. Nov 2012 B2
8323185 Perez-Cruet et al. Dec 2012 B2
8328872 Duffield et al. Dec 2012 B2
8343048 Warren, Jr. Jan 2013 B2
8353826 Weiman Jan 2013 B2
8355780 Miles et al. Jan 2013 B2
8382842 Greenhalgh et al. Feb 2013 B2
8388527 Miles et al. Mar 2013 B2
8398713 Weiman Mar 2013 B2
8403990 Dryer et al. Mar 2013 B2
8419797 Biedermann et al. Apr 2013 B2
8425528 Berry et al. Apr 2013 B2
8435298 Weiman May 2013 B2
8480576 Sandhu Jul 2013 B2
8496706 Ragab et al. Jul 2013 B2
8500634 Miles et al. Aug 2013 B2
8506635 Palmatier et al. Aug 2013 B2
8517935 Marchek et al. Aug 2013 B2
8518120 Glerum et al. Aug 2013 B2
8535380 Greenhalgh et al. Sep 2013 B2
8550994 Miles et al. Oct 2013 B2
8556808 Miles et al. Oct 2013 B2
8556979 Glerum et al. Oct 2013 B2
8579809 Parker Nov 2013 B2
8579898 Prandi et al. Nov 2013 B2
8579979 Edie et al. Nov 2013 B2
8579981 Lim et al. Nov 2013 B2
8602984 Raymond et al. Dec 2013 B2
8608785 Reed et al. Dec 2013 B2
8628576 Triplett et al. Jan 2014 B2
8628578 Miller et al. Jan 2014 B2
8632595 Weiman Jan 2014 B2
8641768 Duffield et al. Feb 2014 B2
8647386 Gordon et al. Feb 2014 B2
8663329 Ernst Mar 2014 B2
8668419 Hardt et al. Mar 2014 B2
8668715 Sandhu Mar 2014 B2
8679183 Glerum et al. Mar 2014 B2
8685095 Miller et al. Apr 2014 B2
8685098 Glerum et al. Apr 2014 B2
8696559 Miles et al. Apr 2014 B2
8709083 Duffield et al. Apr 2014 B2
8709085 Lechmann et al. Apr 2014 B2
8709086 Glerum Apr 2014 B2
8715285 Lewis et al. May 2014 B2
8715353 Bagga et al. May 2014 B2
8740983 Arnold et al. Jun 2014 B1
8753271 Miles et al. Jun 2014 B1
8753396 Hockett et al. Jun 2014 B1
8764649 Miles et al. Jul 2014 B2
8771360 Jimenez et al. Jul 2014 B2
8778025 Ragab et al. Jul 2014 B2
8778027 Medina Jul 2014 B2
8795366 Varela Aug 2014 B2
8808305 Kleiner Aug 2014 B2
8827902 Dietze, Jr. et al. Sep 2014 B2
8828085 Jensen Sep 2014 B1
8840668 Donahoe et al. Sep 2014 B1
8845731 Weiman Sep 2014 B2
8845732 Weiman Sep 2014 B2
8845734 Weiman Sep 2014 B2
8852252 Venturini et al. Oct 2014 B2
8852282 Farley et al. Oct 2014 B2
8864833 Glerum et al. Oct 2014 B2
8882813 Jones et al. Nov 2014 B2
8888853 Glerum et al. Nov 2014 B2
8894708 Thalgott et al. Nov 2014 B2
8894711 Varela Nov 2014 B2
8894712 Varela Nov 2014 B2
8906095 Christensen et al. Dec 2014 B2
8920500 Pimenta et al. Dec 2014 B1
8926704 Glerum et al. Jan 2015 B2
8936641 Cain Jan 2015 B2
8940049 Jimenez et al. Jan 2015 B1
8968363 Weiman et al. Mar 2015 B2
8986344 Sandhu Mar 2015 B2
8992425 Karpowicz et al. Mar 2015 B2
8992544 Sasing Mar 2015 B2
9005292 Melamed Apr 2015 B2
9005293 Moskowitz et al. Apr 2015 B2
9005295 Kueenzi et al. Apr 2015 B2
9017412 Wolters et al. Apr 2015 B2
9034045 Davenport et al. May 2015 B2
9050146 Woolley et al. Jun 2015 B2
9050194 Thibodeau Jun 2015 B2
9060877 Kleiner Jun 2015 B2
9072548 Matityahu Jul 2015 B2
9072563 Garcia et al. Jul 2015 B2
9084591 Reglos et al. Jul 2015 B2
9113854 Ellman Aug 2015 B2
9119730 Glerum et al. Sep 2015 B2
9125757 Weiman Sep 2015 B2
9132021 Mermuys et al. Sep 2015 B2
9138217 Smith et al. Sep 2015 B2
9138330 Hansell et al. Sep 2015 B2
9138331 Aferzon Sep 2015 B2
9149367 Davenport et al. Oct 2015 B2
9155628 Glerum et al. Oct 2015 B2
9155631 Seifert et al. Oct 2015 B2
9161841 Kana et al. Oct 2015 B2
9179903 Cianfrani et al. Nov 2015 B2
9179952 Biedermann et al. Nov 2015 B2
9186193 Kleiner et al. Nov 2015 B2
9186258 Davenport et al. Nov 2015 B2
9192482 Pimenta et al. Nov 2015 B1
9192483 Radcliffe et al. Nov 2015 B1
9198772 Weiman Dec 2015 B2
9204972 Weiman et al. Dec 2015 B2
9204974 Glerum Dec 2015 B2
9211194 Bagga et al. Dec 2015 B2
9211196 Glerum et al. Dec 2015 B2
9216095 Glerum et al. Dec 2015 B2
9226836 Glerum Jan 2016 B2
9233007 Sungarian et al. Jan 2016 B2
9233009 Gray et al. Jan 2016 B2
9233010 Thalgott et al. Jan 2016 B2
9259327 Niemiec et al. Feb 2016 B2
9271846 Lim et al. Mar 2016 B2
9308099 Triplett et al. Apr 2016 B2
