1. Field of the Invention
The present invention generally relates to spinal implants. More specifically, embodiments of the invention relate to expandable intervertebral implants for insertion into an intervertebral space between adjacent vertebrae of a human spine.
2. Description of Related Art
The human spine is a complex mechanical structure including alternating bony vertebrae and fibrocartilaginous discs that are connected by strong ligaments and supported by musculature that extends from the skull to the pelvis and provides axial support to the body. The intervertebral discs provide mechanical cushion between adjacent vertebral segments of the spinal column and include three basic components: the nucleus pulposus, the annulus fibrosis, and two vertebral end plates. The end plates are made of thin cartilage overlying a thin layer of hard cortical bone that attaches to the spongy, cancellous bone of the vertebral body. The annulus fibrosis forms the disc's perimeter and is a tough outer ring that binds adjacent vertebrae together. The vertebrae generally include a vertebral foramen bounded by the anterior vertebral body and the neural arch, which consists of two pedicles and two laminae that are united posteriorly. The spinous and transverse processes protrude from the neural arch. The superior and inferior articular facets lie at the root of the transverse process.
The human spine is highly flexible, capable of a high degree of curvature and twist in nearly every direction. Genetic or developmental irregularities, trauma, chronic stress, and degenerative wear, however, can result in spinal pathologies for which surgical intervention may be necessary. A disc may become damaged or diseased, reducing intervertebral separation. Reduction of the intervertebral separation may reduce a height of the disc nucleus, which may cause the annulus to buckle in areas where the laminated plies are loosely bonded. As the overlapping laminated plies of the annulus begin to buckle and separate, circumferential or radial annular tears may occur. Such disruption to the natural intervertebral separation may produce pain, which may be alleviated by removal of the disc and subsequently maintaining the natural separation of the vertebrae. In cases of chronic back pain resulting from a degenerated or herniated disc, removal of the disc becomes medically necessary.
In some instances, a damaged disc may be replaced with a disc prosthesis intended to duplicate the dynamic function of a natural spinal disc. In other cases, it may be desirable to fuse adjacent vertebrae of a human spine together after removal of a disc. This procedure is generally referred to as “intervertebral fusion” or “interbody fusion.” Intervertebral fusion has been accomplished with a variety of techniques and instruments. In some instances intervertebral fusion has been accomplished by placing structural bone or interbody fusion cage implants filled with bone graft material (e.g., morselized bone) within an intervertebral space where the spinal disc once resided. Fusion cage implants have been generally successful in promoting fusion and maintaining suitable disc height. Insertion of fusion cage implants, however, may be difficult. For example, fusion cages inserted from a posterior approach are generally limited in size by the space between the nerve roots which the implant is moved through during insertion. Moreover, as the distance between vertebral end plates is reduced, the height of the intervertebral space is reduced, thereby limited the size of implants introduced into the space, and often requiring distraction (e.g., spreading of the vertebrae) to achieve a suitable separation of the vertebrae. To address these concerns, some implant designs include expandable implants. Expandable implants may include an undeployed/contracted configuration during insertion into the intervertebral space and may be expanded once inserted into the intervertebral space. Expansion may provide an expanded height to maintain a suitable separation of the vertebrae. Ideally, such expandable implant assemblies that are expanded within the intervertebral space may reduce potential trauma to the nerve roots and yet still allow restoration of disc space height. Unfortunately, the expandable implants may increase design complexity, may increase the complexity during implantation, may be unstable, or the like.
Accordingly, there is a desire to provide an expandable implant technique that provides a simple and reliable solution for intervertebral fusion.
Various embodiments of spinal implant systems and related apparatus, and methods of operating the same are described. In one embodiment, provided is an intervertebral implant to be implanted within an intervertebral space between endplates of adjacent vertebra during use. The implant includes an upper member having an inferior surface including an upper guide track and a superior surface to contact an endplate of an upper one of the adjacent vertebra during use, a lower member having a superior surface including a lower guide track and an inferior surface to contact an endplate of a lower one of the adjacent vertebra during use, and an insert having a superior surface including an upper guide rail to engage the upper guide track during use and an inferior surface including a lower guide rail to engage the lower guide track during use. Engagement of the upper and lower guide rails with the upper and lower guide tracks, respectively, guides insertion of the insert between the upper and lower members during use, and insertion of the insert between the upper and lower members facilitates expansion of the intervertebral implant.
In another embodiment, provided is an intervertebral implant to be implanted within an intervertebral space between endplates of adjacent vertebra during use. The implant includes a first member having an interior surface including a first guide track, and an exterior surface to contact an endplate of a first of the adjacent vertebra during use, a second member including an interior surface comprising a second guide track and an exterior surface to contact an endplate of a second of the adjacent vertebra during use, and an insert including a first exterior surface including a first guide rail to engage the first guide track during use and a second exterior surface including a second guide rail to engage the second guide track during use. Engagement of the first and second guide rails with the first and second guide tracks, respectively, guides insertion of the insert between the first and second members during use, and insertion of the insert between the first and second members facilitates expansion of the intervertebral implant.
In another embodiment, provided is an intervertebral implant. The implant includes a first member to contact an endplate of a first vertebra during use, a second member to contact an endplate of a second vertebra during use, and an insert to be inserted between the first and second members to maintain the first and second members in an expanded position during use. The insert includes a longitudinally oriented guide insertion of the insert between the first and second member.
In another embodiment, provided is a method of implanting an intervertebral implant within an intervertebral space between endplates of adjacent vertebra. The method including inserting an upper member into the intervertebral space such that a superior surface of the upper member contacts an endplate of an upper one of the adjacent vertebra, wherein the upper member includes an inferior surface including an upper guide track, inserting a lower member into the intervertebral space such that an inferior surface of the lower member contacts an endplate of a lower one of the adjacent vertebra, wherein the lower member includes a superior surface including a lower guide track, inserting, between the upper and lower members, an insert including a superior surface including an upper guide rail and an inferior surface including a lower guide rail, where the upper guide rail engages the upper guide track and the lower guide rail engages the lower guide track. Engagement of the upper and lower guide rails with the upper and lower guide tracks, respectively, guides insertion of the insert between the upper and lower members, and wherein insertion of the insert between the upper and lower members facilitates expansion of the intervertebral implant.
In another embodiment, provided is a method of implanting an intervertebral implant within an intervertebral space between endplates of adjacent vertebra. The method includes inserting a first member into the intervertebral space such that an exterior surface of the first member contacts an endplate of a first of the adjacent vertebra, wherein the first member includes an interior surface including a first guide track, inserting a second member into the intervertebral space such that an exterior surface of the second member contacts an endplate of a second of the adjacent vertebra, wherein the second member includes an interior surface including a second guide track, inserting, between the first and second members, an insert including a first exterior surface including a first guide rail and a second exterior surface including a second guide rail, where the first guide rail engages the second guide track. Engagement of the first and second guide rails with the first and second guide tracks, respectively, guides insertion of the insert between the first and second members, and wherein insertion of the insert between the first and second members facilitates expansion of the intervertebral implant.
In another embodiment, provided is a method that includes inserting a first member between adjacent vertebra, wherein the first member contacts an endplate of a first of the adjacent vertebra during use, inserting a second member between the adjacent vertebra, wherein the second member contacts an endplate of a second of the adjacent vertebra during use, and inserting an insert between the first and second members to maintain the first and second members in an expanded position during use. The insert includes a longitudinally oriented guide insertion of the insert between the first and second member.
Advantages of the present invention may become apparent to those skilled in the art with the benefit of the following detailed description of the preferred embodiments and upon reference to the accompanying drawings.
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. The drawings may not be to scale. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but to the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
It is to be understood the present invention is not limited to particular devices or biological systems, which may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include singular and plural referents unless the content clearly dictates otherwise. Thus, for example, reference to “a linker” includes one or more linkers.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art.
The term “connected” as used herein generally refers to pieces which may be joined or linked together.
The term “coupled” as used herein generally refers to pieces which may be used operatively with each other, or joined or linked together, with or without one or more intervening members.
The term “directly” as used herein generally refers to one structure in physical contact with another structure, or, when used in reference to a procedure, means that one process effects another process or structure without the involvement of an intermediate step or component.
As discussed in more detail below, certain embodiments of the present technique include a systems and method for providing an intervertebral implant. In some embodiments, the intervertebral implant includes an expandable device that is disposed within an intervertebral space located between adjacent vertebrae of a human spine. In certain embodiments, the implant includes a spinal fusion implant that facilitates fusion of the adjacent vertebrae. In some embodiments, the implant includes several components, including an upper member, a lower member, and an insert. The components are provided in a sandwiched configuration, having the insert disposed between the upper and lower members. In certain embodiments, the upper and lower members are disposed within an intervertebral space and, the insert is advanced/inserted between the upper and lower members to distract the members relative to one another, thereby expanding the implant. In some embodiments, the upper and lower members are disposed adjacent the upper and lower vertebrae, respectively, such that expansion of the implant causes the upper and lower members to engage and distract the adjacent vertebrae.
