Intervertebral implants are commonly used in spinal surgery, such as in interbody fusion procedures, in which an implant (e.g., a spacer or cage) is placed in the disc space between two vertebrae to be fused together. At least a portion of the disc is typically removed before the implant is positioned in the intervertebral space, and the implant may be supplemented with bone graft material to promote fusion of the vertebrae. Interbody fusion procedures may also be performed in conjunction with other types of fixation, such as pedicle screw fixation, to provide additional stability, particularly while the vertebrae fuse together.
Different interbody fusion procedures can be distinguished by their location along the spine (e.g., in the cervical, thoracic, or lumbar regions); by the type of implant used; and by the surgical approach to the intervertebral space, in which different surgical approaches often imply different structural characteristics of the implant or implants used. Different surgical approaches to the spine include anterior, posterior, and lateral. Examples of interbody fusion techniques performed along a posterior approach include posterior lumbar interbody fusion (PLIF) and transforaminal lumbar interbody fusion (TLIF). PLIF techniques typically include positioning two intervertebral implants into the intervertebral space along a posterior to anterior direction, with one implant being positioned towards the left side of the spine and one implant being positioned towards the right side of the spine. The implants used in such PLIF techniques typically have a straight shape, in that they extend along a central axis. TLIF techniques, by contrast, typically include positioning one intervertebral implant into the intervertebral space (often towards the anterior portion of the intervertebral space) from the posterior of the patient, but the spine is approached on one side from a more lateral position than in PLIF techniques. The implants used in such TLIF techniques are often curved, such that they have an overall kidney bean-like shape. Interbody fusion techniques performed along a lateral approach, on the other hand, often involve implants that are generally symmetric along their linear longitudinal axis (e.g., having a substantially rectangular or oval shape), but the implants are typically larger than those used in PLIF or TLIF techniques. That is, intervertebral implants used in lateral approaches often cover a substantial portion of the disc space.
Included among the different types of intervertebral implants are expandable implants. Such implants often have an initially contracted configuration, such that they have a low profile in the superior-inferior direction, in order to ease insertion into the intervertebral space. Such expandable implants can then be expanded in the superior-inferior direction after implantation, so as to securely engage and stabilize the vertebrae on both sides of the intervertebral space. Examples of such expandable intervertebral implants are disclosed in U.S. Pat. No. 8,992,620 (“the '620 Patent”) and in U.S. patent application Ser. No. 15/481,854 filed on Apr. 7, 2017, entitled Expandable Interbody Implant (hereinafter “the '854 Application”), the disclosures of which are hereby incorporated by reference herein as if fully set forth herein. Expandable intervertebral implants having certain similar features to those in the '620 Patent and the '854 Application are disclosed herein, and therefore some similar nomenclature is used herein for clarity and consistency.
Although considerable effort has been devoted in the art to optimization of such intervertebral systems and methods, still further improvement would be desirable.
The present invention relates to expandable interbody implants, as well as to methods of operating the same. Expandable interbody implants in accordance with aspects of the invention include opposing first and second surfaces for engaging respective vertebral bodies on each side of an intervertebral space, the first and second surfaces being located on respective first and second members. When the implants are expanded from a contracted configuration to an expanded configuration, the entire first member is moved away from the second member. The first member is desirably connected to the second member such that the first member moves away from the second member by a larger distance at a first end of the implant than at a second end of the implant. At least one extendable support element may be connected between the first and second members, which extendable support element may be actuatable to induce the movement of the entire first member away from the second member. The first member may be connected to the second member by a connecting member positioned at the second end of the implant. The extendable support element may drive the movement of the first member away from the second member at both the first and second ends of the implant. The entire movement of the first member may be induced by a single source, such as one or more extendable support elements controlled by the same source. The connecting member may constrain the movement of the first member at the second end to follow a defined path, based on that movement of the first member induced by the single source.
A spinal implant for placement between first and second vertebral bodies, in accordance with an aspect of the invention, includes first and second members having respective first and second surfaces for engaging respective vertebral bodies. The first and second surfaces may be on opposing sides of the implant to engage the respective vertebral bodies on each side of the intervertebral space. The implant may include at least one extendable support element connected between the first and second members. The extendable support element is desirably actuatable to induce movement of the entire first member away from the second member. The first and second members are preferably connected together such that, when movement of the first member away from the second member is induced by the extendable support element, the first member moves away from the second member by a larger distance at a first end of the implant than at a second end of the implant.