9320610 Alheidt et al. Apr 2016 B2
9351845 Pimenta et al. May 2016 B1
9351848 Glerum et al. May 2016 B2
9357909 Perez-Cruet et al. Jun 2016 B2
9358126 Glerum et al. Jun 2016 B2
9358127 Duffield et al. Jun 2016 B2
9358128 Glerum et al. Jun 2016 B2
9358129 Weiman Jun 2016 B2
9364341 Gowan Jun 2016 B2
9364343 Duffield et al. Jun 2016 B2
9370434 Weiman Jun 2016 B2
9370435 Walkenhorst et al. Jun 2016 B2
9381008 Thornburg Jul 2016 B2
9386916 Predick et al. Jul 2016 B2
9387092 Mermuys et al. Jul 2016 B2
9402673 Cormier et al. Aug 2016 B2
9402739 Weiman et al. Aug 2016 B2
9408596 Blain Aug 2016 B2
9408708 Greenhalgh Aug 2016 B2
9414828 Abidin et al. Aug 2016 B2
9414934 Cain Aug 2016 B2
9414937 Carlson et al. Aug 2016 B2
9421110 Masson et al. Aug 2016 B2
9427331 Arnin Aug 2016 B2
9445919 Palmatier et al. Sep 2016 B2
9452063 Glerum et al. Sep 2016 B2
9456903 Glerum et al. Oct 2016 B2
9456906 Gray et al. Oct 2016 B2
9468405 Miles et al. Oct 2016 B2
9474622 Mclaughlin et al. Oct 2016 B2
9474625 Weiman Oct 2016 B2
9480573 Perloff et al. Nov 2016 B2
9480576 Pepper et al. Nov 2016 B2
9480579 Davenport et al. Nov 2016 B2
9486133 Lee et al. Nov 2016 B2
9486325 Davenport et al. Nov 2016 B2
9486327 Martynova et al. Nov 2016 B2
9486328 Jimenez et al. Nov 2016 B2
9492287 Glerum et al. Nov 2016 B2
9492288 Wagner et al. Nov 2016 B2
9492289 Davenport et al. Nov 2016 B2
9498349 Patterson et al. Nov 2016 B2
9510954 Glerum et al. Dec 2016 B2
9517098 Anderson Dec 2016 B2
9522070 Flower et al. Dec 2016 B2
9526620 Slivka et al. Dec 2016 B2
9526625 Cain Dec 2016 B2
9532821 Moskowitz et al. Jan 2017 B2
9539103 McLaughlin et al. Jan 2017 B2
9539108 Glerum et al. Jan 2017 B2
9545320 Padovani et al. Jan 2017 B2
9549723 Hynes et al. Jan 2017 B2
9549824 McAfee Jan 2017 B2
9561116 Weiman et al. Feb 2017 B2
9566163 Suddaby et al. Feb 2017 B2
9566166 Parry et al. Feb 2017 B2
9566168 Glerum et al. Feb 2017 B2
9572560 Mast et al. Feb 2017 B2
9572677 Davenport et al. Feb 2017 B2
9572681 Mathieu et al. Feb 2017 B2
9579124 Gordon et al. Feb 2017 B2
9579139 Cormier et al. Feb 2017 B2
9579213 Bal et al. Feb 2017 B2
9585649 Blain et al. Mar 2017 B2
9585762 Suddaby et al. Mar 2017 B2
9585766 Robinson Mar 2017 B2
9585767 Robinson Mar 2017 B2
9592129 Slivka et al. Mar 2017 B2
9597195 Cain Mar 2017 B2
9603643 Reed et al. Mar 2017 B2
9603713 Moskowitz et al. Mar 2017 B2
9603717 Ibarra et al. Mar 2017 B2
9615818 Baudouin et al. Apr 2017 B2
9615936 Duffield et al. Apr 2017 B2
9622732 Martinelli et al. Apr 2017 B2
9622875 Moskowitz et al. Apr 2017 B2
9622876 Greenhalgh et al. Apr 2017 B1
9629729 Grimberg, Jr. et al. Apr 2017 B2
9636097 Bass May 2017 B2
9642720 Radcliffe et al. May 2017 B2
9649198 Wolters et al. May 2017 B2
9655746 Seifert May 2017 B2
9655747 Glerum et al. May 2017 B2
9662224 Weiman et al. May 2017 B2
9668784 Brumfield et al. Jun 2017 B2
9668876 Blain et al. Jun 2017 B2
9668879 Jimenez et al. Jun 2017 B2
9675465 Padovani et al. Jun 2017 B2
9675467 Duffield et al. Jun 2017 B2
9675468 Jensen Jun 2017 B1
9693871 Richerme et al. Jul 2017 B2
9700428 Niemiec et al. Jul 2017 B2
9707092 Davenport et al. Jul 2017 B2
9713536 Foley et al. Jul 2017 B2
9717601 Miller Aug 2017 B2
9730684 Beale et al. Aug 2017 B2
9730806 Capote Aug 2017 B2
9737288 Karpowicz et al. Aug 2017 B2
9750617 Lim et al. Sep 2017 B2
9750618 Daffinson et al. Sep 2017 B1
9757249 Radcliffe et al. Sep 2017 B2
9763722 Roybal Sep 2017 B2
9770343 Weiman Sep 2017 B2
9782265 Weiman et al. Oct 2017 B2
9788971 Stein Oct 2017 B1
9795370 O'Connell et al. Oct 2017 B2
9795371 Miles et al. Oct 2017 B2
9801733 Wolters et al. Oct 2017 B2
9801734 Stein et al. Oct 2017 B1
9808352 Suddaby et al. Nov 2017 B2
9826966 Mast et al. Nov 2017 B2
9827024 Cormier et al. Nov 2017 B2
9827107 Arnin Nov 2017 B1
9833333 Duffield et al. Dec 2017 B2
9833336 Davenport et al. Dec 2017 B2