In certain embodiments, advancement of the insert is facilitated by guide rails/tracks provided on the upper and lower members, the insert, and related instrumentation. In some embodiments, guides (e.g., rails/tracks) are provided on an inward facing (e.g., interior) surface of the first and second members, and complementary guides (e.g., complementary tracks/rails) are provided on the outward facing (e.g., exterior surface of the insert). In certain embodiments, the rails/tracks run longitudinally (e.g., substantially parallel to the direction of insertion) along lengths of the members and the insert to guide longitudinal advancement of the insert between the interior surfaces of the upper and lower members. In some embodiments, the rails/tracks may include one or more locking features that facilitate retention of the insert between the upper and lower members, thereby inhibiting back-out of the insert from between the members.
In certain embodiments, instrumentation facilitates expansion/distraction of the upper and lower members and/or to guide advancement of the insert between the upper and lower members. In some embodiments, instrument guide members engage trailing ends of the upper and lower members. In certain embodiments, the instrument guide members are used to insert the upper and lower members into the intervertebral space, and once the members have been inserted into the intervertebral space, the instrument guide members are spread apart to provide a distraction force that biases the upper and lower members away from one another into an expanded/distracted position. In certain embodiments, the distraction force is provided simultaneously with the advancement of the insert. In some embodiments, the distraction force provides for distraction of the upper and lower member of a sufficient amount to receive the insert between the members without any significant additional distraction. In certain embodiments, the distraction force is combined with other distraction forces generated as the insert is advanced/wedged between the upper and lower members, thereby providing a resulting distraction force that distracts the upper and lower members and causes distraction of the upper and lower member of a sufficient amount to receive the insert between the members. In some embodiments, all or substantially all the distraction force is generated as the insert is advanced/wedged between the upper and lower members.
Turning now to the figures,
Implant 100 may include a spinal fusion implant that is disposed between adjacent vertebrae of a human spine. Implant 100 may be expandable such that it is inserted into an intervertebral space in a generally unexpanded configuration, and is subsequently expanded to distract or otherwise maintain the adjacent vertebra at a suitable separation distance. As described in more detail below, expansion of implant 100 and/or maintenance of an expanded height of implant 100 may be provided via insertion of an insert between upper and lower members that engage endplates (or similar bony structures) of the adjacent vertebra. Such an insert may act as a wedge that facilitates distraction and/or a spacer that inhibits contraction of the implant, thereby generating and/or maintaining an expanded height of implant 100 and suitable separation/distraction of the adjacent vertebrae.
In the illustrated embodiment, implant 100 includes an upper member 102, a lower member 104 and an insert 106.
During use, insert 106 may be advanced linearly between upper and lower members 102 and 104. For example, during implantation of implant 100, upper and lower members 102 and 104 may be disposed within an intervertebral space located between adjacent vertebrae, and insert 106 may be subsequently slid into position between the upper and lower members 102 and 104 to expand or otherwise maintain upper or lower members 102 and 104 in an expanded position to provide for distraction/separation of the adjacent vertebrae. As described in more detail below, advancement of insert 106 may be provided by one or more instruments used to push insert 106 into a gap between upper and lower members 102 and 104. The gap may already exist or may be created by insertion of insert 106.
During use, upper and lower members 102 and 104 may be separated by a lesser distance (see
In some embodiments, advancement of insert 106 between upper and lower members 102 and 104 is guided via one or more guides located on one, or both of insert 106 and/or adjacent portions of upper and lower members 102 and 104. For example, in the illustrated embodiment, a superior surface of insert 106 includes upper guide rails 130a and 130b (referred to collectively as upper guide rails 130) and an inferior surface of insert 106 includes lower guide rails 132a and 132b (referred to collectively as lower guide rails 132). Guide rails 130 and 132 may engage complementary upper guide tracks 134a and 134b (referred to collectively as upper guide tracks 134) of upper member 102 and lower guide tracks 136a and 136b (referred to collectively as lower guide tracks 136) of lower member 104. Although the terms “rails” and “tracks” are used for clarity in distinguishing one from the other, it will be appreciated that the “rails” and “tracks” may include similar/complementary features (e.g., grooves/recess and/or protrusions/lips) that facilitate guiding relative movement and coupling of members 102 and 104 and insert 106.
In the illustrated embodiment, guide rails 130 and 132 of insert 106 run in a substantially longitudinal direction (e.g., extending substantially between tail 118 and nose 114) along superior and inferior surfaces 140 and 142. Similarly, guide tracks 134 and 136 of respective members 102 and 104 run in a substantially longitudinal direction (e.g., extending between tails 124 and 126 and noses 120 and 122). Guide rails and tracks may run along a portion, substantially all or all of a length of insert 106. In the illustrated embodiment, guides rails 130 and 132 run along a length of insert 106 (e.g., from a leading edge portion to a trailing edge portion). Notably, guide rails 132b and 134b are shorter than guide rails 132a and 132a, as the outward curvature of members 102 and 104 creates a shorter effective length. Guides tracks 134 and 136 of members 102 and 104 may extend at least to tail/trailing-ends 124 and 126, and guide rails 130 and 132 of insert 106 may extend at least to nose/leading-end 114 insert 106 such that guide rails 130 and 132 can engage complementary portions of guide tracks 134 and 136 upon insertion of nose-end 114 of insert 106 into tail-ends 124 and 126 of upper and lower members 102 and 104, as illustrated by arrow 112.
In the illustrated embodiment, the guide rails and tracks include complementary shaped protrusions and recesses that engage one another to guide longitudinal/linear advancement of insert 106. For example, rails 130 and 132 include inward-facing undercut grooves, and tracks 136 and 134 include complementary-outward facing undercut grooves. Each of the undercut grooves may define a longitudinally extending lip or dovetailed groove. In the illustrated embodiments, for example, each of the lips/grooves of rails 130 and 132 of insert 106 include an “S” shaped profile that engages a complementary “S” shaped profile of tracks 136 and 134 of upper and lower members 102 and 104. The respective grooves/lips of the rails and tracks may dovetail with one another to guide longitudinal advancement of insert 106 relative to upper and lower members 102 and 104. In some embodiments, engagement of the guide rails and tracks may inhibit lateral shifting and or vertical separation of insert 106 and upper and lower members 102 and 104. For example, the longitudinal orientation and a substantially low tolerance fit between rails 130 and tracks 134 may inhibit lateral (e.g., side-to-side) movement of insert 106 relative to upper member 102, and a similar fit between rails 132 and tracks 136 may inhibit substantial lateral (e.g., side-to-side) movement and rotation of insert 106 relative to lower member 104. Such retention may help to prevent axial rotation of the adjacent vertebrae during the fusion process, thereby facilitating secure bone growth/fusion between the vertebrae. Engagement of the respective lips of the guide rails and tracks may inhibit vertical separation as the overlap between the lips causes them to catch one another. Such retention may help to prevent vertical separation of the adjacent vertebrae during the fusion process, thereby facilitating secure bone growth/fusion between the vertebrae.
In some embodiments, when insert 106 is assembled to upper and lower members 102 and 104, an upper and lower substantially planar exterior surfaces (e.g., superior surface 137a and inferior surface 137b) of a central body portion 138 of insert 106 may abut complementary interior surfaces (e.g., inferior surface 139a and superior surface 139b) of upper and lower members 102 and 104. Abutment of the respective surfaces may resist vertical compression of implant 100, thereby enabling implant 100 to provide for and maintain an expanded height. In the illustrated embodiment, central body portion 138 includes a height (h) such that, when inserted between upper and lower members 102 and 104, the inferior and superior surfaces 139a and 139b of the upper and lower members are separated by a distance about equal to height (h) (see
In some embodiments, implant 100 includes a retaining mechanism to provide for the retention of insert 106 between upper and lower members 102 and 104. For example, in the illustrated embodiment, insert 106 includes an upper retention feature 160a that engages an upper retention peg 162 of upper member 102 and a lower retention feature 160b that engages a lower retention peg 164 of lower member 104. In the illustrated embodiment, upper retention feature 160a is located proximate an internal lateral side 166 of insert 106, lower retention feature 160b is located proximate an external lateral side 168 of insert 106, upper retention peg 162 is located proximate an internal lateral side 170 of upper member 102, and lower retention peg 164 is located proximate an external lateral side 172 of lower member 102. Retention features 160a and 160b may be located within or otherwise coupled to central portion 138 of insert 106. For example, in the illustrated embodiment, retention feature 160a includes a ramped shaped protrusion formed integrally with a cross member 180 of central portion 138. The ramp shaped protrusion includes a leading ramped surface 182 terminating into a substantially orthogonal trailing edge 184 extending substantially laterally with respect to a longitudinal axis (e.g., substantially parallel to the direction of insertion) of insert 106 (See
In the illustrated embodiment, retention features 160a and 160b are recessed within central body portion 138 such that they do not extend beyond superior and inferior surfaces 137a and 137b of central body portion 138 of insert 106. Central body portion 138 includes slots 200 and 202 that provide for longitudinal insertion/sliding of retention pegs 162 and 164 into engagement with the recessed retention features 160a and 160b. For example slot 200 is formed in superior surface 137a and extends from an area proximate retention feature 160a to a leading edge of insert 106 to provide a channel that enables retention peg 162 to slide there through as insert 106 is advanced between upper and lower members 102 and 104. Slot 202 is formed in inferior surface 137b and extends from an area proximate retention feature 160b to a leading edge of insert 106 to provide a channel that enables retention peg 164 to slide there through as insert 106 is advanced between upper and lower members 102 and 104.
