Intervertebral implants are commonly used in spinal surgery, such as in interbody fusion procedures, in which an implant (e.g., a spacer or cage) is placed in the disc space between two vertebrae to be fused together. At least a portion of the disc is typically removed before the implant is positioned in the intervertebral space, and the implant may be supplemented with bone graft material to promote fusion of the vertebrae. Interbody fusion procedures may also be performed in conjunction with other types of fixation, such as pedicle screw fixation, to provide additional stability, particularly while the vertebrae fuse together.
Different interbody fusion procedures can be distinguished by their location along the spine (e.g., in the cervical, thoracic, or lumbar regions); by the type of implant used; and by the surgical approach to the intervertebral space, in which different surgical approaches often imply different structural characteristics of the implant or implants used. Different surgical approaches to the spine include anterior, posterior, and lateral. Examples of interbody fusion techniques performed along a posterior approach include posterior lumbar interbody fusion (PLIF) and transforaminal lumbar interbody fusion (TLIF). PLIF techniques typically include positioning two intervertebral implants into the intervertebral space along a posterior to anterior direction, with one implant being positioned towards the left side of the spine and one implant being positioned towards the right side of the spine. The implants used in such PLIF techniques typically have a straight shape, in that they extend along a central axis. TLIF techniques, by contrast, typically include positioning one intervertebral implant into the intervertebral space (often towards the anterior portion of the intervertebral space) from the posterior of the patient, but the spine is approached on one side from a more lateral position than in PLIF techniques. The implants used in such TLIF techniques are often curved, such that they have an overall kidney bean-like shape. Interbody fusion techniques performed along a lateral approach, on the other hand, often involve implants that are generally symmetric along their linear longitudinal axis (e.g., having a substantially rectangular or oval shape), but the implants are typically larger than those used in PLIF or TLIF techniques. That is, intervertebral implants used in lateral approaches often cover a substantial portion of the disc space.
Included among the different types of intervertebral implants are expandable implants. Such implants often have an initially contracted configuration, such that they have a low profile in the superior-inferior direction, in order to ease insertion into the intervertebral space. Such expandable implants can then be expanded in the superior-inferior direction after implantation, so as to securely engage and stabilize the vertebrae on both sides of the intervertebral space. Examples of expandable intervertebral implants are disclosed in U.S. Pat. No. 8,992,620 (“the '620 Patent”) and in U.S. Patent Application Publication No. 2017/0290671 (hereinafter “the '671 Publication”), the disclosures of which are hereby incorporated by reference herein as if fully set forth herein.
Although considerable effort has been devoted in the art to optimization of such intervertebral systems and methods, still further improvement would be desirable.
The present invention relates to interbody implants, as well as to systems comprising the same. The present invention also relates to associated methods of performing spinal interbody fusion procedures using such implants and systems.
One aspect of the present invention provides a spinal implant. The spinal implant in accordance with this aspect of the invention preferably includes a body having a first surface for contacting a first vertebral body and at least two extendable support elements connected to the body at respective locations. The spinal implant may include an input for expanding the extendable support elements, such that the extendable support elements each apply a respective expansion force directed away from the first surface. Desirably, the spinal implant may be configured such that application of a single input force to the input induces the extendable support elements to apply different amounts of expansion force.
In accordance with some further aspects of the above spinal implant, the extendable support elements may include pistons slidably received within respective cylinders. Such extendable support elements may be driven by hydraulic fluid supplied to the input. In accordance with some yet further aspects of the spinal implant, the pistons may have different cross-sectional areas from one another. According to some even further aspects, the spinal implant may include two portions articulatable about a hinge portion. In accordance with some of such aspects, a first piston with a larger cross-sectional area may be located on the hinge portion. In some even further aspects, a second piston with a smaller cross-sectional area may be located on one of the two articulatable portions. Some even further aspects may include a third piston slidably received within a third cylinder on the other of the two articulatable portions. In some of such aspects, the first piston may have a larger cross-sectional area than both of the second and third pistons. In accordance with other aspects of the spinal implant, the extendable support elements may be driven by hydraulic fluid supplied to the input, where the input is located on one of the articulatable portions opposite the hinge portion. In accordance with some of such aspects, the spinal implant may be configured to direct the hydraulic fluid from the input on one of the articulatable portions to the other of the articulatable portions via the hinge portion. In accordance with yet other aspects of the spinal implant, the articulatable portions may include at least three segments, where a first one of the segments is articulatably connected to a second one of the segments, and a third one of the segments is articulatably connected to the second segment, with the second segment being located between the first and third segments. In such aspects, the first piston with the larger cross-sectional area may be located on the second segment.
Another aspect of the present invention provides a spinal implant. The spinal implant in accordance with this aspect of the invention preferably includes first and second portions connected together by a first hinge for articulation about the hinge. Desirably, the first hinge may include first and second rigid links each pivotably connected to the first and second portions of the implant.
In accordance with some further aspects of the above spinal implant, the spinal implant may be expandable along the longitudinal axis of the spine. In some of such aspects, the expansion of the spinal implant may be driven by supplying a hydraulic fluid to the implant. In some even further of such aspects, a piston slidably received within a cylinder may be provided on each of the first and second portions of the implant. In some aspects of the invention, the spinal implant may be configured to direct the hydraulic fluid from between the first and second portions of the implant via at least one of the first and second rigid links.
In accordance with other further aspects of the above spinal implant, the spinal implant may include a third portion connected to the second portion by a second hinge for articulation about the second hinge. Desirably, the second hinge may include third and fourth rigid links each pivotably connected to the second and third portions of the implant. In accordance with other aspects of the spinal implant, the first hinge is configured to allow the first and second portions to articulate into an arrangement such that the longitudinal axes of the first and second portions are coincident with one another.