9839527 Robinson Dec 2017 B2
9839528 Weiman et al. Dec 2017 B2
9848993 Moskowitz et al. Dec 2017 B2
9848996 Faulhaber Dec 2017 B2
9855151 Weiman Jan 2018 B2
9867715 McLaughlin et al. Jan 2018 B2
9872779 Miller et al. Jan 2018 B2
9889019 Rogers et al. Feb 2018 B2
9907671 Fessler Mar 2018 B2
9907673 Weiman et al. Mar 2018 B2
9918709 Sandhu Mar 2018 B2
9924859 Lee et al. Mar 2018 B2
9924940 Moskowitz et al. Mar 2018 B2
9925062 Glerum et al. Mar 2018 B2
9925064 Duffield et al. Mar 2018 B2
9931223 Cain Apr 2018 B2
9937053 Melkent et al. Apr 2018 B2
9943342 Tanaka et al. Apr 2018 B2
9943418 Davenport et al. Apr 2018 B2
9949775 Reed et al. Apr 2018 B2
9949841 Glerum et al. Apr 2018 B2
9956087 Seifert et al. May 2018 B2
9962202 Anderson May 2018 B2
9962270 Alheidt et al. May 2018 B2
9962271 Glerum May 2018 B2
9962272 Daffinson et al. May 2018 B1
9968461 Zappacosta et al. May 2018 B2
9968462 Weiman May 2018 B2
9974531 Miles et al. May 2018 B2
9974662 Hessler et al. May 2018 B2
9974664 Emerick et al. May 2018 B2
9980825 Nichols et al. May 2018 B2
9980826 Martynova et al. May 2018 B2
9987141 Duffield et al. Jun 2018 B2
9987143 Robinson et al. Jun 2018 B2
9987144 Seifert et al. Jun 2018 B2
9987146 Lentner et al. Jun 2018 B1
9993239 Karpowicz et al. Jun 2018 B2
9993350 Cain Jun 2018 B2
10004607 Weiman et al. Jun 2018 B2
10016282 Seifert et al. Jul 2018 B2
10016284 Moskowitz et al. Jul 2018 B2
10022239 Lentner et al. Jul 2018 B1
10028842 Gray et al. Jul 2018 B2
10034765 Blain et al. Jul 2018 B2
10034769 Baynham Jul 2018 B2
10034771 Capote et al. Jul 2018 B2
10034772 Glerum et al. Jul 2018 B2
10034773 McLaughlin et al. Jul 2018 B2
10039539 Friedrich et al. Aug 2018 B2
10039650 Lamborne et al. Aug 2018 B2
10052214 Jimenez et al. Aug 2018 B2
10058431 Tyber et al. Aug 2018 B2
10060469 Jimenez et al. Aug 2018 B2
10070852 Mast et al. Sep 2018 B2
10076320 Mast et al. Sep 2018 B2
10076423 Miller et al. Sep 2018 B2
10080666 Suddaby et al. Sep 2018 B2
10080669 Davenport et al. Sep 2018 B2
10085846 Grotz Oct 2018 B2
10085849 Weiman et al. Oct 2018 B2
10092417 Weiman et al. Oct 2018 B2
10098758 Matthews et al. Oct 2018 B2
10098759 Weiman Oct 2018 B2
10111755 Foley et al. Oct 2018 B2
10111758 Robinson Oct 2018 B2
10117754 Davenport et al. Nov 2018 B2
10117755 Emerick et al. Nov 2018 B2
10137002 Padovani et al. Nov 2018 B2
10137006 Dewey et al. Nov 2018 B2
10137007 Dewey et al. Nov 2018 B2
10137009 Weiman et al. Nov 2018 B2
10149671 Predick et al. Dec 2018 B2
10149710 Tanaka et al. Dec 2018 B2
10154781 Weiman Dec 2018 B2
10154912 Glerum Dec 2018 B2
10154914 Robinson Dec 2018 B2
10159584 Carnes et al. Dec 2018 B2
10166117 Daffinson Jan 2019 B1
10172515 Lee et al. Jan 2019 B2
10172652 Woolley et al. Jan 2019 B2
10178987 Predick et al. Jan 2019 B2
10179053 Zappacosta et al. Jan 2019 B2
10182922 Nichols et al. Jan 2019 B2
10188527 Rogers et al. Jan 2019 B2
10195050 Palmatier et al. Feb 2019 B2
10201431 Slater et al. Feb 2019 B2
10213192 Capote Feb 2019 B2
10213193 Karpowicz et al. Feb 2019 B2
10219798 Capote Mar 2019 B2
10219913 Matthews et al. Mar 2019 B2
10219914 Faulhaber Mar 2019 B2
10219915 Stein Mar 2019 B1
10226356 Grotz Mar 2019 B2
10226359 Glerum et al. Mar 2019 B2
10238375 O'Connell et al. Mar 2019 B2
10238383 Moskowitz et al. Mar 2019 B2
10238503 Branch et al. Mar 2019 B2
10245015 Predick et al. Apr 2019 B2
10251643 Moskowitz et al. Apr 2019 B2
10265191 Lim et al. Apr 2019 B2
10278686 Baudouin et al. May 2019 B2
10278786 Friedrich et al. May 2019 B2
10278830 Walker et al. May 2019 B1
10278831 Sandul May 2019 B2
10278832 Nichols et al. May 2019 B2
10285680 Friedrich et al. May 2019 B2
10285819 Greenhalgh May 2019 B2
10285824 Robinson May 2019 B2
10292828 Greenhalgh May 2019 B2
10299777 Mast et al. May 2019 B2
10299934 Seifert et al. May 2019 B2
10299937 McAfee May 2019 B2
10307268 Moskowitz et al. Jun 2019 B2