Retention peg 162 includes a protrusion extending downward from inferior surface 139a of upper member 102. The protrusion includes a ramped trailing surface 206 terminating into a substantially orthogonal leading edge 208. Similarly, retention peg 164 includes a protrusion extending upward from superior surface 139b of lower member 104. The protrusion includes a ramped trailing surface 210 terminating into a substantially orthogonal leading edge 212.
During use, insert 106 may be advanced between upper and lower members 102 and 104 (as described below with respect to
In the illustrated embodiment, a forward peg 220 extending from lower member 102 engages a complementary recess/slot 222 of insert 106 to limit additional forward movement of insert 106, thereby inhibiting over insertion of insert 106. A similar recess/slot 222 may be provided on upper member 102. The combination of the forward stopping mechanism along with the retaining mechanism may facilitate proper placement of insert 106 by inhibiting over insertion and back-out of insert 106.
In some embodiments, an actuatable locking mechanism may provide for at least partial retention of insert 106 between upper and lower members 102 and 104. In the illustrated embodiment, insert 106 includes a locking member 230.
In the illustrated embodiment, locking member 230 includes a cylindrical body 232, two protruding arms 234a and 234b, and a tool recess 236. During use cylindrical body 232 is inserted into a complementary cylindrical recess 240 within a trailing end of insert 106. Recess 240 may include two lateral recess 240a and 240b extending radially. Insert 106 may be inserted such that its longitudinal axis 238 substantially aligns with a longitudinal axis of recess 240 and or a longitudinal axis 242 of insert 106 and/or implant 100. During insertion, arms 234a and 234b of locking member 230 may be aligned and inserted into lateral recess 240a and 240b, respectively, such that locking member 230 is advanced longitudinal into recess 240. During use, locking member 230 may be rotated such that arms 234a and 234b engage complementary recess of upper and/or lower members 102 and 104. For example, as illustrated in
In the illustrated embodiments, locking member 230 is rotated about forty-five degrees about axis 238 between the locked and unlocked positions. Other embodiments may include varying amounts of rotations. For example, locking member 230 may be rotated about five, ten, fifteen, twenty, twenty-five, thirty, thirty-five, forty, fifty, fifty-five, sixty, seventy, seventy-five, eighty, eighty-five, ninety degrees or more between the locked and unlocked positions.
Outer surfaces of upper and/or lower members 102 and 104 may include various features to facilitate engagement of their exterior surfaces with endplates of adjacent vertebrae. For example, as illustrated in
In some embodiments, protrusions 250 may include unidirectional teeth that facilitate forward insertion of the members, but inhibit back-out of the members. For example, in the illustrated embodiment, teeth 250 include a ramped leading surface 250a and a substantially vertical trailing edge 250b (see
Protrusions 250 may be provided in a variety of shapes and patterns. In the illustrated embodiment, protrusions 250 include six arched shaped rows of teeth arranged in a generally concentric pattern. The arched rows have a profile that is substantially similar to the curvature of lateral external edges 172 and 173 of upper and lower members 102 and 104.
In some embodiments, implant 100 includes one or more openings extending vertically between upper and lower surfaces of implant 100. For example, in the illustrated embodiment, implant 100 includes a vertical opening 260 defined openings 260a, 260b and 260c extending vertically through upper member 102, lower member 104 and insert 106, respectively. Vertical opening 260 may be provided when implant 100 is assembled to include insert 106 fully inserted/seated between upper and lower members 102 and 104 such that opening 260a, 260b and 260c substantially aligned with one another. Vertical opening may extend completely through implant 100, from superior surface 144 of upper member 102 to inferior surface 146 of lower member 104. In some embodiments, vertical opening 260 may be filled with a substance/material to facilitate bone growth/fusion. Once implant 100 is implanted, vertical opening may facilitate a column of bone growth between the adjacent vertebrae through vertical opening 260. In some embodiments, an opening (e.g., opening 260) may function as a graft window containing bone chips and/or materials which facilitate tissue (e.g., bone) growth.
In some embodiments, insert 106 may act as a wedge that provides for increasing a separation distance between upper and lower members 102 and 104 (e.g., such that the adjacent vertebra are distracted as insert 106 is installed) and/or a spacer that is advanced between upper and lower members 102 and 104 to maintain a separation distance there between (e.g., where upper an lower members 102 and 104 have already been separated/distracted an adequate amount prior to insertion of insert 106). In some embodiments, insert 106 includes a tapered/wedged shaped nose/leading-end that facilitates insertion of insert 106. For example, in the illustrated embodiment, insert 106 includes a tapered/ramped/wedge shaped nose portion 270 (see
In some embodiments, one or more tool/instruments may be used to facilitate expansion of implant 100. For example, expansion instruments coupled to upper member and lower member 102 and 104 may generate a distraction force that separates the members, thereby increasing a size of gap 116 to enable insert 106 to be provided therein. In some embodiments, the distraction force may be sufficient to expand gap 116 to accept insert 106 without much or any additional distraction. For example, the gap 116 may have a height approximately equal to height (h) of insert 106. In some embodiments, the distraction force may help to expand gap 116, however, advancement of insert 106 between upper and lower members 102 and 104 may provide for additional distraction to fully expand implant 100. For example, the distraction forces may partially distract upper and lower members 102 and 104, and advancement of insert 106 may act as a wedge, providing additional distraction forces that, alone or combined with the distraction forces of the instruments, provides additional distraction to fully expand implant 100.
In the depicted embodiments, implant 100 includes tool engagement features that enable coupling of one or more instruments to upper and lower members 102 and 104. For example, upper member 102 includes recess 280a and 280b, and lower member 104 includes tool recesses 282a and 282b (see
As discussed in more detail below, the upper and lower instrument portions may include or may be attached to elongate instrument extensions that can be used to guide insertion of upper and lower members 102 and 104 into the intervertebral space. Insertion, placement and/or aligning of implant 100 within the intervertebral space may be accomplished using the instruments. Some or all of recesses 280a, 280b, 282a and 282b may include a retention feature that at least partially couples the instrument portions to the respective upper and lower member 102 and 104. For example, an interior of some or all of recesses 280a, 280b, 282a and 282b may include a detent feature (e.g., recess) that engages a complementary detent feature (e.g., protrusion) of the instrument portions such that the protrusion and, thus, the instrument portion can be clipped to the recess. Once upper and lower members 102 and 104 are positioned appropriately within the intervertebral space, pulling on the instrument portions may overcome the coupling of the detent features, thereby enabling release of the instrumentation from implant 100.
The upper and lower instrument portions may include guide tracks that couple to guide rails of insert 106 to facilitate guiding of insert 106 into gap 116. For example, an inferior surface of on upper instrument portion and a superior surfaced of a lower instrument portion may include guide track similar to guide tracks 134 and 136 of upper and lower members 102 and 104. When the instrument portions are coupled to upper and lower members 102 and 104, the guide tracks of the instruments may align with guide tracks 134 and 136 of members 102 and 104 to provide an elongated track to guide insertion of insert 106. For example, insert 106 may be advanced along a longitudinal path that extends across the guide tracks of the instruments and guide tracks 134 and 136.
A front/leading end of guide instrument 290 includes protrusions 298a and 298b (collectively referred to as guide protrusions 298). In the illustrated embodiments, protrusions 298a and 298b include elongate cylindrical shaped protrusions that, during use, engage recesses 280a and 280b of upper member 102 or 282a and 282b of lower member 104. Protrusions 298 may provide for aligning of guide tracks 294 with guide tracks 134 and 136 of upper and lower members 102 and 104 when instrument 290 is coupled to upper or lower member 102 or 104. Protrusions 298 may include detent features that engage complementary detent features of upper or lower members 102 or 104 to facilitate coupling of instrument 290 to upper or lower members 102 or 104. In the illustrated embodiment, protrusions 298a and 298b include respective detent catches 300a and 300b. Detent catches 300a and 300b may couple to complementary detent pockets 302 within recess 280a, 280b, 282a, or 282b. Coupling of detent may facilitate retention of instrument 290 to upper or lower members 102 or 104 during insertion. Detent features may facilitate removal of instrument 290 from upper or lower members 102 or 104 via application of a longitudinal separation force pulling instrument 290 away from upper or lower members 102 or 104. Detent features may enable instrument 290 to be snapped into and out of upper or lower members 102 or 104.
