Expandable intervertebral cage

Information

  • Patent Grant
  • 12097126
  • Patent Number
    12,097,126
  • Date Filed
    Wednesday, September 28, 2022
    2 years ago
  • Date Issued
    Tuesday, September 24, 2024
    5 months ago
Abstract
An expandable intervertebral cage device includes a first base plate and a second base plate, a distal block with an internal passage that mechanically couples to each base plate, and a proximal block comprising internal threading. The device has exactly two arm assemblies with one on each side. Each arm assembly comprises a first arm mechanically coupled to the first base plate and a second arm mechanically coupled to the second base plate. A screw is arranged partially within the internal threading of the proximal block and passes through the internal passage of the distal block, such that rotation of the screw relative to the distal block causes a change in distance between the distal block and the proximal block, and a corresponding change in the spacing and lordosis of the device.
Description
TECHNICAL FIELD

The present disclosure relates generally to the distraction and fusion of vertebral bodies. More specifically, the present disclosure relates to devices and associated methods for distraction and fusion of vertebral bodies that remain stable when implanted and facilitate fusion following their use for distraction to aid in the correction of spinal deformity by reducing a collapsed disc and establishing sagittal alignment, lordosis, or kyphosis.


BACKGROUND

The concept of intervertebral fusion for the cervical and lumbar spine following a discectomy was generally introduced in the 1960s. It involved coring out a bone graft from the hip and implanting the graft into the disc space. The disc space was prepared by coring out the space to match the implant. The advantages of this concept were that it provided a large surface area of bone-to-bone contact and placed the graft under loading forces that allowed osteoconduction and induction enhancing bone fusion. However, the technique is seldom practiced today due to numerous disadvantages including lengthy operation time, destruction of a large portion of the disc space, high risk of nerve injury, and hip pain after harvesting the bone graft.


At least two devices have been commonly used to perform the intervertebral portion of an intervertebral body fusion: the first is the distraction device and the second is the intervertebral body fusion device, often referred to as a cage. Cages can be implanted as standalone devices or as part of a circumferential fusion approach with pedicle screws and rods. The concept is to introduce an implant that will distract a collapsed disc and decompress the nerve root, allowing load sharing to enhance bone formation, and to implant a device that is small enough to allow implantation with minimal retraction and pulling on nerves.


In a typical intervertebral body fusion procedure, a portion of the intervertebral disc is first removed from between the vertebral bodies. This can be done through either a direct open approach or a minimally invasive approach. Disc shavers, pituitary rongeours, curettes, and/or disc scrapers can be used to remove the nucleus and a portion of either the anterior or posterior annulus to allow implantation and access to the inner disc space. The distraction device is inserted into the cleared space to enlarge the disc space and the vertebral bodies are separated by actuating the distraction device. Enlarging the disc space is important because it also opens the foramen where the nerve root exists. It is important that during the distraction process one does not over-distract the facet joints. An intervertebral fusion device is next inserted into the distracted space and bone growth factor, such as autograft, a collagen sponge with bone morphogenetic protein, or other bone enhancing substance may be inserted into the space within the intervertebral fusion device to promote the fusion of the vertebral bodies.


Intervertebral fusion and distraction can be performed through anterior, posterior, oblique, and lateral approaches. Each approach has its own anatomical challenges, but the general concept is to fuse adjacent vertebra in the cervical thoracic or lumbar spine. Devices have been made from various materials. Such materials include cadaveric cancellous bone, carbon fiber, titanium and polyetheretherketone (PEEK). Devices have also been made into different shapes such as a bean shape, football shape, banana shape, wedge shape and a threaded cylindrical cage.


U.S. Pat. Nos. 7,070,598 and 7,087,055 to Lim et al. disclose minimally invasive devices for distracting the disc space. The devices include scissor-jack-like linkages that are used to distract a pair of endplates associated with adjacent vertebra from a first collapsed orientation to a second expanded orientation. A pull arm device is used to deliver and distract the device in the disc space. However, the device is primarily used for distraction and not subsequent vertebral fusion. The device would not work as a fusion device, because once the pull arm is disconnected from the device, the device will not be stable enough to maintain proper spacing of the vertebrae until fusion can occur. The endplates of the device are also solid and do not permit bone growth for successful fusion.