10314622 Brumfield et al. Jun 2019 B2
10314719 Hessler et al. Jun 2019 B2
10322007 Masson et al. Jun 2019 B2
10322009 Aghayev et al. Jun 2019 B2
10327909 Baynham Jun 2019 B2
10327912 Suddaby Jun 2019 B1
10327917 Glerum et al. Jun 2019 B2
10342675 Alheidt Jul 2019 B2
10350085 Glerum et al. Jul 2019 B2
10357233 Miles et al. Jul 2019 B2
10363142 McClintock et al. Jul 2019 B2
10363144 Overes et al. Jul 2019 B2
10369004 Faulhaber Aug 2019 B2
10369008 Jimenez et al. Aug 2019 B2
10369010 Robinson et al. Aug 2019 B2
10369012 Fessler Aug 2019 B2
10376377 Seifert et al. Aug 2019 B2
10390962 Weiman Aug 2019 B2
10390964 Faulhaber Aug 2019 B2
10398563 Engstrom Sep 2019 B2
10398566 Olmos et al. Sep 2019 B2
10413419 Thibodeau Sep 2019 B2
10413422 Flower et al. Sep 2019 B2
10413423 Overes et al. Sep 2019 B2
10426450 Vogel et al. Oct 2019 B2
10426633 Moskowitz et al. Oct 2019 B2
10426634 Al-Jazaeri et al. Oct 2019 B1
10441430 Ludwig et al. Oct 2019 B2
10449056 Cain Oct 2019 B2
10456122 Koltz et al. Oct 2019 B2
10470894 Foley et al. Nov 2019 B2
10478319 Moskowitz et al. Nov 2019 B2
10492912 Gregersen et al. Dec 2019 B2
10492922 Mathieu et al. Dec 2019 B2
10492924 Stein et al. Dec 2019 B2
10500064 Robinson Dec 2019 B2
10512550 Bechtel et al. Dec 2019 B2
10517645 van der Pol Dec 2019 B2
10524924 Davenport et al. Jan 2020 B2
10531903 Daly et al. Jan 2020 B2
10537436 Maguire et al. Jan 2020 B2
10537438 Martynova et al. Jan 2020 B2
10555729 Cole et al. Feb 2020 B1
10561411 Cole et al. Feb 2020 B1
10575889 Roybal Mar 2020 B2
10575960 Duffield et al. Mar 2020 B2
10582959 Langer et al. Mar 2020 B2
10583015 Olmos et al. Mar 2020 B2
10603078 Simpson et al. Mar 2020 B2
10610376 Kuyler et al. Apr 2020 B2
10624757 Bost et al. Apr 2020 B2
10624758 Slivka et al. Apr 2020 B2
10624761 Davenport et al. Apr 2020 B2
10639163 Tyber et al. May 2020 B2
10639166 Weiman et al. May 2020 B2
10653458 Tanaka et al. May 2020 B2
10667925 Emerick et al. Jun 2020 B2
10667927 Lamborne et al. Jun 2020 B2
10675157 Zakelj et al. Jun 2020 B2
10682241 Glerum et al. Jun 2020 B2
10687963 Jimenez et al. Jun 2020 B2
10702393 Davenport et al. Jul 2020 B2
10709569 McLaughlin et al. Jul 2020 B2
10709571 Iott et al. Jul 2020 B2
10709572 Daffinson et al. Jul 2020 B2
10709575 Robinson Jul 2020 B2
10722377 Glerum et al. Jul 2020 B2
10722379 McLaughlin et al. Jul 2020 B2
10729561 Glerum Aug 2020 B2
10743858 Cole et al. Aug 2020 B1
10744002 Glerum et al. Aug 2020 B2
10758366 Daffinson et al. Sep 2020 B2
10758367 Weiman et al. Sep 2020 B2
10758369 Rogers et al. Sep 2020 B2
10765528 Weiman et al. Sep 2020 B2
10772737 Gray et al. Sep 2020 B2
10779955 Kuyler et al. Sep 2020 B2
10779957 Weiman et al. Sep 2020 B2
10786364 Davenport et al. Sep 2020 B2
10786369 Carnes et al. Sep 2020 B2
10799368 Glerum et al. Oct 2020 B2
10835387 Weiman et al. Nov 2020 B2
10842640 Weiman et al. Nov 2020 B2
10842644 Weiman et al. Nov 2020 B2
10856997 Cowan et al. Dec 2020 B2
10869769 Eisen et al. Dec 2020 B2
10874447 Tanaka et al. Dec 2020 B2
10874522 Weiman Dec 2020 B2
10874523 Weiman et al. Dec 2020 B2
10874524 Bjork Dec 2020 B2
10881524 Eisen et al. Jan 2021 B2
10881531 Berry Jan 2021 B2
10888431 Robinson Jan 2021 B1
10898344 Alheidt et al. Jan 2021 B2
10898346 Suddaby Jan 2021 B1
10925656 Cole et al. Feb 2021 B2
10925750 Zappacosta et al. Feb 2021 B2
10925752 Weiman Feb 2021 B2
10932920 Dewey et al. Mar 2021 B2
10940014 Greenhalgh Mar 2021 B2
10945858 Bechtel et al. Mar 2021 B2
10952866 Warren et al. Mar 2021 B2
10959855 Miller et al. Mar 2021 B2
10959856 Seifert et al. Mar 2021 B2
10973649 Weiman et al. Apr 2021 B2
10973650 Stein Apr 2021 B2
10980642 Glerum et al. Apr 2021 B2
10980644 Purcell et al. Apr 2021 B2
10993814 Wolters May 2021 B2
11007067 Masson et al. May 2021 B2
11013617 Weiman et al. May 2021 B2
11020238 Nichols et al. Jun 2021 B2
11020239 Miller et al. Jun 2021 B2