Method 400 may include coupling guide instruments to upper and lower members, as depicted at block 402. In some embodiments, coupling guide instruments to upper and lower members includes coupling an upper guide 290a instrument to upper member 102 and a lower guide instrument 290b to lower member 104, as depicted in
Method 400 may include positioning the upper and lower members within an intervertebral space, as depicted at block 404. In some embodiments, positioning the upper and lower members within an intervertebral space may include disposing upper member 102 and/or lower member 104 within intervertebral space 310 between upper vertebra 312 and lower vertebra 314, as depicted in
Method 400 may include applying a distraction force, as depicted at block 406. In some embodiments, applying a distraction force includes applying a force to urge lower body and upper body away from one another. For example, a spreading force may be applied to upper and lower guide instruments 290a and 290b, as depicted by arrow 318. In some embodiments, the spreading force is generated by a practitioner simply spreading/pushing/pulling the upper and lower guide instruments 290a and 290b away from one another. In some embodiments, the spreading force is generated mechanically. For example, lower guide instruments 290a and 290b may be coupled to one another via spreading pliers, such that squeezing the pliers generates a spreading force that urges the lower guide instruments 290a and 290b away from one another. In some embodiments, the pliers may include a ratcheting mechanism such that incremental increases in separation distances can be achieved between guide instruments 290a and 290b. The spreading force may be transferred to upper and lower members 102 and 104 (e.g., via engagement of protrusions 298 with recesses 280 and 282) to generate a corresponding spreading force to upper and lower members 102 and 104, as depicted by arrows 320. The spreading force may cause actual separation/distraction of lower guide instruments 290a and 290b, upper and lower members 102 and 104, and/or upper and lower vertebrae 312 and 314. In some embodiments, the spreading force may simply counteract some of the compressive forces between vertebrae 312 and 314, however, the spreading force may not cause any substantial separation/distraction of lower guide instruments 290a and 290b, upper and lower members 102 and 104, and/or upper and lower vertebrae 312 and 314
Method 400 may include attaching an insert to the guide instruments, as depicted at block 408. In some embodiments, attaching an insert to the guide instruments includes attaching insert 106 to one or both of guide instruments 290a and 290b. For example, in the illustrated embodiment, guide rails 130 and 132 are coupled to guide tracks 296 of the respective upper and lower guide instruments 290a and 290b. In some embodiments, guide tracks 296 may guide longitudinal sliding of insert 106 between guide instruments 290a and 290b such that insert 106 can be slid from at or near a trailing end of guide instruments 290a and 290b, past the leading end of guide instruments 290a and 290b and onto guide tracks 134 and 136 of upper and lower members 102 and 104.
In some embodiments, an insert instrument 330 engages insert 106. Insert instrument 330 may be used to push/pull insert along the guide tracks. In some embodiments, insert instrument 330 includes a keyed leading end that engages tool recess 236 of locking member 230. Insert instrument 330 may be used to advance insert 106 and/or actuate locking member 230 to lock insert 106 between upper and lower members 102 and 104.
Method 400 may include advancing the insert into position between the upper and lower members, as depicted at block 410. In some embodiments, advancing the insert into position between the upper and lower members may include pushing insert 106 forward in the direction of arrow 322, as depicted in
Advancement of insert 106 may provide additional distraction forces that combine with the distraction forces provided at block 406 to effectively distract vertebrae 312 and 314. For example, nose of 114 of insert 106 may act as a wedge to distract upper and lower members 102 and 104. Where the distraction force at block 406 is sufficient to distract upper and lower members 102 and 104, insert 106 may simply inserted to act as a spacer to maintain the distraction. Once inserted, insert 106 may be left in place to act as a spacer that maintains implant 100 at the distracted/expanded height.
Method 400 may include locking the insert between upper and lower members, as depicted at block 412. In some embodiments, locking the insert between upper and lower members includes actuating/rotating locking member 230 such that arms 234a and/or 234b engage recesses 244a and 244b of upper member 102 and lower member 104, respectively. For example, insert instrument 330 may be rotated about longitudinal axis 238, as indicated by arrow 332, such that the keyed leading end engages tool recess 236 of locking member 230, thereby transmitting a torque to rotate locking member into a locked position (see
Method 400 may include removing the instruments, as depicted at block 414. In some embodiments, removing the instruments includes removing some or all of upper guide instrument 290a, lower guide instrument 290b and insert instrument 330. For example, a practitioner may simply pull each of the instruments backwards to de-couple them from the respective portions of implant 100, as depicted by arrows 334 of
Method 400 may include installing other implants, as depicted at block 416. In some embodiments, installing other implants may include installing another implant with intervertebral space 310 and/or another intervertebral space between other adjacent vertebrae. For example, as depicted in
It will be appreciated that method 400 is an exemplary embodiment of a method employed in accordance with techniques described herein. Method 400 may be may be modified to facilitate variations of its implementations and uses. The order of method 400 may be changed, and various elements may be added, reordered, combined, omitted, modified, etc.
Further modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as examples of embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed or omitted, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims. Furthermore, note that the word “may” is used throughout this application in a permissive sense (i.e., having the potential to, being able to), not a mandatory sense (i.e., must). The term “include”, and derivations thereof, mean “including, but not limited to”. As used throughout this application, the singular forms “a”, “an” and “the” include plural referents unless the content clearly indicates otherwise. Thus, for example, reference to “a member” includes a combination of two or more members. The term “coupled” means “directly or indirectly connected”.