In accordance with some further aspects of the above spinal implant, the first and second rigid links may each be pivotably connected to the first and second portions of the implant such that the rigid links are positioned on respective longitudinal sides of the implant. In accordance with other further aspects of the spinal implant, the first and second rigid links may each be pivotably connected to the first and second portions of the implant such that the rigid links cross from one longitudinal side of the implant to the other side between each pivotably connected end of the respective link. In some of such aspects, one of the links may have a bent profile.
Another aspect of the present invention provides a spinal implant. The spinal implant in accordance with this aspect of the invention preferably includes first and second portions connected together by a hinge for articulation about the hinge. The hinge desirably includes a first rigid link pivotably connected to the first and second portions of the implant. Preferably, the first rigid link has a passageway therein for communicating a hydraulic fluid between the first and second portions of the spinal implant.
In accordance with some further aspects of the above spinal implant, the spinal implant may be expandable along the longitudinal axis of the spine. In some of such aspects, the expansion of the spinal implant may be driven by supplying a hydraulic fluid to the implant. In some even further of such aspects, a piston slidably received within a cylinder may be provided on each of the first and second portions of the implant.
In accordance with other further aspects of the above spinal implant, the hinge may include a second rigid link pivotably connected to the first and second portions of the implant. In some of such aspects, the second rigid link may have a passageway therein for communicating the hydraulic fluid between the first and second portions of the spinal implant. In accordance with some even further aspects, the first and second rigid links may each be pivotably connected to the first and second portions of the implant such that the rigid links are positioned on respective longitudinal sides of the implant. In accordance with other further aspects, the first and second rigid links may each be pivotably connected to the first and second portions of the implant such that the rigid links cross from one longitudinal side of the implant to the other side between each pivotably connected end of the respective link. In some of such aspects, one of the links may have a bent profile.
Another aspect of the present invention provides a spinal implant. The spinal implant in accordance with this aspect of the invention preferably includes a body having a first surface and a piston slidably received within a cylinder of the body. The piston may be slidable along an expansion axis of the cylinder so as to translate a second surface away from the first surface. Desirably, the spinal implant is configured to rotate the piston as the piston slides along the expansion axis. In accordance with some aspects of such spinal implant, the rotation of the piston may be controlled by a cam. In one example, the cam may be provided on an exterior surface of the piston such that the cam is engageable by a follower coupled to the cylinder. In accordance with other aspects of the invention, a ratcheting component may constrain the rotation of the piston to a first direction as the piston slides along the expansion axis. The ratcheting component may be configured to be disabled, when desired, so as to permit the piston to rotate in a second direction opposite the first direction. In accordance with yet other aspects of such spinal implant, the piston may be coupled to an engagement plate having a second surface arranged to contact a second vertebral body. Desirably, the engagement plate may be coupled to the piston by a rotatable connection and/or a pivotable connection.
Another aspect of the present invention provides a spinal implant. The spinal implant in accordance with this aspect of the invention preferably includes a body having a first surface and at least one extendable support element connected to the body. The extendable support element may be configured to expand from a contracted configuration to at least one extended configuration to translate a second surface away from the first surface. The spinal implant in accordance with this aspect of the invention preferably also includes a locking system advanceable among a plurality of successive locked configurations, where each successive locked configuration corresponds to a successive level of expansion of the extendable support element. Desirably, the locking system prevents movement of the extendable support element towards the contracted configuration when the locking system is positioned in one of the locked configurations. Moreover, the positioning of the locking system into each of the successive locked configurations is preferably performed via operation of a cam.
In accordance with some further aspects of the above spinal implant, the cam may be provided on an exterior surface of the extendable support element such that the cam is engageable by a follower coupled to the body. In accordance some such aspects of the invention, the engagement between the follower and the cam may induce rotation of the extendable support element.
In accordance with other further aspects of the spinal implant, a ratcheting component may prevent the locking system from reverting to a preceding locked configuration. In some such aspects, the ratcheting component may be configured to be disabled, when desired, so as to permit movement of the extendable support element to the contracted configuration.
In accordance with yet other further aspects of the above spinal implant, the locking system may include a tiered array of upper steps engageable with a tiered array of lower steps at a plurality of discrete positions as the extendable support element expands to the at least one extended configuration. In accordance with other further aspects of the spinal implant, the extendable support element may include a piston slidably received within a cylinder coupled to the body.
Another aspect of the present invention provides a spinal implant system. The spinal implant system in accordance with this aspect of the invention preferably includes a spinal implant and a tool connectable thereto. The spinal implant may include first and second portions connected together by a hinge for articulation about the hinge, and the tool may include a spreader for spreading apart the first and second portions of the spinal implant about the hinge. The hinge may be located at the distal end of the spinal implant, and a tool interface for connection to the tool may be located at the proximal end of the spinal implant.
In accordance with some further aspects of the above spinal implant, the spreader may be insertable into a space defined between the first and second portions in order to spread apart those portions. In accordance with some of such aspects, movement of the spreader from the distal end towards the proximal end of the spinal implant may induce the spreading apart of the first and second portions of the implant. In accordance with some even further aspects, the spreader may include at least one ramp surface engageable with at least one of the first and second portions of the implant during movement of the spreader from the distal end towards the proximal end, so as to induce the spreading apart of the first and second portions of the implant.