11026804 Jimenez et al. Jun 2021 B2
11026812 Daffinson et al. Jun 2021 B2
11033401 Shoshtaev Jun 2021 B2
11033402 Melkent et al. Jun 2021 B2
11033404 Faulhaber Jun 2021 B2
11039935 McAfee Jun 2021 B2
11045326 Seifert et al. Jun 2021 B2
11045327 Nichols et al. Jun 2021 B2
11051949 Walker et al. Jul 2021 B2
11051951 Robinson et al. Jul 2021 B2
11058469 Mahajan et al. Jul 2021 B2
11065127 Lentner et al. Jul 2021 B1
11065129 Sandul Jul 2021 B2
11065130 Branch et al. Jul 2021 B2
11076966 Faulhaber Aug 2021 B2
11083584 Lauf et al. Aug 2021 B2
11083595 Robinson Aug 2021 B2
11090167 Emerick et al. Aug 2021 B2
11096795 Padovani et al. Aug 2021 B2
11096797 Moskowitz et al. Aug 2021 B2
11103366 Glerum et al. Aug 2021 B2
RE48719 Suddaby et al. Sep 2021 E
11109980 Seifert et al. Sep 2021 B2
11116644 Marrocco et al. Sep 2021 B2
11123198 Black et al. Sep 2021 B2
11123200 Faulhaber Sep 2021 B2
11129731 Miller et al. Sep 2021 B2
11135071 Dewey et al. Oct 2021 B2
11147680 Tyber et al. Oct 2021 B2
11154404 Freedman et al. Oct 2021 B2
11160666 Burkhardt et al. Nov 2021 B2
11160669 Rogers et al. Nov 2021 B2
11166826 Huang Nov 2021 B2
11173044 Jones et al. Nov 2021 B1
11179234 Dacosta et al. Nov 2021 B2
11285014 Josse et al. Mar 2022 B1
11376134 Dewey Jul 2022 B1
11617658 Josse et al. Apr 2023 B2
11723780 Seifert et al. Aug 2023 B2
20020045943 Uk Apr 2002 A1
20020045945 Liu et al. Apr 2002 A1
20020055741 Schlapfer et al. May 2002 A1
20020116066 Chauvin et al. Aug 2002 A1
20020128713 Ferree Sep 2002 A1
20020151976 Foley et al. Oct 2002 A1
20020183762 Anderson et al. Dec 2002 A1
20030050701 Michelson Mar 2003 A1
20030130739 Gerbec et al. Jul 2003 A1
20030163132 Chin Aug 2003 A1
20040102778 Huebner et al. May 2004 A1
20040172134 Berry Sep 2004 A1
20040186570 Rapp Sep 2004 A1
20040193158 Lim et al. Sep 2004 A1
20040204713 Abdou Oct 2004 A1
20040249461 Ferree Dec 2004 A1
20040254643 Jackson Dec 2004 A1
20040254644 Taylor Dec 2004 A1
20050015149 Michelson Jan 2005 A1
20050033429 Kuo Feb 2005 A1
20050033439 Gordon et al. Feb 2005 A1
20050147478 Greenberg Jul 2005 A1
20050209698 Gordon et al. Sep 2005 A1
20050228398 Rathbun et al. Oct 2005 A1
20060122701 Kiester Jun 2006 A1
20060129244 Ensign Jun 2006 A1
20060260446 Chang Nov 2006 A1
20060276901 Zipnick et al. Dec 2006 A1
20070173840 Huebner Jul 2007 A1
20070218750 Corrao et al. Sep 2007 A1
20070233150 Blain et al. Oct 2007 A1
20070270859 Companioni et al. Nov 2007 A1
20080058804 Lechot et al. Mar 2008 A1
20080132959 Mikkonen et al. Jun 2008 A1
20080140207 Olmos et al. Jun 2008 A1
20090024158 Viker Jan 2009 A1
20090093830 Miller Apr 2009 A1
20090292361 Lopez Nov 2009 A1
20100076440 Pamichev et al. Mar 2010 A1
20100082109 Greenhalgh et al. Apr 2010 A1
20100152853 Kirschman Jun 2010 A1
20100191336 Greenhalgh Jul 2010 A1
20100211176 Greenhalgh Aug 2010 A1
20100286777 Errico et al. Nov 2010 A1
20110118843 Mathieu et al. May 2011 A1
20110130838 Morgenstern Lopez Jun 2011 A1
20110153020 Abdelgany et al. Jun 2011 A1
20110218572 Lechmann et al. Sep 2011 A1
20110301577 Simmen et al. Dec 2011 A1
20120004732 Goel et al. Jan 2012 A1
20120095515 Hamilton Apr 2012 A1
20120101581 Mathieu et al. Apr 2012 A1
20120109142 Dayan May 2012 A1
20120109309 Mathieu et al. May 2012 A1
20120109310 Mathieu et al. May 2012 A1
20120109312 Mathieu et al. May 2012 A1
20120109313 Mathieu et al. May 2012 A1
20120123546 Medina May 2012 A1
20120143195 Sander Jun 2012 A1
20120150237 Combrowski Jun 2012 A1
20120197401 Duncan et al. Aug 2012 A1
20120209385 Aferzon Aug 2012 A1
20120215313 Saidha et al. Aug 2012 A1
20120215316 Mohr et al. Aug 2012 A1
20130158664 Palmatier et al. Jun 2013 A1
20130184823 Malberg Jul 2013 A1
20130190876 Drochner et al. Jul 2013 A1
20130211526 Alheidt et al. Aug 2013 A1
20130226191 Thoren et al. Aug 2013 A1
20130231747 Olmos et al. Sep 2013 A1
20130304136 Gourlaouen-Preissler et al. Nov 2013 A1
