This invention relates to stabilizing adjacent vertebrae of the spine by inserting an intervertebral implant, and more particularly an intervertebral implant that is adjustable in height.
Bones and bony structures are susceptible to a variety of weaknesses that can affect their ability to provide support and structure. Weaknesses in bony structures have numerous potential causes, including degenerative diseases, tumors, fractures, and dislocations. Advances in medicine and engineering have provided doctors with a plurality of devices and techniques for alleviating or curing these weaknesses.
In some cases, the spinal column requires additional support in order to address such weaknesses. One technique for providing support is to insert a spacer between adjacent vertebrae.
In accordance with the disclosure, an implant for therapeutically separating bones of a joint, the implant defining a longitudinal axis extending between distal and proximal ends, the implant comprises a first endplate configured to engage a first bone of the joint, and having an opening through the endplate, and at least one ramped surface on a side opposite a bone engaging side; a second endplate configured to engage a second bone of the joint, and having an opening through the endplate, and at least one ramped surface on a side opposite a bone engaging side; a frame slideably connected to the first and second endplates to enable the first and second endplates to move relative to each other at an angle with respect to the longitudinal axis, in sliding connection with the frame; an actuator screw rotatably connected to the frame; and a carriage (a) forming an open area aligned with the openings in the first and second endplates and defining thereby a proximal carriage side and a distal carriage side with respect to the longitudinal axis, (b) threadably connected to the actuator screw, whereby rotation of the actuator screw moves the carriage with respect to the frame and the first and second endplates, the actuator screw not crossing between the proximal carriage side and the distal carriage side; and (c) including a plurality of ramps each mateable with at least one of the at least one ramped surfaces of the first and second endplates, wherein when the carriage is moved by rotation of the actuator screw, at least one of the at least one ramped surface of the first endplate and at least one of the at least one ramped surface of the second endplate each slide along at least one of the plurality of ramps of the carriage to cause the endplates to move relative to each other in sliding connection with the frame.
In various embodiments thereof, the first and second endplates are confined by the frame to move relative to each other only along an axis substantially transverse to the longitudinal axis; at least one of the first and second endplates includes at least one aperture through which a fastener may pass to secure the implant to bone of the joint; the implant further includes a blocking mechanism configured to prevent backing out of a fastener passed through at least one of the first and second endplates and into body tissue; the blocking mechanism includes a blocking member slideably retained within a channel between an unblocking position and a blocking position in which a portion of the blocking member overlaps a portion of the faster; at least one of the first and second endplates includes one or more projections configured to engage bone of the joint when the implant is positioned between bones of the joint; at least one of the first and second endplates is composed of two interconnected portions of dissimilar materials; one of the dissimilar materials is metallic and includes at least one aperture through which a fastener may be passed to attach the implant to a bone of the joint; one dissimilar material is polymeric, and another dissimilar material is metallic; and, the implant further includes a polymeric material configured to press against the actuator screw to reduce a potential for unintended rotation of the actuator screw.
In further embodiments thereof, when the actuator screw is rotated in a first direction, a height of the implant transverse to the longitudinal axis is increased, and when the actuator screw is rotated in a second direction, a height of the implant transverse to the longitudinal axis is decreased; the actuator screw is threadably connected to the carriage along a proximal side of the carriage; the frame extends from the proximal end of the implant to the distal end of the implant, and the actuator screw is connected to the frame and threadably connected to the carriage along a distal side of the carriage; the frame is disposed within the proximal end of the implant; the frame extends from the proximal end of the implant towards the distal end of the implant; and, the implant further includes at least one post extending through the frame and into the carriage, slideably received in one of the frame or the carriage, thereby configured to maintain an alignment of the carriage along the longitudinal axis.
In yet further embodiments thereof, the implant further includes a first passage formed in a proximal end of at least one of the first and second endplates, and a second passage formed in a proximal side of the carriage, the first and second passages aligned to admit introduction of a therapeutic matter into the open area of the carriage when the implant is implanted between bones of the joint; the frame connects to the first and second endplates with a dovetail connection; the implant further includes at least one radiopaque marker positioned in connection with at least one of the first and second endplates, whereby an extent of movement of the connected endplate can be determined using imaging by a relative alignment of the radiopaque marker and a radiopaque element of the implant which does not move together with the connected endplate; ends of the at least one of the plurality of ramps of the carriage slide within grooves in at least one of the first and second endplates.
In another embodiment thereof, the frame includes an actuator screw bearing, a first tab extending away from the bearing in a first direction, and a second tab extending away from the bearing in a direction opposite to the upper tab, the first and second tabs forming edges; and the first and second endplates including grooves sized and dimensioned to slidingly receive the edges of the first and second tabs, respectively.
In accordance with another embodiment of the disclosure, an implant for therapeutically separating bones of a joint, the implant defining a longitudinal axis extending between distal and proximal ends, the implant comprises a first endplate configured to engage a first bone of the joint, and having an opening through the endplate transverse to the longitudinal axis, and at least one ramped surface on a side opposite a bone engaging side; a second endplate configured to engage a second bone of the joint, and having an opening through the endplate transverse to the longitudinal axis, and at least one ramped surface on a side opposite a bone engaging side;
a frame slideably connected to the first and second endplates to enable the first and second endplates to move relative to each other at an angle substantially transverse to the longitudinal axis, in sliding connection with the frame; an actuator screw rotatably connected to the frame; and a carriage (a) forming an open area aligned with the openings in the first and second endplates and defining thereby a proximal carriage side and a distal carriage side with respect to the longitudinal axis, (b) threadably connected to the actuator screw, whereby rotation of the actuator screw moves the carriage with respect to the frame and the first and second endplates, the actuator screw not crossing between the proximal carriage side and the distal carriage side; (c) including a plurality of ramps each mateable with at least one of the at least one ramped surfaces of the first and second endplates, wherein when the carriage is moved by rotation of the actuator screw, at least one of the at least one ramped surface of the first endplate and at least one of the at least one ramped surface of the second endplate each slide along at least one of the plurality of ramps of the carriage to cause the endplates to move relative to each other in sliding connection with the frame; and (d) at least one passage formed in a proximal side of the carriage in communication with at least one proximal passage in at least one of the first or second endplates, the communicating passages configured to admit introduction of a therapeutic matter into the open area of the carriage when the implant is implanted between bones of the joint.