In accordance with other aspects of the invention, the first member may be connected to the second member by a connecting member positioned at the second end of the implant. In accordance with some such aspects of the invention, the connecting member may extend at an oblique angle to the longitudinal axis of the implant, the longitudinal axis extending between the first and second ends of the implant. In accordance with other such aspects of the invention, the connecting member may be a rotatable linkage. A first end of the linkage may be pivotably connected to the first member and a second end of the linkage may be pivotably connected to the second member. In accordance with yet other such aspects of the invention, the connecting member may include a plurality of rotatable linkages connected between the first and second members. In accordance with yet other such aspects of the invention, the connecting member may be an extension of the first member which is slidably received within a track defined within the second member. In accordance with other aspects of the invention, the connecting member may be configured such that the first member rotates about a point spaced apart from the implant proximate the second end of the implant. For example, the extension and the track may be curved so as to constrain the movement of the first member away from the second member such that the first member rotates about a point spaced apart from the implant proximate the second end of the implant.
In accordance with other aspects of the invention, the extendable support element may be positioned intermediate the first and second ends of the implant. In accordance with some such aspects of the invention, the extendable support element may be rigidly mounted to the second member at an oblique angle with respect to the second surface. In accordance with other such aspects of the invention, the extendable support element may be configured to be extended by a fluid. In accordance with yet other such aspects of the invention, the extendable support element may be rigidly mounted to the second member, and the extendable support element may be connected to the first member by a pivotable connection such that the first member can pivot with respect to the extendable support element. In accordance with yet other such aspects of the invention, the extendable support element may be rigidly mounted to the second member, and the extendable support element may slidably engage the first member. For example, the extendable support element may slidably engage the first member along mating curved surfaces.
In accordance with other aspects of the invention, the implant may include at least one post extending between the first and second members, which post constrains the maximum movement of the first member away from the second member. In accordance with some such aspects of the invention, the post may be positioned proximate the first end of the implant, such that the post constrains the maximum movement of the first member away from the second member at the first end.
In accordance with other aspects of the invention, the first end of the implant may be at a distal end of the implant and the second end of the implant may be at a proximal end of the implant, where the implant has a longitudinal axis extending between the distal and proximal ends. In accordance with some such aspects of the invention, the implant may include a connector at the second end of the implant that is structured to securely engage an inserter for positioning the implant.
In accordance with other aspects of the invention, the implant may extend along a longitudinal axis between distal and proximal ends of the implant, where the first end of the implant is positioned on one side of the longitudinal axis and the second end of the implant is positioned on an opposing side of the longitudinal axis from the first end. In accordance with some such aspects of the invention, the implant may include a connector at the proximal end of the implant that is structured to securely engage an inserter for positioning the implant. In accordance with other such aspects of the invention, the at least one extendable support element includes first and second extendable support elements spaced apart along the longitudinal axis of the implant. In accordance with yet other such aspects of the invention, the longitudinal axis may be curved, such that the implant has a curved, kidney bean-like shape between its proximal and distal ends.
The implant 10 includes at least one extendable support element in the form of a piston 22 attached to the underside of the top end plate 13, which piston 22 is slidably received within a corresponding cylinder 16 defined within the housing 11. The sliding of the piston 22 along the cylinder 16 results in the movement of the top end plate away from the housing 11. The piston 22 and cylinder 16 may operate as part of a hydraulic system, in which the sliding of the piston 22 away from the bottom of the cylinder is driven by pressurized fluid within the cylinder 16, as discussed in the '620 Patent and the '854 Application. A seal member 23, which may be in the form of an o-ring, is positioned so as to seal the sliding interface between the cylinder 16 and the piston 22, in order to prevent the pressurized fluid from escaping through that interface. The seal member 23 may be seated within a corresponding groove 45 defined in the outer surface of the piston 22. In an alternative (not shown), the seal member 23 may be seated within a corresponding groove defined in the outer surface of the cylinder 16 abutting the piston 22, as disclosed in embodiments of the '854 Application.