U.S. Patent Publication No. 2008/0114367 to Meyer discloses a device that uses a scissor-jack-like arrangement to distract a disc space. To solve the instability problem of the scissor-jack arrangement, a curable polymer is injected to fill the disc space and the distraction device is disabled from attempting to support the load. The curable polymer and disabling of the device are necessary because the device could not adequately support the distracted disc space. The base plates of the device have at least two or more degrees of freedom, collectively, in a distracted position and are therefore not stable under the loads encountered supporting the disc space. Absent injection of the polymer, and the support and control supplied by the implanting physician via the removable distraction tool, the base plates would collapse, which could cause severe damage to the vertebral bodies.


Accordingly, there is a need in the art for a device that can distract adjacent vertebral bodies in a minimally invasive manner while providing stable support for the disc space during fusion; particularly, a device that would allow for angular orientation of the base plates to be matched exactly to the unique alignment, or desired alignment, of a patient's spine.


SUMMARY

An expandable intervertebral cage device includes a first base plate and a second base plate, a distal block with an internal passage that mechanically couples to each base plate, and a proximal block comprising internal threading. The device has exactly two arm assemblies with one on each side. Each arm assembly comprises a first arm mechanically coupled to the first base plate and a second arm mechanically coupled to the second base plate. A screw is arranged partially within the internal threading of the proximal block and passes through the internal passage of the distal block, such that rotation of the screw relative to the distal block causes a change in distance between the distal block and the proximal block, and a corresponding change in the spacing and lordosis of the device.


In an embodiment, an expandable intervertebral cage device is adapted to be implanted into an intervertebral disc space in a patient's body. The device includes a first base plate having a first outer bearing surface configured to interface with a first vertebra of the intervertebral disc space, a second base plate having a second outer bearing surface configured to interface with a second vertebra of the intervertebral disc space, a proximal block comprising internal threading and an external ridge on each of a first side of the device and a second side of the device, the external ridges configured to move along corresponding tracks within the first base plate and the second base plate, a distal block comprising an internal passage, and two arm assemblies, wherein one arm assembly is on each of the first side of the device and the second side of the device. Each arm assembly includes a first arm mechanically coupled to the first base plate and the distal block and a second arm mechanically coupled to the second base plate and the distal block. The device further includes a screw extending between the internal threading of the proximal block and the internal passage of the distal block, such that rotation of the screw relative to the proximal block causes a change in distance between the distal block and the proximal block, and a corresponding change in the spacing and lordosis of the device due to an expansion or contraction of the arm assemblies as the external ridges on the proximal block are guided through the corresponding tracks within the first base plate and the second base plate.


In an embodiment, an expandable intervertebral cage device adapted to be implanted into an intervertebral disc space in a patient's body includes a first base plate having a first outer bearing surface configured to interface with a first vertebra of the intervertebral disc space, a second base plate having a second outer bearing surface configured to interface with a second vertebra of the intervertebral disc space, a proximal block comprising internal threading and an external arced surface on each of a first side of the device and a second side of the device, a distal block comprising an internal passage and one arm assembly on each of the first side of the device and the second side of the device. Each arm assembly can include a first arm mechanically coupled to the first base plate and the distal bloc and a second arm mechanically coupled to the second base plate and the distal block. A screw can extend between the internal threading of the proximal block and the internal passage of the distal block such that rotation of the screw relative to the proximal block causes a change in distance between the distal block and the proximal block and a corresponding movement of the first base plate and the second base plate along the external arced surfaces of the proximal block.


The above summary is not intended to describe each illustrated embodiment or every implementation of the subject matter hereof. The figures and the detailed description that follow more particularly exemplify various embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS

Subject matter hereof may be more completely understood in consideration of the following detailed description of various embodiments in connection with the accompanying figures, in which:



FIG. 1A is a perspective view of an expandable intervertebral cage device according to an aspect of the disclosure.



FIG. 1B is a side view of the expandable intervertebral cage device according to the embodiment of FIG. 1A.



FIG. 1C is a cross-sectional view of the intervertebral cage device according to the embodiment of FIG. 1A.



FIG. 2A is a perspective view of an expanded intervertebral cage device according to an embodiment.



FIG. 2B is a side view of the expanded intervertebral cage device according to the embodiment of FIG. 2A.



FIG. 3 is an exploded view of an expandable intervertebral cage device according to an embodiment.



FIG. 4 is a perspective view of a screw, a distal block, and a pin, according to an embodiment.



FIG. 5 is an exploded view of the screw, the distal block, and the pin according to the embodiment of FIG. 4.



FIG. 6 is a perspective view of a proximal block, according to an embodiment.





While various embodiments are amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the claimed inventions to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the subject matter as defined by the claims.