This application claims priority to U.S. Provisional Patent Application No. 61/561,037 entitled “EXPANDABLE INTERBODY DEVICE SYSTEM AND METHOD” filed on Nov. 17, 2011, which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3848601 | Ma et al. | Nov 1974 | A |
3867728 | Stubstad et al. | Feb 1975 | A |
4309777 | Patil | Jan 1982 | A |
4349921 | Kuntz | Sep 1982 | A |
4611581 | Steffee | Sep 1986 | A |
4657550 | Daher | Apr 1987 | A |
4696290 | Steffee | Sep 1987 | A |
4743260 | Burton | May 1988 | A |
4759766 | Buettner-Janz et al. | Jul 1988 | A |
4759769 | Hedman et al. | Jul 1988 | A |
4763644 | Webb | Aug 1988 | A |
4772287 | Ray et al. | Sep 1988 | A |
4790303 | Steffee | Dec 1988 | A |
4854311 | Steffee | Aug 1989 | A |
4863476 | Shepperd | Sep 1989 | A |
4863477 | Monson | Sep 1989 | A |
4907577 | Wu | Mar 1990 | A |
4911718 | Lee et al. | Mar 1990 | A |
4932975 | Main et al. | Jun 1990 | A |
4946378 | Hirayama et al. | Aug 1990 | A |
4946458 | Harms et al. | Aug 1990 | A |
5042982 | Harms et al. | Aug 1991 | A |
5047055 | Bao et al. | Sep 1991 | A |
5059194 | Michelson | Oct 1991 | A |
5071437 | Steffee | Dec 1991 | A |
5092867 | Harms et al. | Mar 1992 | A |
5108438 | Stone | Apr 1992 | A |
5123926 | Pisharodi | Jun 1992 | A |
5171278 | Pisharodi | Dec 1992 | A |
5171281 | Parsons et al. | Dec 1992 | A |
5180393 | Commarmond | Jan 1993 | A |
5192326 | Bao et al. | Mar 1993 | A |
5196013 | Harms et al. | Mar 1993 | A |
5207678 | Harms et al. | May 1993 | A |
5217497 | Mehdian | Jun 1993 | A |
5246458 | Graham | Sep 1993 | A |
5258031 | Salib et al. | Nov 1993 | A |
5261909 | Sutterlin et al. | Nov 1993 | A |
5306307 | Senter et al. | Apr 1994 | A |
5306309 | Wagner et al. | Apr 1994 | A |
5314477 | Marnay | May 1994 | A |
5320644 | Baumgartner | Jun 1994 | A |
5336223 | Rogers | Aug 1994 | A |
5370697 | Baumgartner | Dec 1994 | A |
5375823 | Navas | Dec 1994 | A |
5397364 | Kozak et al. | Mar 1995 | A |
5401269 | Buettner-Janz et al. | Mar 1995 | A |
5403315 | Ashman | Apr 1995 | A |
5415661 | Holmes | May 1995 | A |
5423816 | Lin | Jun 1995 | A |
5425773 | Boyd et al. | Jun 1995 | A |
5443467 | Biedermann et al. | Aug 1995 | A |
5458642 | Beer et al. | Oct 1995 | A |
5458643 | Oka et al. | Oct 1995 | A |
5480401 | Navas | Jan 1996 | A |
5496321 | Puno et al. | Mar 1996 | A |
5498263 | DiNello et al. | Mar 1996 | A |
5507816 | Bullivant | Apr 1996 | A |
5514132 | Csernatony et al. | May 1996 | A |
5514180 | Heggeness et al. | May 1996 | A |
5522899 | Michelson | Jun 1996 | A |
5527314 | Brumfield et al. | Jun 1996 | A |
5534028 | Bao et al. | Jul 1996 | A |
5534029 | Shima | Jul 1996 | A |
5534030 | Navarro et al. | Jul 1996 | A |
5540688 | Navas | Jul 1996 | A |
5545165 | Biedermann et al. | Aug 1996 | A |
5554191 | Lahille et al. | Sep 1996 | A |
5556431 | Buttner-Janz | Sep 1996 | A |
5562663 | Wisnewski et al. | Oct 1996 | A |
5562737 | Graf | Oct 1996 | A |
5562738 | Boyd et al. | Oct 1996 | A |
5571109 | Bertagnoli | Nov 1996 | A |
5609635 | Michelson | Mar 1997 | A |
5624442 | Mellinger et al. | Apr 1997 | A |
5645599 | Samani | Jul 1997 | A |
5653763 | Errico et al. | Aug 1997 | A |
5658335 | Allen | Aug 1997 | A |
5665122 | Kambin | Sep 1997 | A |
5672175 | Martin | Sep 1997 | A |
5672176 | Biedermann et al. | Sep 1997 | A |
5674294 | Bainville et al. | Oct 1997 | A |
5674296 | Bryan et al. | Oct 1997 | A |
5676701 | Yuan et al. | Oct 1997 | A |
5676702 | Ratron | Oct 1997 | A |
5683391 | Boyd | Nov 1997 | A |
5683394 | Rinner | Nov 1997 | A |
5683464 | Wagner et al. | Nov 1997 | A |
5683465 | Shinn et al. | Nov 1997 | A |
5702450 | Bisserie | Dec 1997 | A |
5725527 | Biedermann et al. | Mar 1998 | A |
5733284 | Martin | Mar 1998 | A |
5741253 | Michelson | Apr 1998 | A |
5755797 | Baumgartner | May 1998 | A |
5772661 | Michelson | Jun 1998 | A |
5776199 | Michelson | Jul 1998 | A |
5782832 | Larsen et al. | Jul 1998 | A |
5785647 | Tompkins et al. | Jul 1998 | A |
5797909 | Michelson | Aug 1998 | A |
5800547 | Schafer et al. | Sep 1998 | A |
5800549 | Bao et al. | Sep 1998 | A |
5800550 | Sertich | Sep 1998 | A |
5810819 | Errico et al. | Sep 1998 | A |
5810820 | Santori et al. | Sep 1998 | A |
5824093 | Ray et al. | Oct 1998 | A |
5824094 | Serhan et al. | Oct 1998 | A |
5827328 | Buttermann | Oct 1998 | A |
5836960 | Kolesa et al. | Nov 1998 | A |
5849004 | Bramlet | Dec 1998 | A |
5860973 | Michelson | Jan 1999 | A |
5861041 | Tienboon | Jan 1999 | A |
5863293 | Richelsoph | Jan 1999 | A |
5865846 | Bryan et al. | Feb 1999 | A |
5865848 | Baker | Feb 1999 | A |
5888220 | Felt et al. | Mar 1999 | A |
5888226 | Rogozinski | Mar 1999 | A |
5893889 | Harrington | Apr 1999 | A |
5895427 | Kuslich et al. | Apr 1999 | A |
5895428 | Berry | Apr 1999 | A |
5899941 | Nishijima et al. | May 1999 | A |
5928243 | Guyer | Jul 1999 | A |
5935133 | Wagner et al. | Aug 1999 | A |
5938663 | Petreto | Aug 1999 | A |
5951555 | Rehak et al. | Sep 1999 | A |
5961518 | Errico et al. | Oct 1999 | A |
5961554 | Janson et al. | Oct 1999 | A |
5964769 | Wagner et al. | Oct 1999 | A |
5976186 | Bao et al. | Nov 1999 | A |
5980522 | Koros et al. | Nov 1999 | A |
5984967 | Zdeblick et al. | Nov 1999 | A |
5989250 | Wagner et al. | Nov 1999 | A |
5989290 | Biedermann et al. | Nov 1999 | A |
5997539 | Errico et al. | Dec 1999 | A |
6001130 | Bryan et al. | Dec 1999 | A |
6017344 | Errico et al. | Jan 2000 | A |
6019792 | Cauthen | Feb 2000 | A |
6022376 | Assell et al. | Feb 2000 | A |
6030389 | Wagner et al. | Feb 2000 | A |
6039763 | Shelokov | Mar 2000 | A |
6045552 | Zucherman et al. | Apr 2000 | A |
6045579 | Hochshuler et al. | Apr 2000 | A |
6053921 | Wagner et al. | Apr 2000 | A |
6063089 | Errico et al. | May 2000 | A |
RE36758 | Fitz | Jun 2000 | E |
6080193 | Hochshuler et al. | Jun 2000 | A |
6093205 | McLeod et al. | Jul 2000 | A |
6096038 | Michelson | Aug 2000 | A |
6099531 | Bonutti | Aug 2000 | A |
6102950 | Vaccaro | Aug 2000 | A |
6106526 | Harms et al. | Aug 2000 | A |
6110210 | Norton et al. | Aug 2000 | A |
6113637 | Gill et al. | Sep 2000 | A |
6113638 | Williams et al. | Sep 2000 | A |
6123707 | Wagner et al. | Sep 2000 | A |
6126689 | Brett | Oct 2000 | A |
6132430 | Wagner et al. | Oct 2000 | A |
6132464 | Martin | Oct 2000 | A |
6132465 | Ray et al. | Oct 2000 | A |
6136001 | Michelson | Oct 2000 | A |
6136031 | Middleton | Oct 2000 | A |
6139579 | Steffee et al. | Oct 2000 | A |
6146421 | Gordon et al. | Nov 2000 | A |
6146422 | Lawson | Nov 2000 | A |
6156067 | Bryan et al. | Dec 2000 | A |
6159244 | Suddaby | Dec 2000 | A |
6162252 | Kuras et al. | Dec 2000 | A |
6165218 | Husson et al. | Dec 2000 | A |
6176882 | Biedermann et al. | Jan 2001 | B1 |
6179873 | Zientek | Jan 2001 | B1 |
6179874 | Cauthen | Jan 2001 | B1 |
6186034 | Lamons | Feb 2001 | B1 |
6187048 | Milner et al. | Feb 2001 | B1 |
6200348 | Biedermann et al. | Mar 2001 | B1 |
6206924 | Timm | Mar 2001 | B1 |
6214049 | Gayer et al. | Apr 2001 | B1 |
6214050 | Huene | Apr 2001 | B1 |
6217579 | Koros | Apr 2001 | B1 |
6228118 | Gordon | May 2001 | B1 |
6231609 | Mehdizadeh | May 2001 | B1 |
6241730 | Alby | Jun 2001 | B1 |