The implant 10 also includes a locking system to lock the position of the top end plate 13 by preventing the top end plate 13 from translating back towards the housing 11. That locking system may include inter-engaging locking elements. For example, the implant 10 may include a lower lock support 20 positioned within the housing 11 and a corresponding upper lock support 17 (see
As disclosed in the '854 Application, the housing 11 may include a channel 66 formed within it, which may serve as a pressure channel for delivering a pressurized fluid (e.g., saline) to the interior of the cylinder 16 in order to drive the movement of the piston 22 to expand the implant. As shown in
The implant 10 preferably defines a leading nose 32 at a distal end 106 of the implant and an engagement region 33 at a proximal end 108 of the implant. The leading nose 32 may have a top tapered and/or rounded face 35 and a bottom tapered and/or rounded face 36. The leading nose 32 may additionally include inwardly directed side tapered and/or rounded faces (not shown). The tapered and/or rounded faces 35, 36 of the leading nose enable non-traumatic insertion of the implant 10 past neural elements and between vertebral bodies. The distal end may also include structures that aid in manipulating the implant in situ (e.g., steering elements that facilitate at least partial rotation of the implant). The engagement region 33 includes a delivery tool anchor 37, which may be in the form of a threaded bore, that allows secure attachment of the implant 10 to a delivery tool 100, such as one illustrated in U.S. Pat. Nos. 8,070,813; 8,998,924; 9,028,550 (hereinafter “the '550 Patent”); U.S. Provisional Patent Application No. 62/319,460 filed on Apr. 7, 2016, entitled Surgical Insertion Instruments (hereinafter “the '460 Application”); or U.S. patent application Ser. No. 15/480,781 filed on Apr. 6, 2017, entitled Surgical Insertion Instruments (hereinafter “the '781 Application”), the disclosures of all of which are hereby incorporated by reference herein as if fully set forth herein. The engagement region 33 also contains one or more of the pressure input ports for delivering a pressurized fluid to the interior of cylinder 16 in order to expand the implant 10. As illustrated in
Implant 10 is configured to be implanted between opposing vertebral bodies in the spine to facilitate bony fusion between those vertebral bodies. The implant 10 is shown in its collapsed or contracted configuration in
The implant 10 is preferably configured such that there is differential expansion at each end of the implant. For example, as shown in
In order to permit the top end plate 13 to rotate during expansion, the piston 22 may be connected to the top end plate 13 by a pivotable connection, such as a rotatable pin connection. For example, the top of the piston 22 may include a protruding fulcrum 112 shaped to be received within a corresponding recess 114 in the underside 116 of the top end plate 13. The top end plate 13 may also include at least one relief 118 in its underside 116 to provide clearance for part of the piston 22 during expansion, as shown in
The implant 10 may include a stop member to constrain the maximum expansion of the implant. For example, as shown in
In embodiments of the invention, the extendable support element may deviate from being perpendicular to the top and bottom end surfaces 9, 8 when the implant 10 is in the contracted configuration. For example, as shown in
The above-described embodiment illustrated in
Mechanisms similar to those discussed above for providing differential expansion of the anterior and posterior portions of the spinal column can also be included in implants structured to be used in a TLIF technique or along a lateral approach. For example, an implant structured to be used in a lateral approach is illustrated in
For example, the embodiment of
In contrast to the embodiment illustrated in
The implant 10 preferably defines a leading nose 32 at a distal end 106 of the implant and an engagement region 33 at a proximal end 108 of the implant. The leading nose 32 may have a top tapered and/or rounded face 35 and a bottom tapered and/or rounded face 36. The leading nose 32 may additionally include inwardly directed side tapered and/or rounded faces 34. The engagement region 33 includes a delivery tool anchor 37 for secure attachment of the implant 10 to a delivery tool 100, as discussed above. The engagement region 33 may also include one or more engagement features, such as one or more recesses 82, which may be engageable by the delivery tool in order to act as an anti-rotation feature for securing the rotational orientation of the implant 10 with respect to the delivery tool anchor 37. The engagement region 33 may also contain one or more of the pressure input ports for delivering a pressurized fluid to the interior of cylinder 16 in order to expand the implant 10.
As with the embodiment of
An implant structured to be used in a TLIF technique (not shown) which similarly allows for differential expansion between the anterior 130 and posterior 132 ends of the implant 10 may also be provided in accordance with the present invention. Such an implant may generally be configured like the lateral implant of
In the embodiments of the implant 10 discussed above, the linkage 110 causes the top end plate 13 to rotate during the expansion induced by the extendable support elements. The top end plate 13 will thus have an instantaneous center of rotation spaced posteriorly from the implant 10, although the location of the instantaneous center of rotation will move during the expansion of the implant. As illustrated in
In other embodiments of an implant in accordance with the present invention, a posteriorly-spaced center of rotation can be provided by other mechanisms. For example, as shown in the exemplary embodiment of a lateral implant illustrated in
Although not shown, the embodiment of the implant illustrated in
In yet further embodiments of the present invention, which may be used in connection with PLIF, TLIF, or lateral implants, the connection between the top end plate 13 and the housing 11 that constrains the movement of the top end plate 13 during expansion and that defines the posterior expansion of the implant may be replaced with a four-bar linkage 142, as schematically illustrated in
Another embodiment of an implant 10 in accordance with the present invention is illustrated in
The implant 10 of
The implant 10 of
As with the above-discussed embodiments, the embodiment of
The embodiment of
Another embodiment of an implant 10 in accordance with the present invention is illustrated in
Like the other lateral embodiments shown in
As disclosed in the '854 Application, the housing 11 may include a channel 66 formed within it, which may serve as a pressure channel for delivering a pressurized fluid (e.g., saline) to the interior of the cylinders 16 in order to drive the movement of the pistons 22 to expand the implant. As shown in
The implant 10 of