DETAILED DESCRIPTION OF THE DRAWINGS

In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the disclosure. However, one skilled in the art will recognize that the embodiments may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail so as to not unnecessarily obscure aspects of the present disclosure. U.S. Pat. Nos. 8,628,577 and 9,486,328, invented by the inventor of the present application, disclose stable intervertebral body fusion and distraction devices. These patents are hereby incorporated herein by reference in their entirety other than the summary of the invention, claims and any express definitions set forth therein.



FIG. 1A is a perspective view of an expandable intervertebral cage device 100. As shown in FIG. 1A, intervertebral cage device 100 is in a collapsed position. FIG. 1B is a side view of the intervertebral cage device 100 in the collapsed position, and FIG. 1C is a cross-sectional view of the intervertebral cage device 100. FIGS. 2A-2B are counterparts to FIGS. 1A-1C showing the same intervertebral cage device 100. However, in FIGS. 2A-2B, while the views of intervertebral cage device 100 are the same as their respective counterparts in FIGS. 1A-1C, device 100 is in a fully expanded configuration rather than the collapsed position. FIGS. 3-6 depict individual elements or parts of device 100 in isolation and in more detail.


Intervertebral cage device 100 includes first base plate 102 and second base plate 104. On each side (i.e., each edge perpendicular to both the base plates 102 and 104 and the proximal/distal axis), intervertebral cage device 100 includes first arm 106, second arm 108, screw 110, rings 112, first or proximal block 114, second or distal block 116, base plate pins 118, block pin 120, ridges 122, and tracks 124. The hidden side of intervertebral cage device 100, not visible in the perspective views herein, comprises many substantially similar structures to those described with reference to the numbered elements.


Intervertebral cage device 100 is a device that can be used to hold two structures, such as the vertebrae of a spine, in a fixed spatial relationship with respect to one another. Intervertebral cage device 100 can be expanded to hold structures in any fixed spatial relationship with a range of distances and angles with respect to one another. Intervertebral cage device 100 provides desirable spacing and lordosis and can be operated using a single screw, as described below, to achieve commonly used intervertebral spacing and lordosis levels. The use of a single screw device reduces the complexity and increases the mechanical strength of the device.


The degree of lordosis of an implant is defined by the acuate angle made by the intersection of the end places. In some embodiments, at full extension the intervertebral cage device 100 disclosed herein can exhibit greater than 24 degrees of lordosis. For example, in embodiments the implant can exhibit 25 degrees of lordosis or 26 degrees of lordosis, which is not possible in existing implants and can be provided thanks to the unique structural features of the implant disclosed herein, particularly the features that enable expansion at the proximal end of the device. In some embodiments, the implant 100 can have an insertion profile or height of 6 mm at the tapered distal end of the device and be expanded up to a maximum height of 20 mm. One way to provide such a profile while maintaining sufficient structural integrity to stably support the disc space is by forming the end plates from a carbon-metal composite.


As shown in more detail with respect to FIG. 1A, first base plate 102, which is substantially similar to second base plate 104, comprises textured surface 126. First plate 102 and second base plate 104 each comprise tracks 124 configured to receive ridges 122 of proximal block 114 as shown for second base plate 104 in FIG. 2B. The base plates 102, 104 are a portion of device 100 that comprises a bearing surface. As used throughout this disclosure, “bearing surface” refers to the outside surface of a base plate (e.g., 102, 104) that interfaces with the endplate of a vertebra, other bone, or other structures that are to be held in a fixed spatial relationship from one another. Textured surface 126 can comprise, for example, any texture that promotes bone growth to hold the base plates 102, 104, or which provides grip or traction when compressed against bone.


As shown in FIG. 3, the base plates 102, 104 each further comprise socket 128 that are usable to receive base plate pins 118 to provide a mechanical connection between the base plates 102, 104 and a corresponding structure, such as first arms 106, as depicted in FIGS. 1A-11C.


As shown in FIGS. 1A-1C and 2A-2B, base plates 102 and 104 are arranged opposite from one another in device 100, and can be positioned within a range of distances and angles relative to one another, depending on the extent of the expansion of device 100. For example, as shown with respect to FIGS. 1A-1C, the device 100 is in a collapsed position, and base plates 102 and 104 are relatively close to one another, and arranged substantially parallel to one another. In the configuration shown with respect to FIGS. 2A-2B, the base plates 102 and 104 are relatively further away from one another on the distal end, and are angled relative to one another (this angle is sometimes referred to as lordosis). In embodiments, the extent of lordosis and/or distance between various parts of the base plates 102 and 104 can vary as the base plates ride along the curved surface of the proximal block. In some embodiments, base plates can define an angle of 23 degrees with respect to each other.