In accordance with the disclosure, a method of therapeutically separating bones of a joint, comprises inserting an implant defining a longitudinal axis extending between distal and proximal ends between bones of the joint, the implant including—a first endplate configured to engage a first bone of the joint, and having an opening through the endplate, and at least one ramped surface on a side opposite a bone engaging side; a second endplate configured to engage a second bone of the joint, and having an opening through the endplate, and at least one ramped surface on a side opposite a bone engaging side; a frame slideably connected to the first and second endplates to enable the first and second endplates to move relative to each other at an angle with respect to the longitudinal axis, in sliding connection with the frame; an actuator screw rotatably connected to the frame; and a carriage (a) forming an open area aligned with the openings in the first and second endplates and defining thereby a proximal carriage side and a distal carriage side with respect to the longitudinal axis, (b) threadably connected to the actuator screw, whereby rotation of the actuator screw moves the carriage with respect to the frame and the first and second endplates, the actuator screw not crossing between the proximal carriage side and the distal carriage side; and (c) including a plurality of ramps each mateable with at least one of the at least one ramped surfaces of the first and second endplates, wherein when the carriage is moved by rotation of the actuator screw, at least one of the at least one ramped surface of the first endplate and at least one of the at least one ramped surface of the second endplate each slide along at least one of the plurality of ramps of the carriage to cause the endplates to move relative to each other in sliding connection with the frame; and rotating the actuator screw after the implant is inserted to move the first and second endplates relatively farther apart to separate bones of the joint.
A more complete understanding of the present invention, and the attendant advantages and features thereof, will be more readily understood by reference to the following detailed description when considered in conjunction with the accompanying drawings, in which:
As required, detailed embodiments are disclosed herein; however, it is to be understood that the disclosed embodiments are merely examples and that the systems and methods described below can be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present subject matter in virtually any appropriately detailed structure and function. Further, the terms and phrases used herein are not intended to be limiting, but rather, to provide an understandable description of the concepts.
The terms “a” or “an”, as used herein, are defined as one or more than one. The term plurality, as used herein, is defined as two or more than two. The term another, as used herein, is defined as at least a second or more. The terms “including” and “having,” as used herein, are defined as comprising (i.e., open language).
Implants of the disclosure allow continuous expansion and retraction within a range of expansion. Lordosis of certain embodiments of implants herein can be custom tailored to fit the anatomy of a specific patient. Additionally, implants of the disclosure enable distraction of vertebral bodies to a desired height, but can also be collapsed and repositioned, as therapeutically indicated for the patient.
With reference to
Implant 100 includes two separable endplates 110, 112. A surface 114 of an endplate 110, 112 can be provided with teeth or other projections 116 which can penetrate body tissue to reduce a likelihood of migration of implant 100 after implantation. Implant 100 is further secured with one or more bone screws 300, which pass through bone screw socket 118 within implant 100, and into body tissue of the patient. In the embodiment illustrated in
Endplates 110, 112 are moveably connectable to an actuator 150 operable to change a relative relationship of endplates 110 and 112. Actuator 150 includes a frame 152 rotatably supporting an actuator screw 154, and a moveable carriage 156. As actuator screw 154 rotates within frame 152, carriage 156 slides within frame 152, driven by cooperation between threads 158 (
With reference to
Carriage 156 is supported by frame 152 by lateral engagement means, in this embodiment two support screws 174 engaged with carriage 156, and passable through respective channels 176 formed in frame 152. Distal end 172 of actuator screw 154 provides additional support for carriage 156. Actuator screw 154 is supported by a set screw 178, which passes through and is rotatably supported within frame 152.
An actuator access port 180 permits passage of a tool, for example a hex driver (not shown), into engagement with a proximal end 182 of actuator screw 154. As actuator screw 154 is turned, distal end 172 bears against a thrust washer 184, and an end portion of frame 152. As actuator screw 154, carriage 156 is driven along actuator screw by interaction of threads 158 and 160. As carriage 156 moves, endplates 110, 112 are urged to move along ramps 168, 168A and 170, 170A, moving relatively apart, and increasing a height of implant 100. Endplates 110, 112 are prevented from moving together with carriage 156 by abutting against an end portion 186 of frame 152. In a given orientation, one of endplate 110 and 112 is an upper endplate with respect to an orientation in a standing patient. However, implant 100 may, in some embodiments, be implantable in either of opposite orientations, and therefore designations of upper and lower are provided for ease of understanding, only. It should be understood that only one of endplate 110, 112 may be moveable with respect to the other. For example, in one embodiment, ramps 168A, 170A may not be provided, and endplate 112 may be attached to frame 152.
Implant 100 can be inserted configured to have a lower height profile, as shown in
Once actuator screw 154 has been rotated to separate endplates 110, 112 a desired amount, the tool is removed. At this point, actuator screw 154 may be secured in place, for example using a mechanical block, or an adhesive, to prevent unintended rotation of actuator screw 154. As carriage 156 is slideably moved by rotation of actuator screw 154, a ramp 166, 166A or a ramped surface of channel 164, 164A of at least one of endplate 110, 112 slides against at least one ramp 168, 168A, 170, or 170A of carriage 156, to cause the endplate to move along an axis transverse to the longitudinal axis of the frame, to increase a height of the implant. Rotation of actuator screw 154 in an opposite direction causes movement along an axis transverse to the longitudinal axis of the frame to decrease a height of the implant.
Polymeric insets, or a polymeric square nut, for example PEEK, can be provided, engageable with threads 158 or other portion of actuator screw 154, to provide additional friction to prevent height loss under load, particularly under cyclic loading. Similarly, once bone screws 300 have been inserted, blocking elements 120 may be rotated to extend over an end of bone screw head 302, preventing screw 300 from backing out. A similar mechanical block (not shown) may be provided for actuator screw 154.
With reference to
In an embodiment, implant 100 of the disclosure provides an actuator that translates relative to the body by means of a threaded actuator screw 154. Ramps 168, 168A and 170, 170A on a carrier 152 mate with channels 164, 164A, and or ramps 166, on endplates 110, 112. Linear translation of carriage 156 causes endplates 110, 112 to expand implant 100 along an S/I axis with respect to the body. There can be dovetail guides that capture endplates 110, 112 when collapsing the implant.