In accordance with other further aspects of the above spinal implant, the spinal implant may be expandable along the longitudinal axis of the spine. That expansion of the spinal implant along the longitudinal axis of the spine may be controlled by the tool. For example, a hydraulic fluid may be supplied through the tool to a port at the proximal end of the spinal implant. In accordance with some aspects of the invention, the spinal implant may include a first piston expandable by the hydraulic fluid, which piston may be located on the hinge. In some of such aspects of the invention, the spinal implant may include a second piston expandable by the hydraulic fluid, which second piston may be located on one of the first and second portions of the spinal implant. In some even further aspects, the spinal implant may include a third piston expandable by the hydraulic fluid, where the second piston is located on one of the first and second portions of the implant and the third piston is located on the other portion. In accordance with some aspects of the invention, the first piston on the hinge may have a larger cross-sectional area than the second piston on one of the first and second portions of the implant. In accordance with some other aspects, the port for the hydraulic fluid may be disposed on the first portion of the spinal implant. In accordance with some of such aspects, the spinal implant may be configured to direct the hydraulic fluid from the port in the first portion to the second portion through the hinge.
Another aspect of the present invention provides a method of performing a spinal interbody fusion procedure. The method in accordance with this aspect of the invention preferably includes inserting an implant into an intervertebral space between a first vertebral body and a second vertebral body of a spine using a tool connected to a proximal end of the implant. The method also desirably includes spreading first and second articulatable portions of the implant apart about a hinge at a distal end of the implant using the tool while the tool is connected to the proximal end of the implant.
In accordance with some further aspects of the above method, the step of spreading the first and second articulatable portions of the implant apart using the tool may include inserting a spreading component into a space defined between the first and second articulatable portions of the implant. In some of such aspects, the step of spreading the first and second articulatable portions of the implant apart may include longitudinally advancing the spreader from the proximal end towards the distal end of the implant.
In accordance with other further aspects, the method may further include the step of expanding the implant along the longitudinal axis of the spine. In some of such aspects, the expanding step may be actuated by the tool. In some further aspects, the expanding step may include supplying a hydraulic fluid to the implant via the tool. In some even further aspects, the hydraulic fluid may flow between the first and second articulatable portions of the implant through the hinge. In some other aspects, the method may further include the step of expanding first and second pistons disposed on the respective first and second articulatable portions using the hydraulic fluid. In some other aspects, the expanding step may include applying a pressure to the hydraulic fluid. In some of such aspects, the application of the pressure to the hydraulic fluid may result in the first and second pistons applying respective first and second expansion forces between the first and second vertebral bodies, where the first and second expansion forces are different from one another.
When referring to specific directions in the following disclosure, it should be understood that, as used herein, the term “proximal” means closer to the operator/surgeon, and the term “distal” means further away from the operator/surgeon. The term “anterior” means toward the front of the body or the face, and the term “posterior” means toward the back of the body. With respect to the longitudinal axis of the spine, the term “superior” refers to the direction towards the head, and the term “inferior” refers to the direction towards the pelvis and feet. Finally, the term “lateral” or “laterally,” as used below, refers to a direction or movement that is in the transverse plane, which is orthogonal to the longitudinal axis of the spine.
The insertion of the implant 10 into the intervertebral space can be performed by a delivery tool 18 securely attachable to the proximal end 20 of the implant 10 via an anchor located on the implant 10. The anchor may be in the form of a threaded bore 21 for receiving a correspondingly threaded portion at the distal end 22 of the delivery tool 18, and the threaded bore 21 may be located on the first arm 12. The delivery tool 18 may also be responsible for expanding the implant 10 laterally. For example, as shown in
After the implant 10 has been laterally expanded to the desired configuration, the implant 10 can also be expanded longitudinally in the superior-inferior direction, as shown in
The longitudinal expansion of the implant may be performed using various means, including bellows, rotating cam lift mechanisms, rotating screw lift mechanisms, or other such devices, as disclosed in the '620 Patent. The longitudinal expansion may also be driven by hydraulics, as disclosed in the '620 Patent and the '671 Publication, and as discussed below in connection with the various illustrated embodiments. For example, the implant 10 may include one or more pistons received within associated cylinders and driven to translate outwardly along the longitudinal axis of the spine by hydraulic pressure, thus resulting in longitudinal expansion of the implant. The pistons may have plate portions 45 at their top ends that may include the upper vertebral engaging surfaces 37 thereon for contacting and applying expansion force to the superior vertebral body Vs. Alternatively, the top ends of the pistons may simply be defined as the upper vertebral engaging surfaces 37 and configured to directly engage the superior vertebral body Vs. Although not shown in the drawings herein, the vertebral engaging surfaces of the embodiments disclosed herein may be smooth surfaces, or they may include textural features (e.g., protrusions, ridges, etc.) for more securely interfacing with the engaged vertebrae, or they may include spikes or similar features (which can either be fixed or deployable after implantation) for penetrating into the engaged vertebrae.
As shown in the embodiment of
The channel 44 may also communicate with the cylinder 50 within which the central piston 42 is disposed, so that the hydraulic fluid may also cause outward expansion of the central piston 42. The communication between the channel 44 and the cylinder 50 may either be direct communication or communication via an intervening pathway, such as via angled channel 52 illustrated in
The articulating connection between the first arm 12 and the second arm 14 at hinge portion 16 may be constructed so as to allow for the communication of the hydraulic fluid between the first arm 12 and the second arm 14. For example, as shown in
In order to accommodate flow of the hydraulic fluid through the hinge portion 16 between the first arm 12 and the second arm 14, the post 58 may be hollow, so as to communicate with the interior of the cylinder 50. Additionally, to allow for pivoting about the post 58 while preventing hydraulic fluid from escaping at its interface with the opening 62, a seal member, which may be in the form of an o-ring 47-c, may be provided at that interface, such as by positioning the seal member around the post 58 between the bottom surface of the first arm 12 and the bushing 64.