With continued reference to FIG. 3, the mechanism by which device 100 is expanded or collapsed is shown, and in particular first arms 106 and second arms 108. The arms 106, 108 are similar in function. First arms 106 comprise first body portion 130, first base connector 132, and first block connector 134. In embodiments, first block connector 134 further comprises groove 142. Second arms 108 comprise second body portion 136, second base connector 138, and second block connector 140. Body portions 130, 136 extend between base connectors 132, 138 and block connectors 134, 140 similarly for both first arms 106 and second arms 108. Second body portion 136 can further comprise arm protrusion 144. Arm protrusions 144 of second arms 108 are configured to abut first body portion 130 of first arms 106 when in a collapsed position, as shown in FIGS. 1A-1B, such that arms 106, 108 nest together in the collapsed configuration to enable the device to collapse to a smaller height and increase the difference in height between the collapsed configuration and the expanded configuration. The distance between base connectors 132, 138 and block connectors 134, 140 determines in part the extent to which the base plates 102, 104 of FIGS. 2A-2B can be distanced from one another, and the angle between them. Base connectors 132, 138 and block connectors 134, 140 can each be rotatably connected to an adjoining structure. So, for example, as shown with respect to FIGS. 1A-1C and 2A-2B, base connectors 132, 138 can be connected to first base plate 102 or second base plate 104 via a base plate pin 118. Likewise, block connectors 134, 140 can be connected to distal block 116 and secured using ring 112. The connections space the parts from one another, while allowing relative rotation between them.


In embodiments, rings 112 can support interconnection between the base plates 102, 104 and distal block 116. In particular, ring 112 holds block protrusions 146 (shown in more detail with respect to FIGS. 4-5) such that block protrusions 146 pass through block connectors 134 of first arms 106 and second arms 108. In operation, the effects of lateral forces (i.e., forces perpendicular to the proximal-distal directions previously described) are mitigated by ring 112. Ring 112 can prevent some types of relative lateral movement between first base plate 102, second base plate 104, first arms 106, and second arms 108 with respect to distal block 116. Ring 112 does this by snapping into grooves 142 of first arms 106.


Referring now to FIGS. 4-5, screw 110, distal block 116, and block pin 120 are shown. Distal block 116 includes block protrusions 146, internal passage 148, and pin channel 150. Internal passage 148 is configured to provide a passage for a portion of screw 110, as shown in FIG. 4. In some embodiments, the portion of screw 110 that passes through internal passage 148 is a shank (i.e., unthreaded), or else the internal passage 148 itself is unthreaded, or both, such that there is not co-rotation between distal block 116 and screw 110. In embodiments, screw 110 comprises screw groove 152 and nob 154. Screw 110 passes through internal passage 148 and is locked into place by block pin 120 sliding along screw groove 152 such that distal block 116 and screw 110 are fixed relative to one another in the proximal/distal directions. In embodiments, the portion of screw that is inserted into the distal block 116 may have a different width (e.g., narrower in the depicted embodiment) than the threaded portion of the screw to prevent the threaded portion from being advanced through the block.



FIG. 6 is a perspective view of proximal block 114. Proximal block 114 includes ridges 122, internal threads 156, aperture 158, and back stop 160. Internal threads 156 can be configured to interact with an adjacent component, such as screw 110 as shown in FIGS. 2A-2B. Proximal block 114 is connected to first base plate 102 and second base plate 104 via ridges 122 and tracks 124. As shown in FIG. 2B, ridges 122 can be aligned with tracks 124 within the base plates 102, 104 to allow a strong interface while allowing the base plates 102, 104 to rotate relative to the blocks 114, 116. In embodiments, back stop 160 comprises an arc to provide support against base plates 102, 104. During height expansion of base plates 102, 104, base plates 102, 104 are supported by the back stop 160 to prevent collapse during loading. Additionally, base plates 102, 104 can have rear or proximal surfaces having a concave curvature that generally matches a convex curvature of back stops 160 such that plates articulate with the arc along the back stop 160 at a very tight tolerance. Movement of base plates 102, 104 occurs along the arc.