Similar to the embodiments disclosed in '550 Patent, the implant 10 may also include a bone graft input/infusion port 319 structured to receive autologous and/or allogeneic bone graft, a bone growth enabling matrix, and/or bone growth stimulating substances after the implant is inserted into the body. The port 319, which is desirably located at the proximal end of the implant, such as part of the engagement region 33, communicates with the interior cavity 15 via passage 392. For example, the graft material may be supplied to the implant by a bone graft supply line 404 of the insertion tool 100, which supply line 404 may define a channel that communicates with the passage 392 in the implant 10 when the insertion tool 100 is connected to the implant 10, as shown in
In other embodiments, graft material may be supplied through the port 319 and passage 392 and into the interior cavity 15 of the implant 10 from any one of the embodiments of graft injector assemblies disclosed in U.S. Patent Application Publication No. 2015/0112352, the disclosure of which is incorporated by reference herein as if fully set forth herein, and such graft injector assemblies may be loaded using the devices and methods disclosed in U.S. patent application Ser. No. 15/241,339 filed Aug. 19, 2016, entitled Bone Graft Delivery Loading Assembly, the disclosure of which is also incorporated by reference herein as if fully set forth herein. Furthermore, any of the other embodiments of the implants 10 disclosed herein and discussed above may also include a bone graft input/infusion port 319 and associated passage 392 for likewise supplying bone graft material to the interior cavity 15 of the implant.
As with the above-discussed embodiments, the embodiment of
Any of the embodiments of the implant 10 disclosed above may be reversed so that they may be inserted along a different approach. For example,
Although the embodiments of the implant 10 disclosed above included pistons 22 and cylinders 16 driven by hydraulic pressure to expand the implant 10, other forms of extendable support elements may alternatively be used. For example, as disclosed in the '620 Patent, the implant 10 may be expanded by bellows, rotating cam lift mechanisms, rotating screw lift mechanisms, or other such devices.
The embodiments of the implant 10 discussed above involve expansion wherein the entire top end plate 13 moves away from the housing 11, by providing some expansion at the posterior end of the implant, although less expansion than at the anterior end of the implant. In other variations (not shown) of any of the above-discussed embodiments, however, there may be no expansion provided at the posterior end of the implant. For example, the connecting member could be replaced by a pin connection at the posterior end of the implant, which pin connection permits rotation of the top end plate 13 about the pin connection but does not involve the top end plate 13 moving away from the housing 11 at the posterior end.
In other embodiments in accordance with the present invention, the implant 10 may instead be constructed to provide greater expansion at a different end of the implant (e.g., at the posterior end), by employing substantially the same mechanisms discussed above, except in rearranged locations within the implant. For example, the locations of the components controlling the expansion, such as the extendable support elements and linkages, may be mirrored within the implant. That way, the implant 10 can be used to provide curvature correction in a different direction than that discussed above. Additionally, or alternatively, the surgeon can modify the direction and/or plane of the applied curvature correction by varying the orientation of the implant with respect to the spine. For example, any one of the implants can be inserted into and/or reoriented within the disc space such that the implant is oriented with respect to the longitudinal axis of the spine so as to provide curvature correction in a desired longitudinal plane and in a desired direction within that plane.
Some or all of the components or portions of components of the implants 10 disclosed herein may be created by an additive manufacturing or 3D printing process, e.g., using Laser Rapid Manufacturing (LRM) technology. Additionally, or alternatively, some of the components or portions of components may be manufactured from a porous material, such as a porous metal. Such porous metal may be in the form of a porous, commercially-pure titanium matrix or a porous, titanium alloy (e.g., a Ti6A14V alloy), such as those manufactured by Howmedica Osteonics Corp. under the trademark TRITANIUM®. Examples of additive manufacturing processes for creating some or all of the components of the implants 10 disclosed herein, including some such processes for creating porous materials, are disclosed in U.S. Pat. Nos. 7,537,664; 8,147,861; 8,350,186; 8,728,387; 8,992,703; 9,135,374; and 9,180,010, as well as U.S. Patent Application Publication No. 2006/0147332, all of which are hereby incorporated by reference herein as if fully set forth herein. In one example, the top end plate 13 and the bottom 12 of the housing 11 may include a porous titanium matrix formed via 3D printing, and then various features of the implant 10 may be further defined by machining of those components. For example, surface features to increase frictional engagement with the vertebrae above and below the implant may be defined in the porous matrix by machining the bottom end surface 8 and the top end surface 9. The porous material may also be supplemented by or replaced with solid or denser material in at least portions of the implant 10, however. For example, the tops of projecting ridges and other features along the top and bottom end surfaces 9, 8 may be formed from solid material, while the surrounding base portions that interconnect those features are formed from a porous matrix. Solid (non-porous) material may also be used in the portions of the implants 10 that enclose the hydraulic fluid. Solid material, which may be constructed with a smooth surface finish, may also be used along the interfaces between components that slide with respect to one another. Solid material may also be used in portions of the implants 10 where additional structural integrity is needed due to the loads that will be applied by the spine. For example, the periphery of the top end plate 13 may be constructed of solid material. In another example, the struts 44 may be constructed of solid material, in order to increase the strength to the top end plate 13. In an alternative, portions of the implants 10 where additional structural integrity is needed may be constructed of a porous metal material, but the density of that material may be increased in those portions. Examples of implants having both solid and porous portions, as well as methods of creating the same, are disclosed in U.S. Provisional Patent Application No. 62/245,004, filed on Oct. 22, 2015, and U.S. Patent Application Publication No. 2016/0199193, the entire disclosures of which are hereby incorporated by reference herein as if fully set forth herein.