Assembly screws 162 fasten endplates made of dissimilar materials, for example PEEK polymeric portions 122, 122A to Titanium metallic portions 124, 124A. A dovetail and press fit design can be used to connect the dissimilar endplate portions. A PEEK bushing or washer 184 is used between the threaded actuator screw 154 and frame 152 to minimize friction during expansion of implant 100. Support screws 174 and channels 176 cooperate to form side or lateral stabilizers, and set screw 178 supports a nose or leading end of carriage 156. Additionally, cooperating slots and projections (not shown) in carriage 156 and frame 152 can be provided for further relative guidance and stability.
In one embodiment, three bone screws 300 are used to provide fixation into adjacent vertebral bodies, two screws 300 passing through implant 100 and into one vertebra, and one screw 300 passing through implant 100 into another vertebra, although other combinations may be used. Bone screws 300 can have spherical or otherwise curved heads, facilitating insertion at a desired angle, or may be provided to mate with socket 118 in a fixed orientation, particularly depending on a diameter of a neck portion of screw 300. Cam style blocking fasteners 120 can be used to block bone screws 300 from backing out after being inserted.
Implants of the disclosure enable a continuous expansion and retraction over a range of displacements according to predetermined dimensions of a specific implant 100 design. This provides the ability to distract vertebral bodies to a desired height, but also to collapse the implant 100 for repositioning, if therapeutically advantageous for the patient. Endplates 110, 112 may be shaped to form planes or surfaces which converge relative to each, to provide for lordosis, and can be provided with openings, forming a graft chamber 204 through the openings and between the respective openings through which bone may grow, and into which bone graft material may be placed. Implant 100 may be used to distract, or force bones of a joint apart, or may be used to maintain a separation of bones created by other means, for example a retractor.
Implant 100 may be fabricated using any biocompatible materials known to one skilled in the art, having sufficient strength, flexibility, resiliency, and durability for the patient, and for the term during which the device is to be implanted. Examples include but are not limited to metal, such as, for example titanium and chromium alloys; polymers, including for example, PEEK or high molecular weight polyethylene (HMWPE); and ceramics. There are many other biocompatible materials which may be used, including other plastics and metals, as well as fabrication using living or preserved tissue, including autograft, allograft, and xenograft material.
Portions or all of the implant may be radiopaque or radiolucent, or materials having such properties may be added or incorporated into the implant to improve imaging of the device during and after implantation.
For example, metallic portions 124, 124A of endplates 110, 112 may be manufactured from Titanium, or a cobalt-chrome-molybdenum alloy, Co—Cr—Mo, for example as specified in ASTM F1537 (and ISO 5832-12). The smooth surfaces may be plasma sprayed with commercially pure titanium, as specified in ASTM F1580, F1978, F1147 and C-633 (and ISO 5832-2). Polymeric portions 122, 122A may be manufactured from ultra-high molecular weight polyethylene, UHMWPE, for example as specified in ASTM F648 (and ISO 5834-2). In one embodiment, PEEK-OPTIMA (a trademark of Invibio Ltd Corp, United Kingdom) may be used for one or more components of implant 100. For example, polymeric portions 122, 122A can be formed with PEEK-OPTIMA, which is radiolucent, whereby bony ingrowth may be observed. Other polymeric materials with suitable flexibility, durability, and biocompatibility may also be used.
In accordance with the invention, implants of various sizes may be provided to best fit the anatomy of the patient. Components of matching or divergent sizes may be assembled during the implantation procedure by a medical practitioner as best meets the therapeutic needs of the patient, the assembly inserted within the body using an insertion tool. Implants of the invention may also be provided with an overall angular geometry, for example an angular mating disposition of endplates 110, 112, to provide for a natural lordosis, or a corrective lordosis, for example of from 0° to 6° for a cervical application, although much different values may be advantageous for other joints. Lordotic angles may also be formed by shaping one or both of plates 110, 112 to have relatively non-coplanar surfaces. Expanded implant heights, for use in the cervical vertebrae for example, may typically range from 7 mm to 12 mm, but may be larger or smaller, including as small as 5 mm, and as large as 16 mm, although the size is dependent on the patient, and the joint into which an implant of the invention is to be implanted. Implants 100 may be implanted within any level of the spine, and may also be implanted in other joints of the body, including joints of the hand, wrist, elbow, shoulder, hip, knee, ankle, or foot.
In accordance with the invention, a single implant 100 may be used, to provide stabilization for a weakened joint or joint portion. Alternatively, two, three, or more implants 100 may be used, at a single joint level, or in multiple joints. Moreover, implants 100 may be combined with other stabilizing means.
Additionally, implant 100 may be fabricated using material that biodegrades in the body during a therapeutically advantageous time interval, for example after sufficient bone ingrowth has taken place. Further, implant 100 is advantageously provided with smooth and or rounded exterior surfaces, which reduce a potential for deleterious mechanical effects on neighboring tissues.
Any surface or component of the invention may be coated with or impregnated with therapeutic agents, including bone growth, healing, antimicrobial, or drug materials, which may be released at a therapeutic rate, using methods known to those skilled in the art.
Devices of the disclosure provide for adjacent vertebrae to be supported during flexion/extension, lateral bending, and axial rotation. In one embodiment, implant 100 is indicated for spinal arthroplasty in treating skeletally mature patients with degenerative disc disease, primary or recurrent disc herniation, spinal stenosis, or spondylosis in the lumbosacral spine (LI-SI). Degenerative disc disease is advantageously defined as discogenic back pain with degeneration of the disc confirmed by patient history and radiographic studies, with or without leg (radicular) pain. Patients are advantageously treated, for example, who may have spondylolisthesis up to Grade 1 at the involved level. The surgery position implant 100 may be performed through an Anterior, Anterolateral, Posterolateral, and/or Lateral approach.
In a typical embodiment, implant 100 has a uncompressed height, before insertion, of 12 to 18 mm, and may advantageously be provided in cross-sections of 23×32 mm, 26×38 mm and 26×42 mm, with 4, 8, 12, or 16 degree lordotic angles, although these are only representative sizes, and substantially smaller or larger sizes can be therapeutically beneficial. In one embodiment an implant 100 in accordance with the instant disclosure is sized to be inserted using an MIS approach (a reduced incision size, with fewer and shorter cuts through body tissue).
Implant 100 may advantageously be used in combination with other known or hereinafter developed forms of stabilization or fixation, including for example rods and plates.
Referring now to
Step 1: Approach—An approach to the desired section of the spine is performed using surgical instruments such as scalpels and retractors, for example using minimally invasive techniques.