Ridges 122 and tracks 124 guide the expansion of the base plates and provide stronger stability during torsion and shear than conventional alternatives incorporating pins or rods and passages. Although depicted as having a single ridge and corresponding track on each side, in some embodiments multiple or wider ridges and tracks can be employed. In embodiments, ridges 122 and tracks 124 comprise a curvature similar to that of the arc of back stop 160 such that ridges 122 provide further stability during articulation of base plates 102, 104. Further, ridges 122 and tracks 124 provide for expansion of base plates 102, 104 at the proximal end of the device since base plates 102, 104 do not need to be fixed with pins or rods. In devices that incorporate pins to connect base plates to a block, the pins take up room in the block such that the pins limit how wide a hole can be made in the block. The size of the hole can be crucial for a enabling a large screw or for insertion of bone fusion material. Incorporating attachment means of base plates 102, 104 to the outside of proximal block 114 enables aperture 158 to be larger in turn allowing for a larger screw or insertion of bone fusion material to be used, such as during a bone graft. Aperture 158 on a top surface of proximal block 114 further provides easier access for bone grafts. The bottom surface of proximal block 114, not visible in the perspective views herein, comprises an aperture substantially similar to aperture 158.


With continued reference to FIG. 6, rotation of screw 110 within internal threads 156 can cause screw 110 to advance in either the proximal or distal direction, which causes a corresponding movement of the distal block 116 in the same direction. As can be seen in FIG. 5, screw 110 can define a first diameter at proximal block 114 that is greater than a second diameter at distal block 116, such as the diameter of nob 154. The diameter of screw at the interface with proximal block 114 can be the same or greater than that at distal block 116 to prevent the screw from advancing distally through distal block 116. In embodiments, a ring, similar to ring 112, can prevent the screw 110 from being pulled proximally through proximal block 114.


In operation, first arms 106 and second arms 108 are rotatable and are connected to first base plate 102 and second base plate 104, respectively. Because the structural connection between first base plate 102 and screw 110 is substantially similar to the structural connection between second base plate 104 and screw 110, only the former will be described herein in detail.


First base plate 102 is mechanically coupled via base plate pins 118 to first arm 106. First arm 106 and second arm 108 are also mechanically coupled to screw 110 through distal block 116 via protrusions 146. In embodiments, a single large pin can be inserted through a channel within distal block 116 to function similarly to protrusions 146. In all, this connection permits for first base plate 102 to be indirectly connected to the screw 110 while still permitting relative rotation between them. Together with rings 112, proximal block 114, distal block 116, and base plate pins 118, a mechanical interconnection is formed between each of the base plates 102 and 104 that can be adjusted by an external tool (not shown). Ridges 122 and tracks 124 provide a pivot point that results in a specific relationship between the amount of extension of the device 100 and a relative angle between the first base plate 102 and the second base plate 104.


An external tool (not shown) can be used to turn screw 110, via a head (not shown). Because proximal block 114 is internally threaded (as shown in more detail with respect to FIG. 6), rotation of screw 110 causes relative movement of the screw 110 with respect to proximal block 114. By contrast, distal block 116 is not internally threaded. Rather, distal block 116 and screw 110 are connected such that movement of screw 110 in either the proximal or distal directions (i.e., the direction in which screw 110 moves relative to proximal block 114 when rotated) causes a corresponding movement of the distal block 116. This can be accomplished as shown, for example, in FIG. 1C, where distal block 116 is pushed and/or pulled by screw 110, and the interconnection is made by block pin 120 within groove 152. In alternative embodiments, various other interconnections between the screw and block can be made, which will result in co-movement in the proximal or distal direction without co-rotation. As proximal block 114 is moved by screw 110, it forces movement of first arms 106 and second arms 108.


As screw 110 is rotated, due to the internal threading of distal block 116, the distance between the proximal block 114 and distal block 116 changes. As the distance between proximal block 114 and distal block 116 increases, the arms 106 and 108 are caused to rotate. First arms 106 and second arms 108 rotate as the device 100 is converted from a collapsed configuration, such as that shown in FIGS. 1A-1C, to an expanded configuration, such as that shown with respect to FIGS. 2A-2B. This rotation results in increased distance between the first base plate 102 and the second base plate 104, as well as increased lordosis. As described with respect to other embodiments below, rotating screw 110 to change the distance between first base plate 102 and second base plate 104, as well as changing the amount of lordosis, can be useful to provide intervertebral support.


The embodiment shown in FIGS. 1A-1C and 2A-2B provides such intervertebral spacing, support, and lordosis with a relatively straightforward mechanical structure. The device 100 can be implanted in a compact configuration, then expanded to the appropriate size and angle by rotating screw 110, causing the changes in angle and spacing previously described, as desired.