6264656 | Michelson | Jul 2001 | B1 |
6290724 | Marino | Sep 2001 | B1 |
6296664 | Middleton | Oct 2001 | B1 |
6315797 | Middleton | Nov 2001 | B1 |
6331179 | Freid et al. | Dec 2001 | B1 |
6348071 | Steffee et al. | Feb 2002 | B1 |
RE37665 | Ralph et al. | Apr 2002 | E |
6368350 | Erickson | Apr 2002 | B1 |
6368351 | Glenn et al. | Apr 2002 | B1 |
6371990 | Ferree | Apr 2002 | B1 |
6375682 | Fleischmann et al. | Apr 2002 | B1 |
6375683 | Crozet et al. | Apr 2002 | B1 |
6391090 | Wagner et al. | May 2002 | B1 |
6395032 | Gauchet | May 2002 | B1 |
6395034 | Suddaby | May 2002 | B1 |
6402784 | Wardlaw | Jun 2002 | B1 |
6402785 | Zdeblick et al. | Jun 2002 | B1 |
6409766 | Brett | Jun 2002 | B1 |
6413259 | Lyons et al. | Jul 2002 | B1 |
6416515 | Wagner et al. | Jul 2002 | B1 |
6419703 | Fallin et al. | Jul 2002 | B1 |
6419704 | Ferree | Jul 2002 | B1 |
6436140 | Liu et al. | Aug 2002 | B1 |
6440168 | Cauthen | Aug 2002 | B1 |
6442814 | Landry et al. | Sep 2002 | B1 |
6443990 | Aebi et al. | Sep 2002 | B1 |
6447512 | Landry et al. | Sep 2002 | B1 |
6447544 | Michelson | Sep 2002 | B1 |
6447545 | Bagby | Sep 2002 | B1 |
6447546 | Bramlet et al. | Sep 2002 | B1 |
6451021 | Ralph et al. | Sep 2002 | B1 |
6454769 | Wagner et al. | Sep 2002 | B2 |
6454806 | Cohen et al. | Sep 2002 | B1 |
6454807 | Jackson | Sep 2002 | B1 |
6475218 | Gournay et al. | Nov 2002 | B2 |
6478822 | Leroux et al. | Nov 2002 | B1 |
6478823 | Michelson | Nov 2002 | B1 |
6482207 | Errico | Nov 2002 | B1 |
6482234 | Weber et al. | Nov 2002 | B1 |
6488710 | Besselink | Dec 2002 | B2 |
6491724 | Ferree | Dec 2002 | B1 |
6500180 | Foley et al. | Dec 2002 | B1 |
6500205 | Michelson | Dec 2002 | B1 |
6500206 | Bryan | Dec 2002 | B1 |
6520996 | Manasas et al. | Feb 2003 | B1 |
6524312 | Landry et al. | Feb 2003 | B2 |
6527803 | Crozet et al. | Mar 2003 | B1 |
6533817 | Norton et al. | Mar 2003 | B1 |
6533818 | Weber et al. | Mar 2003 | B1 |
6537320 | Michelson | Mar 2003 | B1 |
6540748 | Lombardo | Apr 2003 | B2 |
6558423 | Michelson | May 2003 | B1 |
6558424 | Thalgott | May 2003 | B2 |
6562040 | Wagner et al. | May 2003 | B1 |
6562074 | Gerbec et al. | May 2003 | B2 |
6565566 | Wagner et al. | May 2003 | B1 |
6565605 | Goble et al. | May 2003 | B2 |
6569442 | Gan et al. | May 2003 | B2 |
6572653 | Simonson | Jun 2003 | B1 |
6576016 | Hochshuler et al. | Jun 2003 | B1 |
6579318 | Varga et al. | Jun 2003 | B2 |
6579319 | Goble et al. | Jun 2003 | B2 |
6582467 | Teitelbaum et al. | Jun 2003 | B1 |
6592624 | Fraser et al. | Jul 2003 | B1 |
6595992 | Wagner et al. | Jul 2003 | B1 |
6595998 | Johnson et al. | Jul 2003 | B2 |
6607530 | Carl et al. | Aug 2003 | B1 |
6610091 | Reiley | Aug 2003 | B1 |
6610094 | Husson | Aug 2003 | B2 |
6613050 | Wagner et al. | Sep 2003 | B1 |
6616671 | Landry et al. | Sep 2003 | B2 |
6626904 | Jammet et al. | Sep 2003 | B1 |
6626905 | Schmeil et al. | Sep 2003 | B1 |
6635062 | Ray et al. | Oct 2003 | B2 |
6641614 | Wagner et al. | Nov 2003 | B1 |
6648893 | Dudasik | Nov 2003 | B2 |
6648915 | Sazy | Nov 2003 | B2 |
6648917 | Gerbec et al. | Nov 2003 | B2 |
6666870 | Dixon | Dec 2003 | B2 |
6666891 | Boehm et al. | Dec 2003 | B2 |
6679915 | Cauthen | Jan 2004 | B1 |
6682533 | Dinsdale et al. | Jan 2004 | B1 |
6685742 | Jackson | Feb 2004 | B1 |
6692495 | Zacouto | Feb 2004 | B1 |
6706070 | Wagner et al. | Mar 2004 | B1 |
6712819 | Zucherman et al. | Mar 2004 | B2 |
6716247 | Michelson | Apr 2004 | B2 |
6719796 | Cohen et al. | Apr 2004 | B2 |
6733531 | Trieu | May 2004 | B1 |
6736850 | Davis | May 2004 | B2 |
6743257 | Castro | Jun 2004 | B2 |
6758861 | Ralph et al. | Jul 2004 | B2 |
6767367 | Michelson | Jul 2004 | B1 |
6770096 | Bolger et al. | Aug 2004 | B2 |
6773460 | Jackson | Aug 2004 | B2 |
6800092 | Williams et al. | Oct 2004 | B1 |
6802844 | Ferree | Oct 2004 | B2 |
6811567 | Reiley | Nov 2004 | B2 |
6821298 | Jackson | Nov 2004 | B1 |
6852129 | Gerbec et al. | Feb 2005 | B2 |
6863673 | Gerbec et al. | Mar 2005 | B2 |
6893464 | Kiester | May 2005 | B2 |
6896680 | Michelson | May 2005 | B2 |
6902580 | Fallin et al. | Jun 2005 | B2 |
6923830 | Michelson | Aug 2005 | B2 |
6928284 | Palat et al. | Aug 2005 | B2 |
6936070 | Muhanna | Aug 2005 | B1 |
6936071 | Marnay et al. | Aug 2005 | B1 |
6953477 | Berry | Oct 2005 | B2 |
6962606 | Michelson | Nov 2005 | B2 |
6964664 | Freid et al. | Nov 2005 | B2 |
6966929 | Mitchell | Nov 2005 | B2 |
6966930 | Arnin et al. | Nov 2005 | B2 |
6974478 | Reiley et al. | Dec 2005 | B2 |
6981975 | Michelson | Jan 2006 | B2 |
6981989 | Fleischmann et al. | Jan 2006 | B1 |
6991632 | Ritland | Jan 2006 | B2 |
6994727 | Khandkar et al. | Feb 2006 | B2 |
6997929 | Manzi et al. | Feb 2006 | B2 |
7011685 | Arnin et al. | Mar 2006 | B2 |
7018415 | McKay | Mar 2006 | B1 |
7029475 | Panjabi | Apr 2006 | B2 |
7060073 | Frey et al. | Jun 2006 | B2 |
7060100 | Ferree | Jun 2006 | B2 |
7083622 | Simonson | Aug 2006 | B2 |
7083649 | Zucherman et al. | Aug 2006 | B2 |
7090698 | Goble et al. | Aug 2006 | B2 |
7101398 | Dooris et al. | Sep 2006 | B2 |
7112206 | Michelson | Sep 2006 | B2 |
7118579 | Michelson | Oct 2006 | B2 |
7118580 | Beyersdorff et al. | Oct 2006 | B1 |
7128760 | Michelson | Oct 2006 | B2 |
7147664 | Louis et al. | Dec 2006 | B2 |
7153310 | Ralph et al. | Dec 2006 | B2 |
7198644 | Schultz et al. | Apr 2007 | B2 |
7204852 | Marnay et al. | Apr 2007 | B2 |
7204853 | Gordon et al. | Apr 2007 | B2 |
7270681 | Cauthen | Sep 2007 | B2 |
7273496 | Mitchell | Sep 2007 | B2 |
7291150 | Graf | Nov 2007 | B2 |
7291159 | Graf | Nov 2007 | B2 |
7291173 | Richelsoph et al. | Nov 2007 | B2 |
7311713 | Johnson et al. | Dec 2007 | B2 |
7316714 | Gordon et al. | Jan 2008 | B2 |
7318839 | Malberg et al. | Jan 2008 | B2 |
7320707 | Zucherman | Jan 2008 | B2 |
7326250 | Beaurain et al. | Feb 2008 | B2 |
7338525 | Ferree | Mar 2008 | B2 |
7338527 | Blatt et al. | Mar 2008 | B2 |
7364589 | Eisermann | Apr 2008 | B2 |
7473276 | Aebi et al. | Jan 2009 | B2 |
7476238 | Panjabi | Jan 2009 | B2 |
7485146 | Crook et al. | Feb 2009 | B1 |
7517359 | Drewry et al. | Apr 2009 | B2 |
7547309 | Bertagnoli et al. | Jun 2009 | B2 |
7550009 | Arnin et al. | Jun 2009 | B2 |
7556651 | Humphreys et al. | Jul 2009 | B2 |
7575580 | Lim et al. | Aug 2009 | B2 |
7594932 | Aferzon et al. | Sep 2009 | B2 |
7615068 | Timm et al. | Nov 2009 | B2 |
7635379 | Callahan et al. | Dec 2009 | B2 |
7682396 | Beaurain et al. | Mar 2010 | B2 |
7699875 | Timm et al. | Apr 2010 | B2 |
7708778 | Gordon et al. | May 2010 | B2 |
7713287 | Timm et al. | May 2010 | B2 |
7713288 | Timm et al. | May 2010 | B2 |
7727280 | McLuen | Jun 2010 | B2 |
7753958 | Gordon et al. | Jul 2010 | B2 |
7771479 | Humphreys et al. | Aug 2010 | B2 |
7785351 | Gordon et al. | Aug 2010 | B2 |
7794480 | Gordon et al. | Sep 2010 | B2 |
7799082 | Gordon et al. | Sep 2010 | B2 |
7811309 | Timm et al. | Oct 2010 | B2 |
7819801 | Miles et al. | Oct 2010 | B2 |
7828849 | Lim | Nov 2010 | B2 |
7846188 | Moskowitz et al. | Dec 2010 | B2 |
7896919 | Belliard et al. | Mar 2011 | B2 |