Step 2: Preparation—Disc preparation instruments can be used to expose the disc and remove disc material, for example using rongeurs and other suitable instruments (not shown), to create a disc space 14.
Step 3: Trialing—As may be seen in
Step 4: Insertion—Graft material or other therapeutically beneficial material is packed into graft chamber 204 of the selected implant 100 when it is collapsed or partially expanded. As may be seen in
Step 5: Expansion—In
Step 6: Hole Preparation—Bone screw pilot holes can be formed into one or more adjacent vertebrae, prepared using, for example, awls, drills and or taps. Multiple pilot holes can be prepared first, or pilot holes can be prepared one at a time, before the insertion of each screw 300. During any of the steps herein, imaging can be carried out to avoid damage to adjacent tissue.
Step 7: Screw Insertion—In
Referring now to
It should be understood that implant 100 may identified with a suffix herein, for example 100B, 100C, 100D, 100E, to indicate embodiments illustrating various features of the disclosure. In consideration of the impracticality of illustrating and describing every possible permutation of features, it should be understood that, where logical, features of the various implants may be substituted among the implants. Thus, all of the implants may collectively be referred to as implant 100, unless a specific reference is made to a feature illustrated by a particular embodiment.
Actuator screw 1546B threadably engages carriage 156B at threads 160B, whereby rotation of screw 154B causes carriage 156B to move towards or away from compact actuator frame 212. Carriage 156B has ramps 168, 168A and 170, 170A, which engage corresponding endplate ramps 164, 164A, 166, 166A as described with respect to implant 100. As actuator screw 154B is rotated, carriage 156 translates with respect to endplates 110B, 112B. As a result, carriage ramps 168, 168A and 170, 170A slide against endplate ramps 164, 164A, 166, 166A, causing endplates 110B, 112B to mutually separate. In an embodiment, carriage 156B is polymeric at threads 160B, and an interference fit is formed between actuator screw 154B and threads 160B, whereby sufficient friction is created to resist unintended rotation of actuator screw 154B, with a consequential change in height of implant 100B.
Frame 152 slidingly bears against frame support edges 224 extending along endplates 110B, 112B, and is slidingly connected to carriage 156B by carriage support screws 174. In this manner, carriage 156B is laterally supported, and inhibited from rotational movement, but may move longitudinally along a path defined by carriage support channel 176 and actuator screw 154B. Additionally, channels or dovetail guides 200, 202 in endplates 110B, 112B receive mating end portions 200A, 202A of carriage ramps 168, 168A, 170, 170A, to further guide and stabilize endplates 110B, 112B.
Implant 100B is configured to facilitate the insertion of graft material or other therapeutic material through one or more of bone screw socket 118 into graft chamber 204 formed by openings within endplates 110B, 112B, and carriage 156B. After the material is inserted, bone screws 300 may then be inserted into socket 118 and fastened to body tissue as otherwise shown and described herein. A bone funnel 440 (
It should be understood that endplates of the disclosure, in all embodiments, may be formed of a unitary material, as illustrated in
With reference to
With reference to
As can be seen in
As can be seen in
In an embodiment, carriage ramps 168, 168A, 170, 170A can have differing ramp angles and or sizes, wherein endplate ramps 166, 166A have corresponding profiles and sizes. For example, if ramps 168, 168A are shorter than ramps 170, 170A, expansion will occur at a greater rate along a proximal side of implant 100, and in this manner an angular orientation of the spine, for example lordosis, may be corrected. Similarly, ramps 170, 170A can be shorter than ramps 168, 168A. Alternatively, one side of ramp 168, 168A can be shorter than another side of ramp 168, 168A, with a corresponding difference along ramps 170, 170A. In this manner, a sideways orientation of the spine, for example Scoliosis, may be corrected.
Implant 100D can be inserted into the intervertebral disc space at a collapsed height, and then expanded into lordosis to restore sagittal balance and height loss in the disc space. Implant 100D provides distraction as well as achieving optimal sagittal balance. Further, implant 100D reduces impaction to body tissue during insertion at a collapsed height, and gives a medical practitioner the capability to continuously adjust the lordotic angle of the supporting endplates to best fit the patient's anatomy and therapeutic needs.
Endplate pivot 256 is formed as mating circular portions of endplate portions 122D and 124D, and of endplate portions 122D′ and 124D′. While one endplate portions forms an extension, and the other a receptacle, it should be understood that this configuration may be reversed.
Endplate hinge 258 is formed as a flexible connector 260 extending between endplate portions 122D and 122D′. In an embodiment, endplate portions 122D and 122D′ are molded as a single part from a polymeric or other flexible material, thus forming a living hinge. In a further embodiment, a hinge is formed between endplate portions 122D and 122D′ by any known means, including a barrel or flag hinge, or a hinge similar in style to endplate pivots 256. In an alternative embodiment, endplate hinge 258 is formed in connection with frame 152C.
By providing both axial and pivoting movement of endplate portions, implant 100D enables the formation of an alternative supporting structure, and in particular, a supporting structure with a convex conformity. This can be useful to correct particular spinal problems, including lordosis, for example.
With reference to
Further stability can be provided for carriage 156C through the use of stabilizing pins 248, frame pin bores 250, and pin bores in carriage 152C, as described with respect to implant 100C herein.
In a further embodiment, actuator screw 154E′ is shorter than actuator screw 154E, and thereby reduces an obstruction of graft chamber 204. A tool can be passed through screw guide 246, and then through graft chamber 204, to engage actuator screw proximal end 182. Graft material can additionally be passed through screw guide 246, and placed within graft chamber 204. Bone funnel 140 can be used to pass materials through screw guide 246, and pipe connector can be adapted or replaced to best fit the dimensions of screw guide 246.
As shown in
A frame 152 for receiving an actuator 150 is positioned between the first endplate 110 and the second endplate 112. The frame 152 is configured to receive side support screws 174 through channels to secure the frame 152 to the actuator 150. In addition, one or more guide pins 359 are provided at a distal or leading end of the frame 152. The guide pins 359 are inserted through openings in the frame 152 and contact a surface of the actuator 150. By engaging the actuator 150, the guide pins 359 advantageously stabilize the actuator 150 such that it is not tilted during use.