The coupling of first arms 106 and second arms 108 to distal block 116 by protrusions 146 rather than using separate pins or other attachment means makes device 100 easier to manufacture due to the relatively large size and less parts, such as pins. Further, the use of protrusions 146 or a single large pin provides more stability than smaller pins, enabling device 100 to withstand greater loads. Protrusions 146 at a common point enables first arms 106 and second arms 108 to turn (swing) by a greater angle.


In some embodiments, when device 100 is implanted and in the process of being expanded, as blocks 114, 116 come closer together blocks 114, 116 compress a bone graft or bone fusion material that can be inserted inside device to force the material out of the internal chamber of device and into the adjacent vertebral base plates 102, 104. This will enhance bone integration into the base plates 102, 104. Some bone material will remain within the cage, which will integrate and fuse the center of the cage to the base plates 102, 104. In certain embodiments, the bone material can be injected into device 100 through one of apertures 156 in proximal block 114 of device 100. This could be done with an inserter device or separate extended syringe. In some embodiments, the base plates 102, 104 of device 100 can be coated to enhance bone integration.


Although the various devices described herein are described as being brought from a compressed configuration to an expanded configuration by rotation of a threaded member, the devices can be distracted by any other type of actuation member. In some embodiments, mechanisms other than threaded members can be used to distract the device. Such mechanisms include, for example, a pop-rivet mechanism, a sardine key and ribbon, a tourniquet and wire, a saw blade/ratchet, a zip-tie-like mechanism, piezo-electric inch worm motors and shape changing materials such as a shape member alloy or a conducting polymer actuator. These alternative locking mechanisms could be designed to make the device behave as if it were locked with a threaded member, preventing the device from being compressed as well as extended, or these mechanisms could afford the device the capability to ratchet upwards post implantation if such action would benefit the patient or provide additional therapy.


In embodiments, an expandable intervertebral cage device is adapted to be implanted into an intervertebral disc space in a patient's body. The device includes a first base plate having a first outer bearing surface configured to interface with a first vertebra of the intervertebral disc space, a second base plate having a second outer bearing surface configured to interface with a second vertebra of the intervertebral disc space, a proximal block comprising internal threading and an external ridge on each of a first side of the device and a second side of the device, the external ridges configured to move along corresponding tracks within the first base plate and the second base plate, a distal block comprising an internal passage, and two arm assemblies, wherein one arm assembly is on each of the first side of the device and the second side of the device. Each arm assembly includes a first arm mechanically coupled to the first base plate and the distal block and a second arm mechanically coupled to the second base plate and the distal block. The device further includes a screw extending between the internal threading of the proximal block and the internal passage of the distal block, such that rotation of the screw relative to the proximal block causes a change in distance between the distal block and the proximal block, and a corresponding change in the spacing and lordosis of the device due to an expansion or contraction of the arm assemblies as the external ridges on the proximal block are guided through the corresponding tracks within the first base plate and the second base plate.


In some embodiments, the change in distance between the distal block and the proximal block causes the first base plate and the second base plate to move along an external arced surface of the proximal block on each of the first side and the second side.


In some embodiments, the device comprises only two arm assemblies.


In some embodiments, both the first arm and the second arm of each arm assembly are mechanically coupled to a common point on the distal block.


In some embodiments, the proximal block has an opening defined therein sized and configured in enable insertion of a bone growth material into an open area within the device.


In some embodiments, the top base plate and the bottom base plate each have an opening defined therein configured to allow bone growth into an open space defined by the device.


In some embodiments, the screw is threadedly coupled to the internal threading of the proximal block, and the distal block includes a non-threaded rotational coupling to which the screw is non-threadedly rotationally coupled.


In some embodiments, the screw includes a first portion having a first diameter and a second portion having a second diameter.


In some embodiments, rotation of the screw relative to the proximal block further causes the arm assemblies to expand an angle of the first base plate and the second base plate relative to each other.


In some embodiments, the change in distance between the distal block and the proximal block causes a distance between a proximal end of the first base plate and a proximal end of the second base plate to vary.