The hollow post 58 in the second arm 14 may communicate with a channel 66 in the second arm 14 that also communicates with the cylinder 68 within which the second piston 40 is disposed, so that the hydraulic fluid may also drive the outward expansion of the second piston 40. The channel 66 may be formed by drilling a bore along the second arm 14 from the proximal end 20 of the implant 10. If formed in that manner, the extraneous end 67 of the channel 66 may subsequently be plugged, so that the hydraulic fluid does not escape the implant 10 via that path. So that the piston 40 can slide with respect to the cylinder 68 without allowing hydraulic fluid to escape at that interface, a seal member, which may be in the form of an o-ring 47d, may be provided between the second piston 40 and the associated cylinder 68 in the same manner as illustrated in
The implant 10 may include a locking system to lock the positions of the pistons, at least by preventing them from retracting back into the cylinders once expanded. For example, the pistons may include ratcheting components that allow the pistons to move in the expansion direction, but automatically resist retraction of the pistons in the opposite direction. Such ratcheting components may also be selectively unlockable, in order to allow the pistons to retract when desired. One embodiment of such ratcheting components is shown in the embodiment of the implant illustrated in
As shown in
Other alternative locking systems are possible, however. For example, rotatable, inter-engaging locking elements having tiered, multi-stepped support surfaces, as disclosed in the '620 Patent and the '671 Publication, can be used. That is, as illustrated in
Each of the lower lock supports 51a-c can be unlocked when desired, by rotating the lower lock supports away from engagement with the corresponding upper lock supports, such that the pistons 38, 40, 42 can retract. In particular, each rotatable lower lock support 51a-c may include gear teeth 35 so as to form a pinion engageable by a corresponding, translatable rack gear 33a-c. Each rack gear 33a-c is biased by a corresponding linear spring 31a-c, which provides the rotational biasing force that drives each of the lower lock supports 51a-c into engagement against the associated upper lock supports 53a-c. The unlocking of any one of the lower lock supports 51a-c may thus include pushing the associated rack gear 33a-c to rotate the lower lock support out of engagement with the upper lock support, which further compresses the associated spring 31a-c. In the first arm 12, lower lock support 51a is engaged by rack gear 33a, and lower lock support 51c is engaged by rack gear 33c. Both of those rack gears 33a, 33c may include engagement plates 29 at their proximal ends, so that the associated lower lock supports 51a, 51c can be unlocked by pushing the engagement plates 29, and thus the rack gears, in the distal direction. The rack gears 33a, 33c may be positioned within the hydraulic channel 44 formed within the first arm 12, such that the engagement plates 29 are accessible via the bore 21, as shown in
As discussed above, the pistons 38, 40, 42 may be individually controlled via separate hydraulic pressure channels formed within the implant, or they may be controlled by a single hydraulic pressure channel, as in the embodiment of
Desirably, by applying different forces at different locations along the implant 10, the implant can create different amounts of expansion at those different locations. Beneficially, such differential expansion can be used for lordosis correction. For example, the nerve roots can be decompressed by providing some expansion at the posterior portion of the spine, and lordosis can be corrected by providing a greater amount of expansion at the anterior portion of the spine.
Another embodiment of an implant 110 having a first segment 112 and second segment 114 in accordance with the present invention is illustrated in
Each segment 112, 114 of the implant 110 may comprise a top plate 145 having an upper vertebral engaging surface 137 and a bottom plate 143 having a lower vertebral engaging surface 41. Hydraulically driven pistons 138 received in corresponding cylinders 146, similar to those discussed above, can be positioned between the top and bottom plates 145, 143 for driving them apart. The segments 112, 114 may also include any appropriate locking system for automatically preventing the top and bottom plates 145, 143 from retracting back towards one another, except when deliberately unlocked by the user. For example, each segment 112, 114 may have a respective locking element that may take the form of any of the locking elements discussed above or those disclosed in the '620 Patent or the '671 Publication. Alternatively, the locking elements may take the form of those discussed below in connection with
Either or both of the linkages 116a, 116b connecting the first and second segments 112, 114 of the implant 110 may be configured to transmit the hydraulic fluid therethrough, so that a single hydraulic pressure channel may be common to the expansion mechanisms (e.g., pistons/cylinders) of both segments 112, 114. That is, as discussed above, the cylinders 146 within which the pistons 138 are disposed may be interconnected by a series of channels, which may be formed in the bottom plate 143. Those channels formed in the first segment 112 may communicate with one or both posts 158 of the first segment 112. For example, as shown in
Desirably, the linkages 116 of the implant 110 may be configured so as to allow the first and second segments 112, 114 to be aligned in a collinear arrangement, as shown in
Another embodiment of an implant 210 in accordance with the present invention and illustrated in
The three segments 212, 214, 215 of the implant 210 may be interconnected by pivotable linkages 216 like those in implant 110, except that those illustrated in the embodiment of
In the embodiments of
The embodiment of
The piston 238 may be controlled during expansion so that it is only permitted to rotate in a single direction, such as by a ratcheting mechanism. That way, when the expansion force is released from the piston 238, the piston will not be permitted to undo its rotation so as to retract more than the height of a single step of the upper and lower lock supports. The ratcheting mechanism may include a ratcheting ring 295 surrounding the piston 238 and fixed rotationally with respect to the piston 238. Specifically, the ratcheting ring 295 may include one or more keys 296 receivable within associated key slots 297 on the piston 238, so that the ratcheting ring 295 can maintain its vertical position with respect to the cylinder 246 while the ratcheting ring 295 rotates with the piston 238 as the piston expands upwardly. During that rotation, a ratcheting pawl 298 along the perimeter of the ratcheting ring 295 engages ratcheting teeth 299 formed along the cylinder 246. In the embodiment illustrated in
If retraction of the pistons 238 is desired by the user, the ratcheting ring 295 can be unlocked so as to permit the rotation of the pistons to be reversed. Specifically, as shown in
In order to avoid imparting the rotation of the pistons 238 to the vertebral bodies via the outwardly expanding top plates 245 that define the upper vertebral engaging surfaces 237, the top plates 245 may be connected to the respective pistons 238 by connections which permit rotation between those two components. For example, the top plates 245 may be connected to the associated pistons 238 via ball joints 204. Beneficially, such ball joint connections may also permit the top plates 245 to be angled with respect to the pistons 238 as needed, based on any angle defined between the vertebral body engaged by the top plates 245 (e.g., the vertebral body Vs in the superior direction) and the bottom plates 243 defining the lower vertebral engaging surfaces 241.