20130317312 Eastlack et al. Nov 2013 A1
20140018816 Fenn et al. Jan 2014 A1
20140107790 Combrowski Apr 2014 A1
20140114321 Davenport et al. Apr 2014 A1
20140114420 Robinson Apr 2014 A1
20140148904 Robinson May 2014 A1
20140163682 Iott et al. Jun 2014 A1
20140180419 Dmuschewsky Jun 2014 A1
20140194992 Medina Jul 2014 A1
20140249631 Weiman Sep 2014 A1
20140277471 Gray et al. Sep 2014 A1
20140277473 Perrow Sep 2014 A1
20140277487 Davenport et al. Sep 2014 A1
20140277500 Logan et al. Sep 2014 A1
20140303674 Sasing Oct 2014 A1
20140364855 Stoll et al. Dec 2014 A1
20150223945 Weiman et al. Aug 2015 A1
20150230931 Greenhalgh Aug 2015 A1
20150238236 Sasing Aug 2015 A1
20150354635 McClymont et al. Dec 2015 A1
20150374507 Wolters et al. Dec 2015 A1
20160008924 Canourgues et al. Jan 2016 A1
20160022434 Robinson Jan 2016 A1
20160051373 Faulhaber Feb 2016 A1
20160058571 McLaughlin et al. Mar 2016 A1
20160081681 Waugh et al. Mar 2016 A1
20160089247 Nichols et al. Mar 2016 A1
20160095710 Juszczyk et al. Apr 2016 A1
20160095718 Burkhardt et al. Apr 2016 A1
20160199073 Nino et al. Jul 2016 A1
20160242930 Duffield et al. Aug 2016 A1
20160256291 Miller Sep 2016 A1
20160278830 Arrington Sep 2016 A1
20160296340 Gordon et al. Oct 2016 A1
20160310291 Greenhalgh Oct 2016 A1
20160345952 Kucharzyk et al. Dec 2016 A1
20160367377 Faulhaber Dec 2016 A1
20170010025 Mayershofer Jan 2017 A1
20170029635 Doll et al. Feb 2017 A1
20170035406 Abidin et al. Feb 2017 A1
20170049651 Lim et al. Feb 2017 A1
20170049653 Lim et al. Feb 2017 A1
20170095345 Davenport et al. Apr 2017 A1
20170100255 Hleihil et al. Apr 2017 A1
20170100257 Weiman et al. Apr 2017 A1
20170105844 Kuyler et al. Apr 2017 A1
20170112630 Kuyler et al. Apr 2017 A1
20170151065 Warren et al. Jun 2017 A1
20170156882 Rathbun et al. Jun 2017 A1
20170156884 Rathbun et al. Jun 2017 A1
20170189204 Riemhofer et al. Jul 2017 A1
20170202678 Duffield et al. Jul 2017 A1
20170215856 Martinelli et al. Aug 2017 A1
20170224502 Wolters et al. Aug 2017 A1
20170224504 Butler et al. Aug 2017 A1
20170231675 Combrowski Aug 2017 A1
20170246006 Carnes et al. Aug 2017 A1
20170290677 Olmos et al. Oct 2017 A1
20170296352 Richerme et al. Oct 2017 A1
20170367842 Predick et al. Dec 2017 A1
20170367843 Eisen et al. Dec 2017 A1
20170367844 Eisen et al. Dec 2017 A1
20170367845 Eisen et al. Dec 2017 A1
20180000606 Hessler Jan 2018 A1
20180030362 Kosler et al. Feb 2018 A1
20180031810 Hsu et al. Feb 2018 A1
20180036136 Duffield et al. Feb 2018 A1
20180036138 Robinson Feb 2018 A1
20180104066 Bae et al. Apr 2018 A1
20180116891 Beale et al. May 2018 A1
20180193160 Hsu et al. Jul 2018 A1
20180193164 Shoshtaev Jul 2018 A1
20180206999 Suddaby Jul 2018 A1
20180256356 Robinson et al. Sep 2018 A1
20180256359 Greenhalgh Sep 2018 A1
20180256360 Cain Sep 2018 A1
20180256362 Slivka et al. Sep 2018 A1
20180263784 Bechtel et al. Sep 2018 A1
20180271513 Perrow et al. Sep 2018 A1
20180280142 Schultz et al. Oct 2018 A1
20180303473 Spann et al. Oct 2018 A1
20180303621 Brotman et al. Oct 2018 A1
20180303625 Alheidt et al. Oct 2018 A1
20180311048 Glerum et al. Nov 2018 A1
20180318101 Engstrom Nov 2018 A1
20180318102 Seifert et al. Nov 2018 A1
20180325574 Bjork et al. Nov 2018 A1
20180338838 Cryder et al. Nov 2018 A1
20180338841 Miller et al. Nov 2018 A1
20180344307 Hynes et al. Dec 2018 A1
20180360616 Luu Dec 2018 A1
20190000640 Weiman Jan 2019 A1
20190000702 Lim et al. Jan 2019 A1
20190000707 Lim et al. Jan 2019 A1
20190020121 Paulotto et al. Jan 2019 A1
20190021716 Waugh et al. Jan 2019 A1
20190021873 Dmuschewsky Jan 2019 A1
20190046329 Padovani et al. Feb 2019 A1
20190046381 Lim et al. Feb 2019 A1
20190046383 Lim et al. Feb 2019 A1
20190060083 Weiman et al. Feb 2019 A1
20190082949 Weiman Mar 2019 A1
20190083081 Ortiz et al. Mar 2019 A1
20190091033 Dewey et al. Mar 2019 A1
20190105175 Zappacosta et al. Apr 2019 A1