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
This application is a continuation of U.S. patent application Ser. No. 15/599,638 filed May 19, 2017, which claims the benefit of the filing date of U.S. Provisional Patent Application No. 62/339,459 filed May 20, 2016, the disclosures of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3875595 | Froning | Apr 1975 | A |
4932975 | Main et al. | Jun 1990 | A |
4969888 | Scholten et al. | Nov 1990 | A |
5236460 | Barber | Aug 1993 | A |
5653763 | Errico et al. | Aug 1997 | A |
5665122 | Kambin | Sep 1997 | A |
5723013 | Jeanson et al. | Mar 1998 | A |
5827328 | Buttermann | Oct 1998 | A |
5865848 | Baker | Feb 1999 | A |
5916267 | Tienboon | Jun 1999 | A |
5980522 | Koros et al. | Nov 1999 | A |
5989290 | Biedermann et al. | Nov 1999 | A |
6039761 | Li et al. | Mar 2000 | A |
6102950 | Vaccaro | Aug 2000 | A |
6127597 | Beyar et al. | Oct 2000 | A |
6159244 | Suddaby | Dec 2000 | A |
6176881 | Schar et al. | Jan 2001 | B1 |
6193756 | Studer et al. | Feb 2001 | B1 |
6214012 | Karpman et al. | Apr 2001 | B1 |
6296665 | Strnad et al. | Oct 2001 | B1 |
6371989 | Chauvin et al. | Apr 2002 | B1 |
6375682 | Fleischmann et al. | Apr 2002 | B1 |
6375683 | Crozet et al. | Apr 2002 | B1 |
6395032 | Gauchet | May 2002 | B1 |
6454806 | Cohen et al. | Sep 2002 | B1 |
6527803 | Crozet et al. | Mar 2003 | B1 |
6562074 | Gerbec et al. | May 2003 | B2 |
6582467 | Teitelbaum et al. | Jun 2003 | B1 |
6585699 | Ljunggreen et al. | Jul 2003 | B2 |
6692495 | Zacouto | Feb 2004 | B1 |
6719796 | Cohen et al. | Apr 2004 | B2 |
6723126 | Berry | Apr 2004 | B1 |
6730088 | Yeh | May 2004 | B2 |
6764491 | Frey et al. | Jul 2004 | B2 |
6830570 | Frey et al. | Dec 2004 | B1 |
6835207 | Zacouto et al. | Dec 2004 | B2 |
6866682 | An et al. | Mar 2005 | B1 |
6875235 | Ferree | Apr 2005 | B2 |
6953477 | Berry | Oct 2005 | B2 |
6960232 | Lyons et al. | Nov 2005 | B2 |
6981989 | Fleischmann et al. | Jan 2006 | B1 |
7001431 | Bao et al. | Feb 2006 | B2 |
7018415 | McKay | Mar 2006 | B1 |
7018416 | Hanson et al. | Mar 2006 | B2 |
7060037 | Lussier et al. | Jun 2006 | B2 |
7060073 | Frey et al. | Jun 2006 | B2 |
7066958 | Ferree | Jun 2006 | B2 |
7094257 | Mujwid et al. | Aug 2006 | B2 |
7166110 | Yundt | Jan 2007 | B2 |
7204853 | Gordon et al. | Apr 2007 | B2 |
7214243 | Taylor | May 2007 | B2 |
7217293 | Branch, Jr. | May 2007 | B2 |
7282063 | Cohen et al. | Oct 2007 | B2 |
7291150 | Graf | Nov 2007 | B2 |
7291158 | Crow et al. | Nov 2007 | B2 |
7316686 | Dorchak et al. | Jan 2008 | B2 |
7316714 | Gordon et al. | Jan 2008 | B2 |
7351261 | Casey | Apr 2008 | B2 |
7407513 | Alleyne et al. | Aug 2008 | B2 |
7419505 | Fleischmann et al. | Sep 2008 | B2 |
7452359 | Michelson | Nov 2008 | B1 |
7470273 | Dougherty-Shah | Dec 2008 | B2 |
7481812 | Frey et al. | Jan 2009 | B2 |
7485145 | Purcell | Feb 2009 | B2 |
7507241 | Levy et al. | Mar 2009 | B2 |
7520900 | Trieu | Apr 2009 | B2 |
7537664 | O'Neill et al. | May 2009 | B2 |
7563284 | Coppes et al. | Jul 2009 | B2 |
7563286 | Gerber et al. | Jul 2009 | B2 |