Although not illustrated herein, the embodiment of the locking system shown in
Although it is possible to do so in an embodiment having two expandable segments (like that illustrated in
Any of the embodiments disclosed above may be used in any type of approach to the intervertebral space (e.g., PLIF, TLIF, and lateral), although certain approaches may be more preferred for certain implant configurations. For example, the embodiments of
Although various sealing members (e.g., o-rings) have been disclosed above for maintaining seals between surfaces that move relative to one another, it is noted that alternative embodiments (not shown) need not include separate sealing members, and instead either or both of the movable components may be structured to be self sealing.
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
This application claims the benefit of the U.S. patent application Ser. No. 15/794,693 filed Oct. 26, 2017, which claims the benefit of the filing date of U.S. Provisional Patent Application No. 62/413,038 filed Oct. 26, 2016, the disclosures of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3875595 | Froning | Apr 1975 | A |
4932975 | Main et al. | Jun 1990 | A |
4969888 | Scholten et al. | Nov 1990 | A |
5236460 | Barber | Aug 1993 | A |
5653763 | Errico et al. | Aug 1997 | A |
5665122 | Kambin | Sep 1997 | A |
5723013 | Jeanson et al. | Mar 1998 | A |
5827328 | Buttermann | Oct 1998 | A |
5865848 | Baker | Feb 1999 | A |
5916267 | Tienboon | Jun 1999 | A |
5980522 | Koros et al. | Nov 1999 | A |
5989290 | Biedermann et al. | Nov 1999 | A |
6039761 | Li et al. | Mar 2000 | A |
6102950 | Vaccaro | Aug 2000 | A |
6127597 | Beyar et al. | Oct 2000 | A |
6176881 | Schar et al. | Jan 2001 | B1 |
6176882 | Biedermann et al. | Jan 2001 | B1 |
6193756 | Studer et al. | Feb 2001 | B1 |
6193757 | Foley et al. | Feb 2001 | B1 |
6214012 | Karpman et al. | Apr 2001 | B1 |
6296665 | Strnad et al. | Oct 2001 | B1 |
6371989 | Chauvin et al. | Apr 2002 | B1 |
6375682 | Fleischmann et al. | Apr 2002 | B1 |
6375683 | Crozet et al. | Apr 2002 | B1 |
6395032 | Gauchet | May 2002 | B1 |
6454806 | Cohen | Sep 2002 | B1 |
6527803 | Crozet et al. | Mar 2003 | B1 |
6562074 | Gerbec et al. | May 2003 | B2 |
6582467 | Teitelbaum et al. | Jun 2003 | B1 |
6585699 | Ljunggreen et al. | Jul 2003 | B2 |
6692495 | Zacouto | Feb 2004 | B1 |
6719796 | Cohen et al. | Apr 2004 | B2 |
6723126 | Berry | Apr 2004 | B1 |
6730088 | Yeh | May 2004 | B2 |
6764491 | Frey et al. | Jul 2004 | B2 |
6830570 | Frey et al. | Dec 2004 | B1 |
6835207 | Zacouto et al. | Dec 2004 | B2 |
6866682 | An et al. | Mar 2005 | B1 |
6875235 | Ferree | Apr 2005 | B2 |
6953477 | Berry | Oct 2005 | B2 |
6960232 | Lyons et al. | Nov 2005 | B2 |
6981989 | Fleischmann et al. | Jan 2006 | B1 |
7001431 | Bao et al. | Feb 2006 | B2 |
7018415 | McKay | Mar 2006 | B1 |
7018416 | Hanson et al. | Mar 2006 | B2 |
7060037 | Lussier et al. | Jun 2006 | B2 |
7060073 | Frey et al. | Jun 2006 | B2 |
7066958 | Ferree | Jun 2006 | B2 |
7094257 | Mujwid et al. | Aug 2006 | B2 |
7166110 | Yundt | Jan 2007 | B2 |
7204853 | Gordon et al. | Apr 2007 | B2 |
7214243 | Taylor | May 2007 | B2 |
7217293 | Branch, Jr. | May 2007 | B2 |
7282063 | Cohen | Oct 2007 | B2 |
7291150 | Graf | Nov 2007 | B2 |
7291158 | Crow et al. | Nov 2007 | B2 |
7316686 | Dorchak et al. | Jan 2008 | B2 |
7316714 | Gordon et al. | Jan 2008 | B2 |
7351261 | Casey | Apr 2008 | B2 |
7407513 | Alleyne et al. | Aug 2008 | B2 |
7419505 | Fleischmann et al. | Sep 2008 | B2 |
7452359 | Michelson | Nov 2008 | B1 |
7470273 | Dougherty-Shah | Dec 2008 | B2 |
7481812 | Frey et al. | Jan 2009 | B2 |
7485145 | Purcell | Feb 2009 | B2 |
7507241 | Levy et al. | Mar 2009 | B2 |
7520900 | Trieu | Apr 2009 | B2 |
7563284 | Coppes et al. | Jul 2009 | B2 |
7563286 | Gerber et al. | Jul 2009 | B2 |