The actuator 150 comprises a moveable carriage 156 having a first pair of upper ramped surfaces 170 connected to a second pair of upper ramped surfaces 168 via a bridge member 199. In some embodiments, the first pair of upper ramped surfaces 170 and the second pair of upper ramped surfaces 168 are inclined in the same direction (e.g., toward the distal or leading end of the actuator 150). The first and second pair of upper ramped surfaces 170, 168 are configured to engage corresponding angled or ramped surfaces of the first endplate 110, such that movement of the carriage 156 causes expansion of the implant 100. In some embodiments, a first pair of lower ramped surfaces extends downwardly from the first pair of upper ramped surfaces 170, while a second pair of lower ramped surfaces extends downwardly from the second pair of upper ramped surfaces. The first and second pair of lower ramped surfaces are configured engage corresponding angled or ramped surfaces of the second endplate 112, such that movement of the carriage 156 causes expansion of the implant 100.
An actuator screw 154 can be provided to actuate the actuator 150. The actuator screw 154 comprises a head portion 197 and a shaft portion 198. The shaft portion 198 comprises threads for engaging a corresponding threaded portion of the actuator 150. Rotational movement of the actuator screw 154 in a first direction causes linear translation of the moveable carriage 156 of the actuator 150, thereby causing separation of the endplates 110, 112 and expansion of the implant. Rotational movement of the actuator screw 154 in a second direction opposite the first direction causes linear translation of the moveable carriage 156 of the actuator 150 in an opposite direction, thereby causing contraction of the endplates 110, 112.
To retain the actuator screw 154 in the implant 100, an actuator frame 212 can be provided. The actuator frame comprises an upper tab portion 214 and a lower tab portion 216, and an opening 213 therebetween for receiving the actuator 150 therethrough. The upper tab portion 214 can be received in a slot in the first endplate 110, while the lower tab portion 216 can be received in a slot in the second endplate 112. To maintain the actuator 150 in the actuator frame 212, a first compression clip or “C-clip” locking mechanism 380 can be provided to secure the actuator 150 to the actuator frame 212. The C-clip 380 is configured to fit around a portion of the actuator 150, such as the head portion 197. In some embodiments, the C-clip 380 is retained within a recess or groove formed around the circumference of the actuator head portion. The C-clip 380 is advantageously configured to compress such that it can be trapped in a recess 288 in the actuator frame 212 (as shown in
To prevent the bone screws from inadvertently backing out, a blocking mechanism 390 can be provided and attached via a C-clip 382. The blocking mechanism 390 comprises a body 391 having an opening 392 for receiving at least a portion of the head portion 197 of the actuator screw 154 therethrough. In some embodiments, a second compression clip or “C-clip” locking mechanism 382 can be provided to secure the blocking mechanism 390 to the actuator screw 154. As shown in
In some embodiments, the implant 100 of
A method of insertion is now provided. After forming an incision in a patient and removing tissue from a disc space, a surgeon can insert the implant 100 through an anterior approach. The implant 100 can be inserted in an unexpanded configuration, as shown in
As shown in
In some embodiments, the expandable implant 100 in
All references cited herein are expressly incorporated by reference in their entirety. There are many different features to the present invention and it is contemplated that these features may be used together or separately. Unless mention was made above to the contrary, it should be noted that all of the accompanying drawings are not to scale. Thus, the invention should not be limited to any particular combination of features or to a particular application of the invention. Further, it should be understood that variations and modifications within the spirit and scope of the invention might occur to those skilled in the art to which the invention pertains. Accordingly, all expedient modifications readily attainable by one versed in the art from the disclosure set forth herein that are within the scope and spirit of the present invention are to be included as further embodiments of the present invention.
This application is a continuation of U.S. patent application Ser. No. 17/019,658, filed on Sep. 14, 2020, which is a continuation of U.S. patent application Ser. No. 16/019,615 filed on Jun. 27, 2018, which is a continuation application of U.S. patent application Ser. No. 14/960,618 filed on Dec. 7, 2015, which is a continuation application of U.S. Ser. No. 13/968,849, entitled “Expandable Intervertebral Implant,” filed Aug. 16, 2013, which is a continuation-in-part application of U.S. patent application Ser. No. 13/836,687, entitled “Expandable Intervertebral Implant,” filed Mar. 15, 2013, now issued as U.S. Pat. No. 9,034,045, for which the disclosures are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4349921 | Kuntz | Sep 1982 | A |