20190125328 Blain May 2019 A1
20190133434 Lee et al. May 2019 A1
20190133645 Gordon et al. May 2019 A1
20190133779 McLaughlin et al. May 2019 A1
20190133780 Matthews et al. May 2019 A1
20190133784 Gunn et al. May 2019 A1
20190133788 Weiman et al. May 2019 A1
20190142480 Woolley et al. May 2019 A1
20190151115 Nichols et al. May 2019 A1
20190183656 Stein Jun 2019 A1
20190201209 Branch et al. Jul 2019 A1
20190201210 Besaw et al. Jul 2019 A1
20190209155 Mast et al. Jul 2019 A1
20190216453 Predick et al. Jul 2019 A1
20190231552 Sandul Aug 2019 A1
20190240039 Walker et al. Aug 2019 A1
20190240043 Greenhalgh Aug 2019 A1
20190247098 Brumfield et al. Aug 2019 A1
20190254650 Martinelli et al. Aug 2019 A1
20190254838 Miller et al. Aug 2019 A1
20190254839 Nichols et al. Aug 2019 A1
20190262009 Cheng Aug 2019 A1
20190262139 Wolters Aug 2019 A1
20190269521 Shoshtaev Sep 2019 A1
20190274670 O'Connell et al. Sep 2019 A1
20190274671 Lauf et al. Sep 2019 A1
20190274836 Eisen et al. Sep 2019 A1
20190282373 Alheidt Sep 2019 A1
20190290446 Masson et al. Sep 2019 A1
20190290447 Stein Sep 2019 A1
20190298416 Rezach Oct 2019 A1
20190298524 Lauf et al. Oct 2019 A1
20190298540 Aghayev et al. Oct 2019 A1
20190321022 Karpowicz et al. Oct 2019 A1
20190321190 Wagner et al. Oct 2019 A1
20190328539 Suh et al. Oct 2019 A1
20190328540 Seifert et al. Oct 2019 A1
20190329388 Erickson et al. Oct 2019 A1
20190336301 Engstrom Nov 2019 A1
20190336304 Burkhardt et al. Nov 2019 A1
20190350573 Vogel et al. Nov 2019 A1
20190358049 Faulhaber Nov 2019 A1
20190358050 Fessler Nov 2019 A1
20190358051 Flower et al. Nov 2019 A1
20190380840 Tyber et al. Dec 2019 A1
20190388232 Purcell et al. Dec 2019 A1
20200008951 McClintock et al. Jan 2020 A1
20200030114 Cain Jan 2020 A1
20200030116 Jimenez et al. Jan 2020 A1
20200038200 Foley et al. Feb 2020 A1
20200054461 Marrocco et al. Feb 2020 A1
20200060844 Mathieu et al. Feb 2020 A1
20200069316 DeSoutter et al. Mar 2020 A1
20200078190 Rogers et al. Mar 2020 A1
20200093526 Daly et al. Mar 2020 A1
20200093607 Davenport et al. Mar 2020 A1
20200093609 Shoshtaev Mar 2020 A1
20200100904 Stein et al. Apr 2020 A1
20200129306 Miller et al. Apr 2020 A1
20200129307 Hunziker et al. Apr 2020 A1
20200138591 Moskowitz et al. May 2020 A1
20200138593 Martynova et al. May 2020 A1
20200146840 Black et al. May 2020 A1
20200179120 Bielenstein et al. Jun 2020 A1
20200205993 Davenport et al. Jul 2020 A1
20200214754 Bowen et al. Jul 2020 A1
20200222202 Kuyler et al. Jul 2020 A1
20200229944 Suh et al. Jul 2020 A1
20200246159 Suh et al. Aug 2020 A1
20200246162 Schultz et al. Aug 2020 A1
20200261242 Bost et al. Aug 2020 A1
20200268524 Glerum et al. Aug 2020 A1
20200276028 Blain et al. Sep 2020 A1
20200281741 Grotz Sep 2020 A1
20200289287 Emerick et al. Sep 2020 A1
20200297507 Iott et al. Sep 2020 A1
20200330239 Davenport et al. Oct 2020 A1
20200330245 Glerum Oct 2020 A1
20200345511 Daffinson et al. Nov 2020 A1
20200352731 Berry Nov 2020 A1
20200352738 Berry Nov 2020 A1
20200360153 Weiman et al. Nov 2020 A1
20200375753 McLaughlin et al. Dec 2020 A1
20200375755 Cain Dec 2020 A1
20200383797 Predick et al. Dec 2020 A1
20200383799 Cain Dec 2020 A1
20200390565 Jimenez et al. Dec 2020 A1
20200397593 Davenport et al. Dec 2020 A1
20200405497 Olmos et al. Dec 2020 A1
20200405498 Gray et al. Dec 2020 A1
20200405499 Gerbec et al. Dec 2020 A1
20200405500 Cain Dec 2020 A1
20210007860 Glerum et al. Jan 2021 A1
20210015626 Suddaby Jan 2021 A1
20210030555 Weiman et al. Feb 2021 A1
20210030561 Gleason Feb 2021 A1
20210045891 Rogers et al. Feb 2021 A1
20210045892 Rogers et al. Feb 2021 A1
20210052395 Iott et al. Feb 2021 A1
20210068959 McLuen et al. Mar 2021 A1
20210068974 Cowan et al. Mar 2021 A1
20210068982 Carnes et al. Mar 2021 A1
20210077271 Sharabani Mar 2021 A1
20210077272 Eisen et al. Mar 2021 A1
20210085479 Weiman et al. Mar 2021 A1