7621956 | Paul et al. | Nov 2009 | B2 |
7628815 | Baumgartner et al. | Dec 2009 | B2 |
7670359 | Yundt | Mar 2010 | B2 |
7708779 | Edie et al. | May 2010 | B2 |
7722674 | Grotz | May 2010 | B1 |
7731752 | Edie et al. | Jun 2010 | B2 |
7731753 | Reo et al. | Jun 2010 | B2 |
7771480 | Navarro et al. | Aug 2010 | B2 |
7794501 | Edie et al. | Sep 2010 | B2 |
7806935 | Navarro et al. | Oct 2010 | B2 |
7819921 | Grotz | Oct 2010 | B2 |
7824444 | Biscup et al. | Nov 2010 | B2 |
7824445 | Biro et al. | Nov 2010 | B2 |
7854766 | Moskowitz et al. | Dec 2010 | B2 |
7862618 | White et al. | Jan 2011 | B2 |
7883543 | Sweeney | Feb 2011 | B2 |
7935124 | Frey et al. | May 2011 | B2 |
7967863 | Frey et al. | Jun 2011 | B2 |
7967867 | Barreiro et al. | Jun 2011 | B2 |
7985231 | Sankaran | Jul 2011 | B2 |
7985256 | Grotz et al. | Jul 2011 | B2 |
8021395 | Ben-Mokhtar et al. | Sep 2011 | B2 |
8025680 | Hayes et al. | Sep 2011 | B2 |
8057549 | Butterman et al. | Nov 2011 | B2 |
8062368 | Heinz et al. | Nov 2011 | B2 |
8062373 | Fabian, Jr. | Nov 2011 | B2 |
8070813 | Grotz et al. | Dec 2011 | B2 |
8105382 | Olmos et al. | Jan 2012 | B2 |
8147861 | Jones et al. | Apr 2012 | B2 |
8153785 | Khire et al. | Apr 2012 | B2 |
8187331 | Strohkirch, Jr. et al. | May 2012 | B2 |
8192495 | Simpson et al. | Jun 2012 | B2 |
8267939 | Cipoletti et al. | Sep 2012 | B2 |
8273124 | Renganath et al. | Sep 2012 | B2 |
8303663 | Jimenez et al. | Nov 2012 | B2 |
8350186 | Jones et al. | Jan 2013 | B2 |
8353961 | McClintock et al. | Jan 2013 | B2 |
8366777 | Matthis et al. | Feb 2013 | B2 |
8394143 | Grotz et al. | Mar 2013 | B2 |
8435296 | Kadaba et al. | May 2013 | B2 |
8454695 | Grotz et al. | Jun 2013 | B2 |
8480741 | Grotz et al. | Jul 2013 | B2 |
8696751 | Ashley et al. | Apr 2014 | B2 |
8728387 | Jones et al. | May 2014 | B2 |
8992620 | Ashley et al. | Mar 2015 | B2 |
8992703 | O'Neill et al. | Mar 2015 | B2 |
8998924 | Simpson et al. | Apr 2015 | B2 |
9028550 | Shulock et al. | May 2015 | B2 |
9135374 | Jones et al. | Sep 2015 | B2 |
9180010 | Dong et al. | Nov 2015 | B2 |
9662224 | Weiman et al. | May 2017 | B2 |
20010056302 | Boyer et al. | Dec 2001 | A1 |
20020128716 | Cohen et al. | Sep 2002 | A1 |
20020136146 | Lee et al. | Sep 2002 | A1 |
20020138146 | Jackson | Sep 2002 | A1 |
20020151976 | Foley et al. | Oct 2002 | A1 |
20030114899 | Woods et al. | Jun 2003 | A1 |
20030130739 | Gerbec et al. | Jul 2003 | A1 |
20040030346 | Frey et al. | Feb 2004 | A1 |
20040088054 | Berry | May 2004 | A1 |
20040097928 | Zdeblick et al. | May 2004 | A1 |
20040133273 | Cox | Jul 2004 | A1 |
20040153065 | Lim | Aug 2004 | A1 |
20040153156 | Cohen et al. | Aug 2004 | A1 |
20040181229 | Michelson | Sep 2004 | A1 |
20040186576 | Biscup et al. | Sep 2004 | A1 |
20050033437 | Bao et al. | Feb 2005 | A1 |
20050043800 | Paul et al. | Feb 2005 | A1 |
20050049590 | Alleyne et al. | Mar 2005 | A1 |
20050085910 | Sweeney | Apr 2005 | A1 |
20050107881 | Alleyne et al. | May 2005 | A1 |
20050113842 | Bertagnoli et al. | May 2005 | A1 |
20050197702 | Coppes et al. | Sep 2005 | A1 |