4599086 | Doty | Jul 1986 | A |
4863476 | Shepperd | Sep 1989 | A |
4863477 | Monson | Sep 1989 | A |
5123926 | Pisharodi | Jun 1992 | A |
5290312 | Kojimoto et al. | Mar 1994 | A |
5306310 | Siebels | Apr 1994 | A |
5375823 | Navas | Dec 1994 | A |
5390683 | Pisharodi | Feb 1995 | A |
5397364 | Kozak et al. | Mar 1995 | A |
5458641 | Jiminez | Oct 1995 | A |
5522899 | Michelson | Jun 1996 | A |
5534030 | Navarro et al. | Jul 1996 | A |
5549612 | Yapp et al. | Aug 1996 | A |
5554191 | Lahille et al. | Sep 1996 | A |
5571192 | Schonhoffer | Nov 1996 | A |
5645596 | Kim | Jul 1997 | A |
5653763 | Errico et al. | Aug 1997 | A |
5665122 | Kambin | Sep 1997 | A |
5676701 | Yuan et al. | Oct 1997 | A |
5861041 | Tienboon | Jan 1999 | A |
5888223 | Bray, Jr. | Mar 1999 | A |
6039761 | Li et al. | Mar 2000 | A |
6045579 | Hochschuler et al. | Apr 2000 | A |
6066175 | Henderson et al. | May 2000 | A |
6080193 | Hochschuler et al. | Jun 2000 | A |
6099531 | Bonutti | Aug 2000 | A |
6126689 | Brett | Oct 2000 | A |
6156037 | LeHuec et al. | Dec 2000 | A |
6176882 | Biedermann et al. | Jan 2001 | B1 |
6200347 | Anderson et al. | Mar 2001 | B1 |
6206922 | Zdeblick et al. | Mar 2001 | B1 |
6231610 | Geisler | May 2001 | B1 |
6258089 | Campbell et al. | Jul 2001 | B1 |
6258125 | Paul et al. | Jul 2001 | B1 |
6383186 | Michelson | May 2002 | B1 |
6432106 | Fraser | Aug 2002 | B1 |
6482233 | Aebi | Nov 2002 | B1 |
6540785 | Gill et al. | Apr 2003 | B1 |
6558423 | Michelson | May 2003 | B1 |
6558424 | Thalgott | May 2003 | B2 |
6562074 | Gerbec et al. | May 2003 | B2 |
6576016 | Hochschuler et al. | Jun 2003 | B1 |
6554863 | Paul et al. | Aug 2003 | B2 |
6641614 | Wagner et al. | Nov 2003 | B1 |
6648917 | Gerbec et al. | Nov 2003 | B2 |
6666889 | Commarmond | Dec 2003 | B1 |
6666891 | Boehm, Jr. et al. | Dec 2003 | B2 |
6692495 | Zacouto | Feb 2004 | B1 |
6706070 | Wagner et al. | Mar 2004 | B1 |
6740118 | Eisermann et al. | May 2004 | B2 |
6752832 | Ulrich | Jun 2004 | B2 |
6814756 | Michelson | Nov 2004 | B1 |
6827740 | Michelson | Dec 2004 | B1 |
6830589 | Erickson | Dec 2004 | B2 |
6849093 | Michelson | Feb 2005 | B2 |
6852129 | Gerbec et al. | Feb 2005 | B2 |
6863673 | Gerbec et al. | Mar 2005 | B2 |
6881228 | Zdeblick et al. | Apr 2005 | B2 |
6899735 | Coates et al. | May 2005 | B2 |
6972019 | Michelson | Dec 2005 | B2 |
7001432 | Keller et al. | Feb 2006 | B2 |
7018415 | McKay | Mar 2006 | B1 |
7025787 | Bryan et al. | Apr 2006 | B2 |
7070598 | Lim et al. | Jul 2006 | B2 |
7137997 | Paul | Nov 2006 | B2 |
7147665 | Bryan et al. | Dec 2006 | B1 |
7153325 | Kim et al. | Dec 2006 | B2 |
7172627 | Fiere et al. | Feb 2007 | B2 |
7204853 | Gordon | Apr 2007 | B2 |
7217291 | Zucherman et al. | May 2007 | B2 |
7232464 | Mathieu et al. | Jun 2007 | B2 |
7276082 | Zdeblick et al. | Oct 2007 | B2 |
7282063 | Cohen et al. | Oct 2007 | B2 |
7309357 | Kim | Dec 2007 | B2 |
7316714 | Gordon et al. | Jan 2008 | B2 |
7320708 | Bernstein | Jan 2008 | B1 |
7473276 | Aebi et al. | Jan 2009 | B2 |
7547325 | Biedermann et al. | Jun 2009 | B2 |
7618456 | Mathieu et al. | Nov 2009 | B2 |
7621953 | Braddock, Jr. et al. | Nov 2009 | B2 |
7641693 | Gutlin et al. | Jan 2010 | B2 |
7682396 | Beaurain et al. | Mar 2010 | B2 |
7749270 | Peterman | Jul 2010 | B2 |
7753958 | Gordon | Jul 2010 | B2 |
7771473 | Thramann | Aug 2010 | B2 |
7771475 | Michelson | Aug 2010 | B2 |
7780732 | Abernathie | Aug 2010 | B2 |
7799081 | McKinley | Sep 2010 | B2 |
7815683 | Melkent et al. | Oct 2010 | B2 |
7837734 | Zucherman et al. | Nov 2010 | B2 |
7846207 | Lechmann et al. | Dec 2010 | B2 |
7862616 | Lechmann et al. | Jan 2011 | B2 |
7875076 | Mathieu et al. | Jan 2011 | B2 |
7875078 | Wysocki et al. | Jan 2011 | B2 |
7901409 | Canaveral et al. | Mar 2011 | B2 |
7909869 | Gordon et al. | Mar 2011 | B2 |
7951199 | Miller | May 2011 | B2 |
7985256 | Grotz et al. | Jul 2011 | B2 |
8062375 | Glerum | Nov 2011 | B2 |
8070813 | Grotz et al. | Dec 2011 | B2 |
8100976 | Bray et al. | Jan 2012 | B2 |
8105382 | Olmos et al. | Jan 2012 | B2 |
8123810 | Gordon et al. | Feb 2012 | B2 |
8137405 | Kostuik et al. | Mar 2012 | B2 |
8192495 | Simpson et al. | Jun 2012 | B2 |
8303663 | Jimenez et al. | Nov 2012 | B2 |
8343222 | Cope | Jan 2013 | B2 |
8377140 | DeFalco et al. | Feb 2013 | B2 |
8394129 | Lopez et al. | Mar 2013 | B2 |
8394143 | Grotz et al. | Mar 2013 | B2 |
8435296 | Kadaba et al. | May 2013 | B2 |
8454695 | Grotz et al. | Jun 2013 | B2 |
8647386 | Gordon et al. | Feb 2014 | B2 |
8696751 | Ashley et al. | Apr 2014 | B2 |
8771360 | Jimenez et al. | Jul 2014 | B2 |
8894710 | Simpson et al. | Nov 2014 | B2 |
8932355 | Grotz et al. | Jan 2015 | B2 |