20210093462 Lucasiewicz et al. Apr 2021 A1
20210106434 Alheidt et al. Apr 2021 A1
20210113349 Weiman et al. Apr 2021 A1
20210121299 Hyder Apr 2021 A1
20210121300 Weiman et al. Apr 2021 A1
20210137697 Weiman May 2021 A1
20210137699 Jang et al. May 2021 A1
20210137701 Miller et al. May 2021 A1
20210154811 Spreiter et al. May 2021 A1
20210161678 Dewey et al. Jun 2021 A1
20210177618 Branch et al. Jun 2021 A1
20210186706 Spitler et al. Jun 2021 A1
20210186709 Weiman et al. Jun 2021 A1
20210196470 Shoshtaev Jul 2021 A1
20210205092 Glerum et al. Jul 2021 A1
20210205094 Weiman et al. Jul 2021 A1
20210220145 Stein Jul 2021 A1
20210220147 Berry Jul 2021 A1
20210236298 Weiman et al. Aug 2021 A1
20210251770 Purcell et al. Aug 2021 A1
20210251776 Daffinson et al. Aug 2021 A1
20210259848 Kang et al. Aug 2021 A1
20210259849 Robinson et al. Aug 2021 A1
20210259850 Eisen et al. Aug 2021 A1
20210267767 Stein Sep 2021 A1
20210275317 Spetzger Sep 2021 A1
20210275318 Reimels Sep 2021 A1
20210275319 Reimels Sep 2021 A1
20210275321 Seifert et al. Sep 2021 A1
20210282938 Nichols et al. Sep 2021 A1
20210298915 Faulhaber Sep 2021 A1
20210298916 Melkent et al. Sep 2021 A1
20210307920 Walker et al. Oct 2021 A1
20210315705 Altarac et al. Oct 2021 A1
20210322179 Miller et al. Oct 2021 A1
20210322181 Predick Oct 2021 A1
20210322182 Faulhaber Oct 2021 A1
20210330472 Shoshtaev Oct 2021 A1
20210346174 Flint et al. Nov 2021 A1
20220015924 Freedman et al. Jan 2022 A1
20220047312 Seykora et al. Feb 2022 A1
20220133336 Tsai et al. May 2022 A1
20220133499 Josse et al. May 2022 A1
20220218325 Josse Jul 2022 A1
20220387184 Josse et al. Dec 2022 A1
20230027836 Predick et al. Jan 2023 A1
Foreign Referenced Citations (36)
Number Date Country
107 137 166 Sep 2017 CN
44 16 605 Jun 1995 DE
0 767 636 Apr 1997 EP
0 880 950 Dec 1998 EP
0 857 042 Nov 2001 EP
1 442 732 Aug 2004 EP
1 124 512 Sep 2004 EP
1 107 711 Oct 2004 EP
1 506 753 Feb 2005 EP
1 459 711 Jul 2007 EP
2954860 Dec 2015 EP
3031424 Jun 2016 EP
3 069 694 Sep 2016 EP
3213720 Sep 2017 EP
2781998 Feb 2000 FR
3082115 Dec 2019 FR
2 377 387 Jan 2003 GB
102192022 Dec 2020 KR
9214423 Sep 1992 WO
9700054 Jan 1997 WO
9926562 Jun 1999 WO
9966867 Dec 1999 WO
0012033 Mar 2000 WO
0025706 May 2000 WO
0049977 Aug 2000 WO
0219952 Mar 2002 WO
03105673 Dec 2003 WO
2006116850 Nov 2006 WO
2012139022 Oct 2012 WO
2014133755 Sep 2014 WO
2015063721 May 2015 WO
2015198335 Dec 2015 WO
2016057940 Apr 2016 WO
2017168208 Oct 2017 WO
2018049227 Mar 2018 WO
2021055323 Mar 2021 WO
Non-Patent Literature Citations (12)
Entry
Chinese Office Action in Application No. 201980010758.4 dated Jun. 16, 2023.
International Search Report and Written Opinion, PCT/US2022/030094, dated Sep. 16, 2022.
International Search Report and Written Opinion, PCT/IB2020/000942, dated Aug. 10, 2021.
International Search Report and Written Opinion, PCT/IB2020/000932, dated Jul. 29, 2021.
Chinese Office Action in Application No. 201980010758.4 dated Sep. 16, 2023.
International Search Report and Written Opinion in Application No. PCT/US2022/016809 dated Jul. 27, 2022.
International Search Report and Written Opinion in Application No. PCT/US2022/027695 dated Jul. 27, 2022.
International Search Report, and Written Opinion for Application. No. PCT/US2019/019067, dated Jun. 3, 2019.
International Search Report and Written Opinion for Application No. PCT/US2019/019060, dated Jun. 5, 2019.
International Search Report and Written Opinion in Application No. PCT/US2022/016831 dated Sep. 29, 2022.
International Search Report and Written Opinion in Application No. PCT/US2022/027200 dated Aug. 19, 2022.
International Search Report and Written Opinion in Application No. PCT/IB2023/058417 dated Dec. 7, 2023.
Related Publications (1)
Number Date Country
20220133498 A1 May 2022 US
Continuation in Parts (1)
Number Date Country
Parent 17123889 Dec 2020 US
Child 17246932 US