20050216084 | Fleischmann et al. | Sep 2005 | A1 |
20050229433 | Cachia | Oct 2005 | A1 |
20050251260 | Gerber et al. | Nov 2005 | A1 |
20050273169 | Purcell | Dec 2005 | A1 |
20050273170 | Navarro et al. | Dec 2005 | A1 |
20050273171 | Gordon et al. | Dec 2005 | A1 |
20060036259 | Carl et al. | Feb 2006 | A1 |
20060085073 | Raiszadeh | Apr 2006 | A1 |
20060089719 | Trieu | Apr 2006 | A1 |
20060106416 | Raymond et al. | May 2006 | A1 |
20060116767 | Magerl et al. | Jun 2006 | A1 |
20060142860 | Navarro et al. | Jun 2006 | A1 |
20060142861 | Murray | Jun 2006 | A1 |
20060147332 | Jones et al. | Jul 2006 | A1 |
20060149377 | Navarro et al. | Jul 2006 | A1 |
20060167547 | Suddaby | Jul 2006 | A1 |
20060200244 | Assaker | Sep 2006 | A1 |
20060235426 | Lim et al. | Oct 2006 | A1 |
20060235535 | Ferree et al. | Oct 2006 | A1 |
20060264968 | Frey et al. | Nov 2006 | A1 |
20070050030 | Kim | Mar 2007 | A1 |
20070050033 | Reo et al. | Mar 2007 | A1 |
20070073395 | Baumgartner et al. | Mar 2007 | A1 |
20070093901 | Grotz et al. | Apr 2007 | A1 |
20070093903 | Cheng | Apr 2007 | A1 |
20070123987 | Bernstein | May 2007 | A1 |
20070179611 | DiPoto et al. | Aug 2007 | A1 |
20070233254 | Grotz et al. | Oct 2007 | A1 |
20070255409 | Dickson et al. | Nov 2007 | A1 |
20070255413 | Edie et al. | Nov 2007 | A1 |
20070255415 | Edie et al. | Nov 2007 | A1 |
20070270961 | Ferguson | Nov 2007 | A1 |
20070270964 | Strohkirch et al. | Nov 2007 | A1 |
20070288092 | Bambakidis | Dec 2007 | A1 |
20080021555 | White et al. | Jan 2008 | A1 |
20080021556 | Edie | Jan 2008 | A1 |
20080058930 | Edie et al. | Mar 2008 | A1 |
20080058931 | White et al. | Mar 2008 | A1 |
20080065082 | Chang et al. | Mar 2008 | A1 |
20080065220 | Alleyne et al. | Mar 2008 | A1 |
20080065221 | Alleyne et al. | Mar 2008 | A1 |
20080077150 | Nguyen | Mar 2008 | A1 |
20080086276 | Naka et al. | Apr 2008 | A1 |
20080097441 | Hayes et al. | Apr 2008 | A1 |
20080103601 | Biro et al. | May 2008 | A1 |
20080114467 | Capote et al. | May 2008 | A1 |
20080140207 | Olmos et al. | Jun 2008 | A1 |
20080147193 | Matthis et al. | Jun 2008 | A1 |
20080147194 | Grotz et al. | Jun 2008 | A1 |
20080161933 | Grotz et al. | Jul 2008 | A1 |
20080177387 | Parimore et al. | Jul 2008 | A1 |
20080215153 | Butterman et al. | Sep 2008 | A1 |
20080281424 | Parry et al. | Nov 2008 | A1 |
20080288073 | Renganath et al. | Nov 2008 | A1 |
20080300598 | Barreiro et al. | Dec 2008 | A1 |
20090005819 | Ben-Mokhtar et al. | Jan 2009 | A1 |
20090005874 | Fleischmann et al. | Jan 2009 | A1 |
20090018661 | Kim et al. | Jan 2009 | A1 |
20090043312 | Koulisis et al. | Feb 2009 | A1 |
20090048676 | Fabian, Jr. | Feb 2009 | A1 |
20090105836 | Frey et al. | Apr 2009 | A1 |
20090171389 | Sankaran | Jul 2009 | A1 |
20090204215 | McClintock et al. | Aug 2009 | A1 |
20090216331 | Grotz et al. | Aug 2009 | A1 |
20090222100 | Cipoletti et al. | Sep 2009 | A1 |
20090270987 | Heinz et al. | Oct 2009 | A1 |
20100016970 | Kapitan et al. | Jan 2010 | A1 |
20100057204 | Kadaba et al. | Mar 2010 | A1 |
20100145455 | Simpson et al. | Jun 2010 | A1 |