8940049 | Jimenez et al. | Jan 2015 | B1 |
8956413 | Ashley et al. | Feb 2015 | B2 |
8992620 | Ashley et al. | Mar 2015 | B2 |
9028550 | Shulock et al. | May 2015 | B2 |
9358125 | Jimenez et al. | Jun 2016 | B2 |
9532883 | McLuen et al. | Jan 2017 | B2 |
9622878 | Grotz | Apr 2017 | B2 |
11628068 | Gray | Apr 2023 | B2 |
20020010511 | Michelson | Jan 2002 | A1 |
20020016595 | Michelson | Feb 2002 | A1 |
20020045945 | Liu | Apr 2002 | A1 |
20020068976 | Jackson | Jun 2002 | A1 |
20020068977 | Jackson | Jun 2002 | A1 |
20030045939 | Casutt | Mar 2003 | A1 |
20030105528 | Shimp et al. | Jun 2003 | A1 |
20030125739 | Bagga et al. | Jul 2003 | A1 |
20030167091 | Scharf | Sep 2003 | A1 |
20030176926 | Boehm et al. | Sep 2003 | A1 |
20040030387 | Landry et al. | Feb 2004 | A1 |
20040049271 | Biedermann | Mar 2004 | A1 |
20040054412 | Gerbec et al. | Mar 2004 | A1 |
20040078078 | Shepard | Apr 2004 | A1 |
20040087947 | Lim et al. | May 2004 | A1 |
20040143270 | Zucherman et al. | Jul 2004 | A1 |
20040143332 | Krueger et al. | Jul 2004 | A1 |
20040153065 | Lim | Aug 2004 | A1 |
20040176853 | Sennett et al. | Sep 2004 | A1 |
20050007891 | Hiranuma et al. | Jan 2005 | A1 |
20050021041 | Michelson | Jan 2005 | A1 |
20050021145 | de Villiers et al. | Jan 2005 | A1 |
20050033432 | Gordon | Feb 2005 | A1 |
20050055098 | Zdeblick et al. | Mar 2005 | A1 |
20050065607 | Gross | Mar 2005 | A1 |
20050080422 | Otte et al. | Apr 2005 | A1 |
20050113916 | Branch | May 2005 | A1 |
20050149188 | Cook | Jul 2005 | A1 |
20050149192 | Zucherman et al. | Jul 2005 | A1 |
20050149193 | Zucherman et al. | Jul 2005 | A1 |
20050159819 | McCormack et al. | Jul 2005 | A1 |
20050171541 | Boehm | Aug 2005 | A1 |
20050171607 | Michelson | Aug 2005 | A1 |
20050177236 | Mathieu et al. | Aug 2005 | A1 |
20050187625 | Wolek et al. | Aug 2005 | A1 |
20050240267 | Randall et al. | Oct 2005 | A1 |
20050240271 | Zubok et al. | Oct 2005 | A1 |
20050251258 | Jackson | Nov 2005 | A1 |
20050256574 | Paul et al. | Nov 2005 | A1 |
20050273171 | Gordon | Dec 2005 | A1 |
20050273174 | Gordon | Dec 2005 | A1 |
20050278026 | Gordon | Dec 2005 | A1 |
20050283244 | Gordon | Dec 2005 | A1 |
20050283245 | Gordon | Dec 2005 | A1 |
20060004453 | Bartish, Jr. et al. | Jan 2006 | A1 |
20060015184 | Winterbottom et al. | Jan 2006 | A1 |
20060058878 | Michelson | Mar 2006 | A1 |
20060084986 | Grinberg et al. | Apr 2006 | A1 |
20060085071 | Lechmann et al. | Apr 2006 | A1 |
20060122701 | Kister | Jun 2006 | A1 |
20060129240 | Lessar et al. | Jun 2006 | A1 |
20060129244 | Ensign | Jun 2006 | A1 |
20060142859 | Mcluen | Jun 2006 | A1 |
20060149385 | Mckay | Jul 2006 | A1 |
20060195192 | Gordon et al. | Aug 2006 | A1 |
20060217809 | Albert et al. | Sep 2006 | A1 |
20060229729 | Gordon | Oct 2006 | A1 |
20060241770 | Rhoda et al. | Oct 2006 | A1 |
20060253201 | Mcluen | Nov 2006 | A1 |
20070043442 | Abernathie | Feb 2007 | A1 |
20070050030 | Kim | Mar 2007 | A1 |
20070050032 | Gittings et al. | Mar 2007 | A1 |
20070055377 | Hanson et al. | Mar 2007 | A1 |
20070088441 | Duggal et al. | Apr 2007 | A1 |
20070123987 | Bernstein | May 2007 | A1 |
20070135919 | Aebi et al. | Jun 2007 | A1 |
20070135923 | Peterman et al. | Jun 2007 | A1 |
20070162130 | Rashbaum et al. | Jul 2007 | A1 |
20070168032 | Muhanna et al. | Jul 2007 | A1 |
20070191951 | Branch | Aug 2007 | A1 |
20070225806 | Squires et al. | Sep 2007 | A1 |
20070225812 | Gill | Sep 2007 | A1 |
20070233253 | Bray et al. | Oct 2007 | A1 |
20070250167 | Bray et al. | Oct 2007 | A1 |
20070255415 | Edie et al. | Nov 2007 | A1 |
20070270961 | Ferguson | Nov 2007 | A1 |
20070270963 | Melkent et al. | Nov 2007 | A1 |
20070270968 | Baynham | Nov 2007 | A1 |
20080021559 | Thramann | Jan 2008 | A1 |
20080051890 | Waugh et al. | Feb 2008 | A1 |
20080051907 | Marik | Feb 2008 | A1 |
20080065222 | Hamada | Mar 2008 | A1 |
20080114467 | Capote et al. | May 2008 | A1 |
20080133013 | Duggal et al. | Jun 2008 | A1 |
20080140207 | Olmos et al. | Jun 2008 | A1 |
20080147194 | Grotz et al. | Jun 2008 | A1 |
20080161933 | Grotz et al. | Jul 2008 | A1 |
20080167657 | Greenhalgh | Jul 2008 | A1 |
20080183204 | Greenhalgh et al. | Jul 2008 | A1 |
20080221694 | Warnick et al. | Sep 2008 | A1 |
20080275455 | Berry et al. | Nov 2008 | A1 |
20080281346 | Greenhalgh et al. | Nov 2008 | A1 |
20080288073 | Renganath et al. | Nov 2008 | A1 |
20080300598 | Barreiro et al. | Dec 2008 | A1 |
20080306488 | Altarac et al. | Dec 2008 | A1 |
20080319487 | Fielding et al. | Dec 2008 | A1 |
20080319549 | Greenhalgh et al. | Dec 2008 | A1 |
20090024217 | Levy et al. | Jan 2009 | A1 |
20090062833 | Song | Mar 2009 | A1 |
20090076608 | Gordon et al. | Mar 2009 | A1 |
20090076616 | Duggal et al. | Mar 2009 | A1 |
20090125062 | Amin | May 2009 | A1 |
20090149956 | Greenhalgh et al. | Jun 2009 | A1 |
20090149959 | Conner et al. | Jun 2009 | A1 |
20090204218 | Richelsoph | Aug 2009 | A1 |
20090210062 | Thalgott et al. | Aug 2009 | A1 |