In embodiments, an expandable intervertebral cage device adapted to be implanted into an intervertebral disc space in a patient's body includes a first base plate having a first outer bearing surface configured to interface with a first vertebra of the intervertebral disc space, a second base plate having a second outer bearing surface configured to interface with a second vertebra of the intervertebral disc space, a proximal block comprising internal threading and an external arced surface on each of a first side of the device and a second side of the device, a distal block comprising an internal passage and one arm assembly on each of the first side of the device and the second side of the device. Each arm assembly can include a first arm mechanically coupled to the first base plate and the distal bloc and a second arm mechanically coupled to the second base plate and the distal block. A screw can extend between the internal threading of the proximal block and the internal passage of the distal block such that rotation of the screw relative to the proximal block causes a change in distance between the distal block and the proximal block and a corresponding movement of the first base plate and the second base plate along the external arced surfaces of the proximal block.


In some embodiments, a distance between a proximal end of the first base plate and a proximal end of the second base plate varies as the first base plate and the second base plate move along the external arced surfaces.


In some embodiments, the device comprises only two arm assemblies.


In some embodiments, both the first arm and the second arm of each arm assembly are mechanically coupled to a common point on the distal block.


In some embodiments, the proximal block further comprises an external ridge on each of the first side of the device and the second side of the device, the external ridges configured to move along corresponding tracks within the first base plate and the second base plate as the first base plate and the second base plate move along the external arced surfaces.


In some embodiments, the proximal block has an opening defined therein sized and configured in enable insertion of a bone growth material into an open area within the device.


In some embodiments, the top base plate and the bottom base plate each have an opening defined therein configured to allow bone growth into an open space defined by the device.


Various embodiments of systems, devices, and methods have been described herein. These embodiments are given only by way of example and are not intended to limit the scope of the disclosure. It should be appreciated, moreover, that the various features of the embodiments that have been described may be combined in various ways to produce numerous additional embodiments. Moreover, while various materials, dimensions, shapes, configurations, and locations, etc. have been described for use with disclosed embodiments, others besides those disclosed may be utilized without exceeding the scope of the disclosure.


Persons of ordinary skill in the relevant arts will recognize that the subject matter hereof may comprise fewer features than illustrated in any individual embodiment described above. The embodiments described herein are not meant to be an exhaustive presentation of the ways in which the various features of the subject matter hereof may be combined. Accordingly, the embodiments are not mutually exclusive combinations of features; rather, the various embodiments can comprise a combination of different individual features selected from different individual embodiments, as understood by persons of ordinary skill in the art. Moreover, elements described with respect to one embodiment can be implemented in other embodiments even when not described in such embodiments unless otherwise noted.


Although a dependent claim may refer in the claims to a specific combination with one or more other claims, other embodiments can also include a combination of the dependent claim with the subject matter of each other dependent claim or a combination of one or more features with other dependent or independent claims. Such combinations are proposed herein unless it is stated that a specific combination is not intended.


Any incorporation by reference of documents above is limited such that no subject matter is incorporated that is contrary to the explicit disclosure herein. Any incorporation by reference of documents above is further limited such that no claims included in the documents are incorporated by reference herein. Any incorporation by reference of documents above is yet further limited such that any definitions provided in the documents are not incorporated by reference herein unless expressly included herein.


For purposes of interpreting the claims, it is expressly intended that the provisions of 35 U.S.C. § 112(f) are not to be invoked unless the specific terms “means for” or “step for” are recited in a claim.