20100145456 | Simpson et al. | Jun 2010 | A1 |
20100249930 | Myers | Sep 2010 | A1 |
20110130835 | Ashley et al. | Jun 2011 | A1 |
20110137416 | Myers | Jun 2011 | A1 |
20110138948 | Jimenez et al. | Jun 2011 | A1 |
20110270398 | Grotz et al. | Nov 2011 | A1 |
20110288646 | Moskowitz et al. | Nov 2011 | A1 |
20120059469 | Myers et al. | Mar 2012 | A1 |
20120116518 | Grotz et al. | May 2012 | A1 |
20120130387 | Simpson et al. | May 2012 | A1 |
20120245695 | Simpson et al. | Sep 2012 | A1 |
20120283830 | Myers | Nov 2012 | A1 |
20130096677 | Myers et al. | Apr 2013 | A1 |
20130158664 | Palmatier et al. | Jun 2013 | A1 |
20130158669 | Sungarian et al. | Jun 2013 | A1 |
20130197642 | Ernst | Aug 2013 | A1 |
20130197647 | Wolters et al. | Aug 2013 | A1 |
20130197648 | Boehm et al. | Aug 2013 | A1 |
20130204368 | Prevost | Aug 2013 | A1 |
20130204374 | Milella, Jr. | Aug 2013 | A1 |
20130253650 | Ashley et al. | Sep 2013 | A1 |
20140316522 | Weiman | Oct 2014 | A1 |
20150025634 | Boehm | Jan 2015 | A1 |
20150112352 | Krause et al. | Apr 2015 | A1 |
20150351925 | Emerick et al. | Dec 2015 | A1 |
20160022434 | Robinson | Jan 2016 | A1 |
20160089247 | Nichols et al. | Mar 2016 | A1 |
20160199193 | Willis et al. | Jul 2016 | A1 |
20170296352 | Richerme et al. | Oct 2017 | A1 |
20170312090 | Sharabani et al. | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
1756516 | Apr 2006 | CN |
101610741 | Dec 2009 | CN |
101631516 | Jan 2010 | CN |
101686860 | Mar 2010 | CN |
101686865 | May 2013 | CN |
1442715 | Nov 2004 | EP |
1415624 | May 2006 | EP |
3026294 | Apr 2016 | FR |
2001-518824 | Oct 2001 | JP |
2008-502372 | Jan 2008 | JP |
2003003951 | Jan 2003 | WO |
2004016250 | Feb 2004 | WO |
2004016205 | May 2004 | WO |
2006044786 | Jan 2007 | WO |
2008011371 | Mar 2008 | WO |
2007124078 | Jul 2008 | WO |
2008039811 | Jul 2008 | WO |
2008112607 | Dec 2008 | WO |
2008148210 | Dec 2008 | WO |
2009033100 | Mar 2009 | WO |
2008121251 | Aug 2009 | WO |
2009064787 | Aug 2009 | WO |
2009105182 | Aug 2009 | WO |
2009114381 | Sep 2009 | WO |
2008086276 | Dec 2009 | WO |
2010074704 | Jul 2010 | WO |
2010068725 | Oct 2010 | WO |
2011011609 | Jun 2011 | WO |
2011150077 | Dec 2011 | WO |
2013173767 | Nov 2013 | WO |
2014144696 | Sep 2014 | WO |
0156513 | Jan 2015 | WO |
2015198335 | Dec 2015 | WO |
2016063283 | Apr 2016 | WO |
2016183382 | Nov 2016 | WO |
2017117513 | Jul 2017 | WO |
Entry |
---|
U.S. Appl. No. 15/481,854, filed Apr. 7, 2017. |
U.S. Appl. No. 15/480,781, filed Apr. 6, 2017. |
U.S. Appl. No. 15/241,339, filed Aug. 19, 2016. |
U.S. Appl. No. 62/319,460, filed Aug. 7, 2016. |
U.S. Appl. No. 62/245,004, filed Oct. 22, 2015. |
Extended European Search Report for Application No. 17172001.4 dated Sep. 28, 2017. |
Official Action for European Patent Application No. 17172004.1 dated Oct. 4, 2022, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20210145600 A1 | May 2021 | US |
Number | Date | Country | |
---|---|---|---|
62339459 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15599638 | May 2017 | US |
Child | 17158499 | US |