7909869 | Gordon et al. | Mar 2011 | B2 |
7909877 | Krueger et al. | Mar 2011 | B2 |
7927374 | Duggal et al. | Apr 2011 | B2 |
7931675 | Panjabi et al. | Apr 2011 | B2 |
7942905 | Lim et al. | May 2011 | B2 |
7951170 | Jackson | May 2011 | B2 |
7959677 | Landry et al. | Jun 2011 | B2 |
8043379 | Moumene et al. | Oct 2011 | B2 |
8052723 | Gordon et al. | Nov 2011 | B2 |
8062375 | Glerum et al. | Nov 2011 | B2 |
8080062 | Armstrong et al. | Dec 2011 | B2 |
8105382 | Olmos et al. | Jan 2012 | B2 |
8114092 | Altarac et al. | Feb 2012 | B2 |
8118869 | Gordon et al. | Feb 2012 | B2 |
8118870 | Gordon et al. | Feb 2012 | B2 |
8118871 | Gordon et al. | Feb 2012 | B2 |
8123810 | Gordon et al. | Feb 2012 | B2 |
8128700 | Delurio et al. | Mar 2012 | B2 |
8147550 | Gordon et al. | Apr 2012 | B2 |
8157844 | Gimbel et al. | Apr 2012 | B2 |
8162994 | Gimbel et al. | Apr 2012 | B2 |
8172903 | Gordon et al. | May 2012 | B2 |
8182514 | Gimbel et al. | May 2012 | B2 |
8187330 | Gimbel et al. | May 2012 | B2 |
8257440 | Gordon et al. | Sep 2012 | B2 |
8257443 | Kamran et al. | Sep 2012 | B2 |
8267965 | Gimbel et al. | Sep 2012 | B2 |
8303660 | Abdou | Nov 2012 | B1 |
8313528 | Wensel | Nov 2012 | B1 |
8377098 | Landry et al. | Feb 2013 | B2 |
8388687 | Gimbel et al. | Mar 2013 | B2 |
8398713 | Weiman | Mar 2013 | B2 |
8414652 | Moumene et al. | Apr 2013 | B2 |
8435298 | Weiman | May 2013 | B2 |
8475461 | Butler et al. | Jul 2013 | B2 |
8486148 | Butler et al. | Jul 2013 | B2 |
8491659 | Weiman | Jul 2013 | B2 |
8512407 | Butler et al. | Aug 2013 | B2 |
8518120 | Glerum et al. | Aug 2013 | B2 |
8523912 | Gimbel et al. | Sep 2013 | B2 |
8545563 | Brun et al. | Oct 2013 | B2 |
8556979 | Glerum et al. | Oct 2013 | B2 |
8591553 | Eisermann et al. | Nov 2013 | B2 |
8597358 | Landry et al. | Dec 2013 | B2 |
8603168 | Gordon et al. | Dec 2013 | B2 |
8632595 | Weiman | Jan 2014 | B2 |
8647386 | Gordon et al. | Feb 2014 | B2 |
8679183 | Glerum et al. | Mar 2014 | B2 |
8685098 | Glerum et al. | Apr 2014 | B2 |
8709086 | Glerum | Apr 2014 | B2 |
8753398 | Gordon et al. | Jun 2014 | B2 |
8940022 | Landry et al. | Jan 2015 | B2 |
8940051 | Gimbel et al. | Jan 2015 | B2 |
20010020476 | Gan et al. | Sep 2001 | A1 |
20010032020 | Besselink | Oct 2001 | A1 |
20020040243 | Attali et al. | Apr 2002 | A1 |
20020045945 | Liu et al. | Apr 2002 | A1 |
20020065557 | Goble et al. | May 2002 | A1 |
20020068977 | Jackson | Jun 2002 | A1 |
20020072801 | Michelson | Jun 2002 | A1 |
20020082701 | Zdeblick et al. | Jun 2002 | A1 |
20020091390 | Michelson | Jul 2002 | A1 |
20020095154 | Atkinson et al. | Jul 2002 | A1 |
20020123806 | Reiley | Sep 2002 | A1 |
20020128659 | Michelson | Sep 2002 | A1 |
20020128714 | Manasas et al. | Sep 2002 | A1 |
20020130112 | Manasas et al. | Sep 2002 | A1 |
20020138077 | Ferree | Sep 2002 | A1 |
20020143401 | Michelson | Oct 2002 | A1 |
20030028250 | Reiley et al. | Feb 2003 | A1 |
20030040802 | Errico | Feb 2003 | A1 |
20030055427 | Graf | Mar 2003 | A1 |
20030069643 | Ralph et al. | Apr 2003 | A1 |
20030074063 | Gerbec et al. | Apr 2003 | A1 |
20030074066 | Errico et al. | Apr 2003 | A1 |
20030074067 | Errico et al. | Apr 2003 | A1 |
20030074068 | Errico et al. | Apr 2003 | A1 |
20030074069 | Errico et al. | Apr 2003 | A1 |
20030074070 | Errico et al. | Apr 2003 | A1 |
20030074071 | Errico et al. | Apr 2003 | A1 |
20030074072 | Errico et al. | Apr 2003 | A1 |
20030074073 | Errico et al. | Apr 2003 | A1 |
20030074074 | Errico et al. | Apr 2003 | A1 |
20030135275 | Garcia et al. | Jul 2003 | A1 |
20030135277 | Bryan et al. | Jul 2003 | A1 |
20030139812 | Garcia et al. | Jul 2003 | A1 |
20030149483 | Michelson | Aug 2003 | A1 |
20030176923 | Keller et al. | Sep 2003 | A1 |
20030187436 | Bolger et al. | Oct 2003 | A1 |
20030191470 | Ritland | Oct 2003 | A1 |
20030204259 | Goble et al. | Oct 2003 | A1 |
20030204260 | Ferree | Oct 2003 | A1 |
20030220643 | Ferree | Nov 2003 | A1 |
20030225409 | Freid et al. | Dec 2003 | A1 |
20030233145 | Landry et al. | Dec 2003 | A1 |
20040006391 | Reiley | Jan 2004 | A1 |
20040010312 | Enayati | Jan 2004 | A1 |
20040019353 | Freid et al. | Jan 2004 | A1 |
20040030387 | Landry et al. | Feb 2004 | A1 |
20040030389 | Ferree | Feb 2004 | A1 |
20040039448 | Pisharodi | Feb 2004 | A1 |
20040044411 | Suddaby | Mar 2004 | A1 |
20040049190 | Biedermann et al. | Mar 2004 | A1 |
20040049271 | Biedermann et al. | Mar 2004 | A1 |
20040049272 | Reiley | Mar 2004 | A1 |
20040049273 | Reiley | Mar 2004 | A1 |
20040049274 | Reiley | Mar 2004 | A1 |
20040049275 | Reiley | Mar 2004 | A1 |
20040049276 | Reiley | Mar 2004 | A1 |
20040049277 | Reiley | Mar 2004 | A1 |
20040049278 | Reiley | Mar 2004 | A1 |
20040049280 | Cauthen | Mar 2004 | A1 |
20040049281 | Reiley | Mar 2004 | A1 |
20040064136 | Papineau et al. | Apr 2004 | A1 |
20040087947 | Lim et al. | May 2004 | A1 |
20040093083 | Branch et al. | May 2004 | A1 |
20040102774 | Trieu | May 2004 | A1 |
20040106997 | Lieberson | Jun 2004 | A1 |
20040117020 | Frey et al. | Jun 2004 | A1 |
20040127989 | Dooris et al. | Jul 2004 | A1 |
20040133278 | Marino et al. | Jul 2004 | A1 |
20040133281 | Khandkar et al. | Jul 2004 | A1 |
20040138662 | Landry et al. | Jul 2004 | A1 |
20040138749 | Zucherman | Jul 2004 | A1 |
20040143265 | Landry et al. | Jul 2004 | A1 |
20040143332 | Krueger et al. | Jul 2004 | A1 |
20040147928 | Landry et al. | Jul 2004 | A1 |
20040153065 | Lim | Aug 2004 | A1 |
20040167626 | Geremakis et al. | Aug 2004 | A1 |
20040181223 | Ritland | Sep 2004 | A1 |
20040181284 | Simonson | Sep 2004 | A1 |
20040220567 | Eisermann et al. | Nov 2004 | A1 |
20040236327 | Paul et al. | Nov 2004 | A1 |
20040236329 | Panjabi | Nov 2004 | A1 |
20040243240 | Beaurain et al. | Dec 2004 | A1 |
20040254643 | Jackson | Dec 2004 | A1 |
20040254644 | Taylor | Dec 2004 | A1 |
20040267364 | Carli et al. | Dec 2004 | A1 |
20040267369 | Lyons et al. | Dec 2004 | A1 |
20050010295 | Michelson | Jan 2005 | A1 |
20050015146 | Louis et al. | Jan 2005 | A1 |
20050015149 | Michelson | Jan 2005 | A1 |
20050021144 | Malberg et al. | Jan 2005 | A1 |
20050027361 | Reiley | Feb 2005 | A1 |
20050027362 | Williams et al. | Feb 2005 | A1 |
20050033431 | Gordon et al. | Feb 2005 | A1 |
20050033432 | Gordon et al. | Feb 2005 | A1 |
20050033437 | Bao et al. | Feb 2005 | A1 |
20050033439 | Gordon et al. | Feb 2005 | A1 |
20050043800 | Paul et al. | Feb 2005 | A1 |
20050060034 | Berry | Mar 2005 | A1 |
20050085815 | Harms et al. | Apr 2005 | A1 |
20050096745 | Andre et al. | May 2005 | A1 |
20050107881 | Neville et al. | May 2005 | A1 |
20050113927 | Malek | May 2005 | A1 |
20050124991 | Jahng | Jun 2005 | A1 |
20050125061 | Zucherman et al. | Jun 2005 | A1 |
20050125062 | Biedermann et al. | Jun 2005 | A1 |
20050131406 | Reiley | Jun 2005 | A1 |
20050131408 | Sicvol et al. | Jun 2005 | A1 |
20050143818 | Yuan et al. | Jun 2005 | A1 |
20050149020 | Jahng | Jul 2005 | A1 |
20050149023 | Ritland | Jul 2005 | A1 |
20050154461 | Humphreys et al. | Jul 2005 | A1 |
20050154462 | Zucherman et al. | Jul 2005 | A1 |