7621956 | Paul et al. | Nov 2009 | B2 |
7628815 | Baumgartner et al. | Dec 2009 | B2 |
7670359 | Yundt | Mar 2010 | B2 |
7708779 | Edie et al. | May 2010 | B2 |
7722674 | Grotz | May 2010 | B1 |
7731752 | Edie et al. | Jun 2010 | B2 |
7731753 | Reo et al. | Jun 2010 | B2 |
7771480 | Navarro et al. | Aug 2010 | B2 |
7794501 | Edie et al. | Sep 2010 | B2 |
7806935 | Navarro et al. | Oct 2010 | B2 |
7819921 | Grotz | Oct 2010 | B2 |
7824444 | Biscup et al. | Nov 2010 | B2 |
7824445 | Biro et al. | Nov 2010 | B2 |
7854766 | Moskowitz et al. | Dec 2010 | B2 |
7862618 | White et al. | Jan 2011 | B2 |
7883543 | Sweeney | Feb 2011 | B2 |
7935124 | Frey et al. | May 2011 | B2 |
7967863 | Frey et al. | Jun 2011 | B2 |
7967867 | Barreiro et al. | Jun 2011 | B2 |
7985231 | Sankaran | Jul 2011 | B2 |
7985256 | Grotz et al. | Jul 2011 | B2 |
8021395 | Ben-Mokhtar et al. | Sep 2011 | B2 |
8025680 | Hayes et al. | Sep 2011 | B2 |
8057549 | Butterman et al. | Nov 2011 | B2 |
8062368 | Heinz et al. | Nov 2011 | B2 |
8062373 | Fabian, Jr. | Nov 2011 | B2 |
8070813 | Grotz et al. | Dec 2011 | B2 |
8105382 | Colmos et al. | Jan 2012 | B2 |
8153785 | Khire et al. | Apr 2012 | B2 |
8187331 | Strohkirch, Jr. et al. | May 2012 | B2 |
8192495 | Simpson et al. | Jun 2012 | B2 |
8267939 | Cipoletti et al. | Sep 2012 | B2 |
8273124 | Renganath et al. | Sep 2012 | B2 |
8303663 | Jimenez et al. | Nov 2012 | B2 |
8353961 | McClintock et al. | Jan 2013 | B2 |
8366777 | Matthis et al. | Feb 2013 | B2 |
8394143 | Grotz et al. | Mar 2013 | B2 |
8435296 | Kadaba et al. | May 2013 | B2 |
8454695 | Grotz et al. | Jun 2013 | B2 |
8480741 | Grotz et al. | Jul 2013 | B2 |
8696751 | Ashley et al. | Apr 2014 | B2 |
8992620 | Ashley et al. | Mar 2015 | B2 |
9028550 | Shulock et al. | May 2015 | B2 |
9463099 | Levy et al. | Oct 2016 | B2 |
9687354 | Bellas et al. | Jun 2017 | B2 |
9913727 | Thommen et al. | Mar 2018 | B2 |
20010056302 | Boyer et al. | Dec 2001 | A1 |
20020128716 | Cohen et al. | Sep 2002 | A1 |
20020136146 | Lee et al. | Sep 2002 | A1 |
20020138146 | Jackson | Sep 2002 | A1 |
20020151976 | Foley et al. | Oct 2002 | A1 |
20030114899 | Woods et al. | Jun 2003 | A1 |
20030130739 | Gerbec et al. | Jul 2003 | A1 |
20040030346 | Frey et al. | Feb 2004 | A1 |
20040088054 | Berry | May 2004 | A1 |
20040097928 | Zdeblick et al. | May 2004 | A1 |
20040133273 | Cox | Jul 2004 | A1 |
20040153065 | Lim | Aug 2004 | A1 |
20040153156 | Cohen et al. | Aug 2004 | A1 |
20040181229 | Michelson | Sep 2004 | A1 |
20040186576 | Biscup et al. | Sep 2004 | A1 |
20050033437 | Bao et al. | Feb 2005 | A1 |
20050043800 | Paul et al. | Feb 2005 | A1 |
20050049590 | Alleyne et al. | Mar 2005 | A1 |
20050085910 | Sweeney | Apr 2005 | A1 |
20050107881 | Alleyne et al. | May 2005 | A1 |
20050113842 | Bertagnoli et al. | May 2005 | A1 |
20050197702 | Coppes et al. | Sep 2005 | A1 |
20050216084 | Fleischmann et al. | Sep 2005 | A1 |
20050229433 | Cachia | Oct 2005 | A1 |
20050251260 | Gerber et al. | Nov 2005 | A1 |
20050273169 | Purcell | Dec 2005 | A1 |
20050273170 | Navarro et al. | Dec 2005 | A1 |
20050273171 | Gordon et al. | Dec 2005 | A1 |
20060036259 | Carl et al. | Feb 2006 | A1 |
20060085073 | Raiszadeh | Apr 2006 | A1 |
20060089719 | Trieu | Apr 2006 | A1 |
20060106416 | Raymond et al. | May 2006 | A1 |
20060116767 | Magerl et al. | Jun 2006 | A1 |
20060142860 | Navarro et al. | Jun 2006 | A1 |
20060142861 | Murray | Jun 2006 | A1 |
20060149377 | Navarro et al. | Jul 2006 | A1 |
20060167547 | Suddaby | Jul 2006 | A1 |
20060200244 | Assaker | Sep 2006 | A1 |
20060235426 | Lim et al. | Oct 2006 | A1 |
20060235535 | Ferree et al. | Oct 2006 | A1 |
20060264968 | Frey et al. | Nov 2006 | A1 |
20070050030 | Kim | Mar 2007 | A1 |
20070050033 | Reo et al. | Mar 2007 | A1 |
20070073395 | Baumgartner et al. | Mar 2007 | A1 |