20090222100 | Cipoletti et al. | Sep 2009 | A1 |
20090240334 | Richelsoph | Sep 2009 | A1 |
20090270989 | Conner et al. | Oct 2009 | A1 |
20090281628 | Oglaza et al. | Nov 2009 | A1 |
20090292361 | Lopez | Nov 2009 | A1 |
20090299478 | Carls et al. | Dec 2009 | A1 |
20090312763 | McCormack | Dec 2009 | A1 |
20100049324 | Valdevit | Feb 2010 | A1 |
20100057206 | Duffield et al. | Mar 2010 | A1 |
20100070041 | Peterman | Mar 2010 | A1 |
20100082109 | Greenhalgh et al. | Apr 2010 | A1 |
20100145455 | Simpson et al. | Jun 2010 | A1 |
20100179657 | Greenhalgh et al. | Jul 2010 | A1 |
20100211176 | Greenhalgh | Aug 2010 | A1 |
20100222816 | Gabelberger et al. | Sep 2010 | A1 |
20100286783 | Lechmann et al. | Nov 2010 | A1 |
20110035011 | Cain | Feb 2011 | A1 |
20110093074 | Glerum et al. | Apr 2011 | A1 |
20110160861 | Jimenez et al. | Jun 2011 | A1 |
20110172774 | Varela | Jul 2011 | A1 |
20110276142 | Niemiec et al. | Nov 2011 | A1 |
20110301713 | Theofilos | Dec 2011 | A1 |
20110319997 | Glerum et al. | Dec 2011 | A1 |
20120035729 | Glerum et al. | Feb 2012 | A1 |
20120059470 | Weiman | Mar 2012 | A1 |
20120059472 | Weiman | Mar 2012 | A1 |
20120104308 | Lechmann et al. | May 2012 | A1 |
20120109308 | Lechmann et al. | May 2012 | A1 |
20120130496 | Duffield et al. | May 2012 | A1 |
20120165945 | Hansell et al. | Jun 2012 | A1 |
20120185049 | Varela | Jul 2012 | A1 |
20120209386 | Triplett et al. | Aug 2012 | A1 |
20120215313 | Saidha et al. | Aug 2012 | A1 |
20120226357 | Varela | Sep 2012 | A1 |
20120265309 | Glerum et al. | Oct 2012 | A1 |
20120277861 | Steele et al. | Nov 2012 | A1 |
20120277870 | Wolters et al. | Nov 2012 | A1 |
20120323329 | Jimenez et al. | Dec 2012 | A1 |
20120330426 | McLaughlin et al. | Dec 2012 | A1 |
20130023993 | Weiman | Jan 2013 | A1 |
20130023994 | Glerum | Jan 2013 | A1 |
20130158663 | Miller et al. | Jun 2013 | A1 |
20130158669 | Sungarian et al. | Jun 2013 | A1 |
20130197647 | Wolters et al. | Aug 2013 | A1 |
20130211526 | Alheidt et al. | Aug 2013 | A1 |
20130274883 | McLuen et al. | Oct 2013 | A1 |
20140067071 | Weiman et al. | Mar 2014 | A1 |
20140088714 | Miller et al. | Mar 2014 | A1 |
20140163683 | Seifert et al. | Jun 2014 | A1 |
20140277489 | Davenport et al. | Sep 2014 | A1 |
20150066145 | Rogers et al. | Mar 2015 | A1 |
20150088258 | Jimenez et al. | Mar 2015 | A1 |
20150134064 | Grotz et al. | May 2015 | A1 |
20150216676 | Shulock et al. | Aug 2015 | A1 |
20150289988 | Ashley et al. | Oct 2015 | A1 |
20150374508 | Sandul | Dec 2015 | A1 |
20160166396 | McClintock | Jun 2016 | A1 |
20160324654 | Loebl et al. | Nov 2016 | A1 |
20170100258 | Jimenez et al. | Apr 2017 | A1 |
20170119543 | Dietzel et al. | May 2017 | A1 |
Number | Date | Country |
---|---|---|
2088066 | Jan 1992 | CA |
4012622 | Jul 1991 | DE |
4327054 | Apr 1995 | DE |
0576379 | Jun 1993 | EP |
0610837 | Jul 1994 | EP |
3111896 | Jan 2017 | EP |
2727003 | May 1996 | FR |
2794968 | Dec 2000 | FR |
2000-513263 | Oct 2000 | JP |
2005030765 | Feb 2005 | JP |
2006509560 | Mar 2006 | JP |
2012501744 | Jan 2012 | JP |
2013508031 | Mar 2013 | JP |
200290058 | Sep 2002 | KR |
1424826 | Sep 1988 | SU |
9201428 | Feb 1992 | WO |
9525485 | Sep 1995 | WO |
1997023175 | Jul 1997 | WO |
1999042062 | Aug 1999 | WO |
1999063914 | Dec 1999 | WO |
1999066867 | Dec 1999 | WO |
2002045625 | Jun 2002 | WO |
2004019829 | Mar 2004 | WO |
2004069033 | Aug 2004 | WO |
2005007040 | Jan 2005 | WO |
2006045094 | Apr 2006 | WO |
2006047587 | May 2006 | WO |
2006113080 | Oct 2006 | WO |
2007098288 | Aug 2007 | WO |
2008014258 | Jan 2008 | WO |
2008044057 | Apr 2008 | WO |
2008134515 | Nov 2008 | WO |
2009114381 | Sep 2009 | WO |
2010103344 | Sep 2010 | WO |
2012031267 | Mar 2012 | WO |
2014127202 | Aug 2014 | WO |
2015009793 | Jan 2015 | WO |
Entry |
---|
Guidance Document: Intervertebral Body Fusion Device, U.S. Dept. of Health and Human Services, Food and Drug Administration (Jun. 12, 2007). |
M. Spruit et al., The in vitro stabilizing effect of polyether-etherketone cages versus a titanium cage of similar design for anterior lumbar interbody fusion, 14(8) Eur. Spine J. 752, 752-758 (2005). |
P. Schleicher et al., Biomechanical comparison of two different concepts for stand alone anterior lumbar interbody fusion, 17(12) Eur. Spine J. 1757, 1757-1765 (2008). |
P.W. Pavlov et al., Anterior lumbar interbody fusion with threaded fusion cages and autologous bone grafts, 9 Eur. Spine J. 224, 224-229 (2000). |
Synthes' SynFix Technique Guide device (“SynFix Technique Guide”). |
Number | Date | Country | |
---|---|---|---|
20230248536 A1 | Aug 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17019658 | Sep 2020 | US |
Child | 18301296 | US | |
Parent | 16019615 | Jun 2018 | US |
Child | 17019658 | US | |
Parent | 14960618 | Dec 2015 | US |
Child | 16019615 | US | |
Parent | 13968849 | Aug 2013 | US |
Child | 14960618 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13836687 | Mar 2013 | US |
Child | 13968849 | US |