20050154465 | Hodges et al. | Jul 2005 | A1 |
20050154466 | Humphreys et al. | Jul 2005 | A1 |
20050159818 | Blain | Jul 2005 | A1 |
20050171543 | Timm et al. | Aug 2005 | A1 |
20050171608 | Peterman et al. | Aug 2005 | A1 |
20050171610 | Humphreys et al. | Aug 2005 | A1 |
20050177156 | Timm et al. | Aug 2005 | A1 |
20050177157 | Jahng | Aug 2005 | A1 |
20050177164 | Walters et al. | Aug 2005 | A1 |
20050177166 | Timm et al. | Aug 2005 | A1 |
20050182401 | Timm et al. | Aug 2005 | A1 |
20050182409 | Callahan et al. | Aug 2005 | A1 |
20050203517 | Jahng et al. | Sep 2005 | A1 |
20050209697 | Paponneau et al. | Sep 2005 | A1 |
20050209698 | Gordon et al. | Sep 2005 | A1 |
20050222569 | Panjabi | Oct 2005 | A1 |
20050228500 | Kim et al. | Oct 2005 | A1 |
20050245930 | Timm et al. | Nov 2005 | A1 |
20050251261 | Peterman | Nov 2005 | A1 |
20050256578 | Blatt et al. | Nov 2005 | A1 |
20050261771 | Paul et al. | Nov 2005 | A1 |
20050273167 | Triplett et al. | Dec 2005 | A1 |
20050273171 | Gordon et al. | Dec 2005 | A1 |
20050273173 | Gordon et al. | Dec 2005 | A1 |
20050273174 | Gordon et al. | Dec 2005 | A1 |
20050273175 | Gordon et al. | Dec 2005 | A1 |
20050278026 | Gordon et al. | Dec 2005 | A1 |
20050283244 | Gordon et al. | Dec 2005 | A1 |
20050283245 | Gordon et al. | Dec 2005 | A1 |
20050283247 | Gordon et al. | Dec 2005 | A1 |
20050283248 | Gordon et al. | Dec 2005 | A1 |
20050288670 | Panjabi et al. | Dec 2005 | A1 |
20060009768 | Ritland | Jan 2006 | A1 |
20060009850 | Frigg et al. | Jan 2006 | A1 |
20060015100 | Panjabi et al. | Jan 2006 | A1 |
20060036240 | Colleran | Feb 2006 | A1 |
20060036245 | Stern | Feb 2006 | A1 |
20060084986 | Grinberg et al. | Apr 2006 | A1 |
20060084988 | Kim | Apr 2006 | A1 |
20060089717 | Krishna et al. | Apr 2006 | A1 |
20060095132 | Kirschman | May 2006 | A1 |
20060122701 | Kiester | Jun 2006 | A1 |
20060129244 | Ensign | Jun 2006 | A1 |
20060142759 | Arnin et al. | Jun 2006 | A1 |
20060149228 | Schlapfer et al. | Jul 2006 | A1 |
20060149229 | Kwak et al. | Jul 2006 | A1 |
20060149278 | Abdou | Jul 2006 | A1 |
20060149372 | Paxson et al. | Jul 2006 | A1 |
20060149383 | Arnin et al. | Jul 2006 | A1 |
20060149385 | McKay | Jul 2006 | A1 |
20060155377 | Beaurain et al. | Jul 2006 | A1 |
20060167547 | Suddaby | Jul 2006 | A1 |
20060178745 | Bartish et al. | Aug 2006 | A1 |
20060178746 | Bartish et al. | Aug 2006 | A1 |
20060189983 | Fallin et al. | Aug 2006 | A1 |
20060195114 | Bertagnoli | Aug 2006 | A1 |
20060195191 | Sweeney et al. | Aug 2006 | A1 |
20060195192 | Gordon et al. | Aug 2006 | A1 |
20060217712 | Mueller et al. | Sep 2006 | A1 |
20060229729 | Gordon | Oct 2006 | A1 |
20060235426 | Lim et al. | Oct 2006 | A1 |
20060241642 | Arnin et al. | Oct 2006 | A1 |
20060241769 | Gordon et al. | Oct 2006 | A1 |
20060241770 | Rhoda et al. | Oct 2006 | A1 |
20060241771 | Gordon et al. | Oct 2006 | A1 |
20060247635 | Gordon et al. | Nov 2006 | A1 |
20060247779 | Gordon et al. | Nov 2006 | A1 |
20060260483 | Hartmann et al. | Nov 2006 | A1 |
20060264937 | White | Nov 2006 | A1 |
20060265068 | Schwab | Nov 2006 | A1 |
20060265074 | Krishna | Nov 2006 | A1 |
20060265077 | Zwirkoski | Nov 2006 | A1 |
20070010886 | Banick | Jan 2007 | A1 |
20070032871 | Michelson | Feb 2007 | A1 |
20070073405 | Verhulst et al. | Mar 2007 | A1 |
20070073406 | Gordon et al. | Mar 2007 | A1 |
20070093828 | Abdou | Apr 2007 | A1 |
20070093846 | Frigg et al. | Apr 2007 | A1 |
20070162137 | Kloss et al. | Jul 2007 | A1 |
20070213720 | Gordon et al. | Sep 2007 | A1 |
20070213737 | Schermerhorn et al. | Sep 2007 | A1 |
20070213821 | Kwak et al. | Sep 2007 | A1 |
20070225814 | Atkinson | Sep 2007 | A1 |
20070239279 | Francis | Oct 2007 | A1 |
20070270814 | Lim et al. | Nov 2007 | A1 |
20070270838 | Bruneau et al. | Nov 2007 | A1 |
20070270972 | Gordon et al. | Nov 2007 | A1 |
20070288094 | Krishna et al. | Dec 2007 | A1 |
20080015702 | Lakin et al. | Jan 2008 | A1 |
20080021285 | Drzyzga et al. | Jan 2008 | A1 |
20080027547 | Yu et al. | Jan 2008 | A1 |
20080033562 | Krishna | Feb 2008 | A1 |
20080065079 | Bruneau et al. | Mar 2008 | A1 |
20080133013 | Duggal et al. | Jun 2008 | A1 |
20080161853 | Arnold et al. | Jul 2008 | A1 |
20080177310 | Reiley | Jul 2008 | A1 |
20080183204 | Greenhalgh et al. | Jul 2008 | A1 |
20080234732 | Landry et al. | Sep 2008 | A1 |
20080234740 | Landry et al. | Sep 2008 | A1 |
20080234741 | Landry et al. | Sep 2008 | A1 |
20080234764 | Landry et al. | Sep 2008 | A1 |
20080234823 | Landry et al. | Sep 2008 | A1 |
20080249628 | Altarac et al. | Oct 2008 | A1 |
20080300685 | Carls et al. | Dec 2008 | A1 |
20080306488 | Altarac et al. | Dec 2008 | A1 |
20080306489 | Altarac et al. | Dec 2008 | A1 |
20080306557 | Altarac et al. | Dec 2008 | A1 |
20080312692 | Brennan et al. | Dec 2008 | A1 |
20090005817 | Friedrich et al. | Jan 2009 | A1 |
20090076549 | Lim et al. | Mar 2009 | A1 |
20090076616 | Duggal | Mar 2009 | A1 |
20090093846 | Hestad | Apr 2009 | A1 |
20090105757 | Gimbel et al. | Apr 2009 | A1 |
20090105758 | Gimbel et al. | Apr 2009 | A1 |
20090105759 | Gimbel et al. | Apr 2009 | A1 |
20090105764 | Jackson | Apr 2009 | A1 |
20090105820 | Jackson | Apr 2009 | A1 |
20090105827 | Gimbel et al. | Apr 2009 | A1 |
20090105828 | Gimbel et al. | Apr 2009 | A1 |
20090105829 | Gimbel et al. | Apr 2009 | A1 |
20090143862 | Trieu | Jun 2009 | A1 |
20090177196 | Zlock et al. | Jul 2009 | A1 |
20090270870 | Zubok et al. | Oct 2009 | A1 |
20100030336 | Cope | Feb 2010 | A1 |
20100082109 | Greenhalgh et al. | Apr 2010 | A1 |
20100100138 | Reynolds et al. | Apr 2010 | A1 |
20100174317 | Timm et al. | Jul 2010 | A1 |
20100185289 | Kirwan et al. | Jul 2010 | A1 |
20100191336 | Greenhalgh | Jul 2010 | A1 |
20100204795 | Greenhalgh | Aug 2010 | A1 |
20100211176 | Greenhalgh | Aug 2010 | A1 |
20100222819 | Timm et al. | Sep 2010 | A1 |
20100222884 | Greenhalgh | Sep 2010 | A1 |
20100292796 | Greenhalgh et al. | Nov 2010 | A1 |
20100298941 | Hes et al. | Nov 2010 | A1 |
20100331985 | Gordon et al. | Dec 2010 | A1 |
20110015742 | Hong | Jan 2011 | A1 |
20110172774 | Varela | Jul 2011 | A1 |
20110178599 | Brett | Jul 2011 | A1 |
20110184522 | Melkent | Jul 2011 | A1 |
20110196428 | Panjabi et al. | Aug 2011 | A1 |
20110208311 | Janowski | Aug 2011 | A1 |
20110230971 | Donner et al. | Sep 2011 | A1 |
20110319997 | Glerum et al. | Dec 2011 | A1 |
20120035729 | Glerum et al. | Feb 2012 | A1 |
20120143254 | Gimbel et al. | Jun 2012 | A1 |
20120245689 | Gimbel et al. | Sep 2012 | A1 |
20120265309 | Glerum et al. | Oct 2012 | A1 |
20120310349 | Gordon et al. | Dec 2012 | A1 |
20130023994 | Glerum | Jan 2013 | A1 |
20130158667 | Tabor et al. | Jun 2013 | A1 |
20130158669 | Sungarian et al. | Jun 2013 | A1 |
20130245769 | Gimbel et al. | Sep 2013 | A1 |
20140067071 | Weiman et al. | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
2007035892 | Mar 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20130158667 A1 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
61561037 | Nov 2011 | US |