20070093901 | Grotz et al. | Apr 2007 | A1 |
20070093903 | Cheng | Apr 2007 | A1 |
20070123987 | Bernstein | May 2007 | A1 |
20070179611 | DiPoto et al. | Aug 2007 | A1 |
20070233254 | Grotz et al. | Oct 2007 | A1 |
20070255409 | Dickson et al. | Nov 2007 | A1 |
20070255413 | Edie et al. | Nov 2007 | A1 |
20070255415 | Edie et al. | Nov 2007 | A1 |
20070270961 | Ferguson | Nov 2007 | A1 |
20070270964 | Strohkirch et al. | Nov 2007 | A1 |
20070282449 | de Villiers et al. | Dec 2007 | A1 |
20070288092 | Bambakidis | Dec 2007 | A1 |
20080021555 | White et al. | Jan 2008 | A1 |
20080021556 | Edie | Jan 2008 | A1 |
20080058930 | Edie et al. | Mar 2008 | A1 |
20080058931 | White et al. | Mar 2008 | A1 |
20080065082 | Chang et al. | Mar 2008 | A1 |
20080065220 | Alleyne et al. | Mar 2008 | A1 |
20080065221 | Alleyne et al. | Mar 2008 | A1 |
20080077150 | Nguyen | Mar 2008 | A1 |
20080086276 | Naka et al. | Apr 2008 | A1 |
20080097441 | Hayes | Apr 2008 | A1 |
20080103601 | Biro et al. | May 2008 | A1 |
20080114467 | Capote et al. | May 2008 | A1 |
20080140207 | Olmos et al. | Jun 2008 | A1 |
20080147193 | Matthis et al. | Jun 2008 | A1 |
20080147194 | Grotz et al. | Jun 2008 | A1 |
20080161933 | Grotz et al. | Jul 2008 | A1 |
20080177387 | Parimore et al. | Jul 2008 | A1 |
20080215153 | Butterman et al. | Sep 2008 | A1 |
20080281424 | Parry et al. | Nov 2008 | A1 |
20080288073 | Renganath et al. | Nov 2008 | A1 |
20080300598 | Barreiro et al. | Dec 2008 | A1 |
20090005819 | Ben-Mokhtar et al. | Jan 2009 | A1 |
20090005874 | Fleischmann et al. | Jan 2009 | A1 |
20090012612 | White et al. | Jan 2009 | A1 |
20090018661 | Kim et al. | Jan 2009 | A1 |
20090030399 | Raiszadeh | Jan 2009 | A1 |
20090043312 | Koulisis et al. | Feb 2009 | A1 |
20090048676 | Fabian, Jr. | Feb 2009 | A1 |
20090105836 | Frey et al. | Apr 2009 | A1 |
20090143859 | McClellan, III et al. | Jun 2009 | A1 |
20090171389 | Sankaran | Jul 2009 | A1 |
20090182343 | Trudeau et al. | Jul 2009 | A1 |
20090204215 | McClintock et al. | Aug 2009 | A1 |
20090216331 | Grotz et al. | Aug 2009 | A1 |
20090222100 | Cipoletti et al. | Sep 2009 | A1 |
20090270987 | Heinz et al. | Oct 2009 | A1 |
20100016970 | Kapitan et al. | Jan 2010 | A1 |
20100057204 | Kadaba et al. | Mar 2010 | A1 |
20100145455 | Simpson et al. | Jun 2010 | A1 |
20100145456 | Simpson et al. | Jun 2010 | A1 |
20100249930 | Myers | Sep 2010 | A1 |
20110130835 | Ashley et al. | Jun 2011 | A1 |
20110137416 | Myers | Jun 2011 | A1 |
20110160861 | Jimenez et al. | Jun 2011 | A1 |
20110270398 | Grotz et al. | Nov 2011 | A1 |
20110288646 | Moskowitz et al. | Nov 2011 | A1 |
20120059469 | Myers et al. | Mar 2012 | A1 |
20120116518 | Grotz et al. | May 2012 | A1 |
20120130387 | Simpson et al. | May 2012 | A1 |
20120215316 | Mohr et al. | Aug 2012 | A1 |
20120245695 | Simpson et al. | Sep 2012 | A1 |
20120271422 | Miller | Oct 2012 | A1 |
20120283830 | Myers | Nov 2012 | A1 |
20130096677 | Myers et al. | Apr 2013 | A1 |
20130158668 | Nichols et al. | Jun 2013 | A1 |
20130158669 | Sungarian et al. | Jun 2013 | A1 |
20130190875 | Shulock et al. | Jul 2013 | A1 |
20130197642 | Ernst | Aug 2013 | A1 |
20130197647 | Wolters et al. | Aug 2013 | A1 |
20130197648 | Boehm et al. | Aug 2013 | A1 |
20130204368 | Prevost | Aug 2013 | A1 |
20130204374 | Milella, Jr. | Aug 2013 | A1 |
20130253650 | Ashley et al. | Sep 2013 | A1 |
20130274883 | McLuen et al. | Oct 2013 | A1 |
20140107787 | Stinchfield et al. | Apr 2014 | A1 |
20140172101 | Glerum | Jun 2014 | A1 |
20140243983 | Galea et al. | Aug 2014 | A1 |
20140288652 | Boehm et al. | Sep 2014 | A1 |
20140316522 | Weiman et al. | Oct 2014 | A1 |
20140358246 | Levy et al. | Dec 2014 | A1 |
20140364951 | De Villiers et al. | Dec 2014 | A1 |
20150025634 | Boehm et al. | Jan 2015 | A1 |
20150094814 | Emerick et al. | Apr 2015 | A1 |
20150223946 | Weiman et al. | Aug 2015 | A1 |
20150257894 | Levy et al. | Sep 2015 | A1 |
20150351925 | Emerick | Dec 2015 | A1 |
20150374512 | Glerum et al. | Dec 2015 | A1 |
20160089247 | Nichols et al. | Mar 2016 | A1 |
20160095718 | Burkhardt et al. | Apr 2016 | A1 |
20160199195 | Hauck et al. | Jul 2016 | A1 |
20170000627 | Levy et al. | Jan 2017 | A1 |
20170100255 | Hleihil et al. | Apr 2017 | A1 |
20170119543 | Dietzel et al. | May 2017 | A1 |
20170172760 | Loebl et al. | Jun 2017 | A1 |
20170224506 | Ashley et al. | Aug 2017 | A1 |
20170231778 | Overes et al. | Aug 2017 | A1 |
20170252178 | Moskowitz et al. | Sep 2017 | A1 |
20170290671 | Milz et al. | Oct 2017 | A1 |
20170290680 | Pinal et al. | Oct 2017 | A1 |
20170312092 | Link et al. | Nov 2017 | A1 |
20170325967 | Link et al. | Nov 2017 | A1 |
20170333198 | Robinson | Nov 2017 | A1 |
20170333199 | Sharifi-Mehr et al. | Nov 2017 | A1 |
20170367842 | Predick et al. | Dec 2017 | A1 |
20180000606 | Hessler et al. | Jan 2018 | A1 |
20180000609 | Hessler et al. | Jan 2018 | A1 |
20180014947 | Baynham | Jan 2018 | A1 |
20180071111 | Sharifi-Mehr et al. | Mar 2018 | A1 |
20180110628 | Sharifi-Mehr et al. | Apr 2018 | A1 |
20180116819 | Maguire et al. | May 2018 | A1 |
20180125671 | Bernard et al. | May 2018 | A1 |
20180235769 | Levy et al. | Aug 2018 | A1 |
20180243107 | Foley et al. | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
1756516 | Apr 2006 | CN |
101610741 | Dec 2009 | CN |
101631516 | Jan 2010 | CN |
101686860 | Mar 2010 | CN |
101686865 | May 2013 | CN |
1442715 | Nov 2004 | EP |
1415624 | May 2006 | EP |
2001-518824 | Oct 2001 | JP |
2008-502372 | Jan 2008 | JP |
2003003951 | Jan 2003 | WO |
2004016250 | Feb 2004 | WO |
2004016205 | May 2004 | WO |
2006044786 | Jan 2007 | WO |
2008011371 | Mar 2008 | WO |
2007124078 | Jul 2008 | WO |
2008039811 | Jul 2008 | WO |
2008112607 | Dec 2008 | WO |
2008148210 | Dec 2008 | WO |
2009033100 | Mar 2009 | WO |
2008121251 | Aug 2009 | WO |
2009064787 | Aug 2009 | WO |
2009105182 | Aug 2009 | WO |
2009114381 | Sep 2009 | WO |
2008086276 | Dec 2009 | WO |
2010074704 | Jul 2010 | WO |
2010068725 | Oct 2010 | WO |
2011011609 | Jun 2011 | WO |
2011150077 | Dec 2011 | WO |
2016183382 | Nov 2016 | WO |
2017117513 | Jul 2017 | WO |
Entry |
---|
Sharifi-Mehr et al., U.S. Appl. No. 15/702,171, filed Sep. 12, 2017, titled “Interbody Implant with Independent Control of Expansion at Multiple Locations”. |
International Search Report and Written Opinion dated Jun. 5, 2009 for related PCT/US2009/000974. |
International Search Report and Written Opinion dated Jun. 30, 2009, in related International Application No. PCT/US2008/003776 filed Mar. 21, 2008. |
International Search Report and Written Opinion dated Nov. 11, 2010, in International Application No. PCT/US2010/031247 entitled “Insertion Handle for Implant.”. |
Extended European Search Report for Application No. 141593657 dated Jun. 18, 2014. |
International Search Report and Written Opinion dated Sep. 22, 2011 in related International Application No. PCT/US2011/037929. |
International Search Report and Written Opinion dated Aug. 13, 2010, in related International Application No. PCT/US2009/067446 filed Dec. 10, 2009. |
Extended European Search Report for Application No. EP14159619 dated Jun. 12, 2014. |
Extended European Search Report for Application No. 11787340.6 dated Jun. 25, 2014. |
Japanese Office Action for Application No. 2013-512209 dated Jan. 27, 2015. |
Extended European Search Report for Application No. EP 17198694.6 dated Mar. 15, 2018, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20200121471 A1 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
62413038 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15794693 | Oct 2017 | US |
Child | 16662187 | US |