Claims
  • 1. An expandable intervertebral cage device adapted to be implanted into an intervertebral disc space in a patient's body, comprising: a first base plate having a first outer bearing surface configured to interface with a first vertebra of the intervertebral disc space and a first elongate track;a second base plate having a second outer bearing surface configured to interface with a second vertebra of the intervertebral disc space and a second elongate track;a proximal block comprising internal threading and an external ridge on each of a first side of the device and a second side of the device, the external ridges configured to be inserted into the first elongate track and the second elongate track, respectively, and each including a concave surface and a convex surface;a distal block comprising an internal passage;two arm assemblies, wherein one arm assembly is on each of the first side of the device and the second side of the device and wherein each arm assembly comprises: a first arm pivotally coupled to the first base plate and the distal block; anda second arm pivotally coupled to the second base plate and the distal block; anda screw extending between internal threading of the proximal block and the internal passage of the distal block, such that rotation of the screw relative to the proximal block causes a change in distance between the distal block and the proximal block, and a corresponding change in the spacing and lordosis of the device as the external ridges on the proximal block guide the corresponding tracks within the first base plate and the second base plate in a direction of movement of the first base plate and the second base plate.
  • 2. The device of claim 1, wherein the change in distance between the distal block and the proximal block causes the first base plate and the second base plate to move along an external arced surface of the proximal block on each of the first side and the second side.
  • 3. The device of claim 1, comprising only two arm assemblies.
  • 4. The device of claim 1, wherein both the first arm and the second arm of each arm assembly are mechanically coupled to a common point on the respective side of the distal block.
  • 5. The device of claim 1, wherein the proximal block has an opening defined therein sized and configured to enable insertion of a bone growth material into an open area within the device.
  • 6. The device of claim 1, wherein the fir t base plate and the second base plate each have an opening defined therein configured to allow bone growth into an open space defined by the device.
  • 7. The device of claim 1, wherein the screw is threadedly coupled to the internal threading of the proximal block, and the distal block includes a non-threaded rotational coupling to which the screw is non-threadedly rotationally coupled.
  • 8. The device of claim 1, wherein the screw includes a first portion having a first diameter and a second portion having a second diameter.
  • 9. The device of claim 1, wherein rotation of the screw relative to the proximal block further causes the arm assemblies to expand an angle of the first base plate and the second base plate relative to each other.
  • 10. The device of claim 1, wherein the change in distance between the distal block and the proximal block causes a distance between a proximal end of the first base plate and a proximal end of the second base plate to vary.
  • 11. The device of claim 1, wherein the external ridges and the first and second elongate tracks are curved.
  • 12. An expandable intervertebral cage device adapted to be implanted into an intervertebral disc space in a patient's body, comprising: a first base plate having a first outer bearing surface configured to interface with a first vertebra of the intervertebral disc space;a second base plate having a second outer bearing surface configured to interface with a second vertebra of the intervertebral disc space;a proximal block comprising internal threading and an external convex arced surface on each of a first side of the device and a second side of the device, wherein the proximal block further comprises an external ridge on each of the first side of the device and the second side of the device each including a concave surface and a convex surface;a distal block comprising an internal passage;two arm assemblies, wherein one arm assembly is on each of the first side of the device and the second side of the device and wherein each arm assembly comprises: a first arm pivotally coupled to the first base plate and the distal block; anda second arm pivotally coupled to the second base plate and the distal block; anda screw extending between the internal threading of the proximal block and the internal passage of the distal block, such that rotation of the screw relative to the proximal block causes a change in distance between the distal block and the proximal block, and a corresponding movement of the first base plate and the second base plate along the external convex arced surfaces of the proximal block.
  • 13. The device of claim 12, wherein a distance between a proximal end of the first base plate and a proximal end of the second base plate varies as the first base plate and the second base plate move along the external arced surfaces.
  • 14. The device of claim 12, comprising only two arm assemblies.
  • 15. The device of claim 12, wherein both the first arm and the second arm of each arm assembly are mechanically coupled to a common point on the respective side of the distal block.
  • 16. The device of claim 12, wherein corresponding tracks within the first base plate and the second base plate are configured to move along the external ridges as the first base plate and the second base plate move along the external arced surfaces.
  • 17. The device of claim 16, wherein the external ridges and the corresponding tracks are curved.
  • 18. The device of claim 17, wherein a curvature of the external ridges and the corresponding tracks matches a curvature of the external arced surfaces.
  • 19. The device of claim 12, wherein the proximal block has an opening defined therein sized and configured to enable insertion of a bone growth material into an open area within the device.
  • 20. The device of claim 12, wherein the first base plate and the second base plate each have an opening defined therein configured to allow bone growth into an open space defined by the device.
RELATED APPLICATION

The present application claims the benefit of U.S. Provisional Application No. 63/249,797, filed Sep. 29, 2021, which is hereby incorporated herein in its entirety by reference.

US Referenced Citations (273)
Number Name Date Kind
283218 Rycke Aug 1883 A
703251 Haire Sep 1902 A
811344 Wands Jan 1906 A
1388836 Ripsch et al. Aug 1921 A
1500859 Wright Jul 1924 A
1547946 Myers Jul 1925 A
2106088 De Tar Jan 1938 A
2231221 Rector Feb 1941 A
2453656 Bullard, III Nov 1948 A
2666334 Nalle Jan 1954 A
2711105 Williams Jun 1955 A
2842976 Young Jul 1958 A
2891408 Burt, Jr. Jun 1959 A
3386128 Vyvyan Jun 1968 A
3449971 Posh Jun 1969 A
3575475 Boerner Apr 1971 A
3596863 Kaspareck Aug 1971 A
3597938 Hellen Aug 1971 A
3700289 Bilinski et al. Oct 1972 A
3700290 Ensinger Oct 1972 A
3708925 Ainoura Jan 1973 A
3709132 Farrell et al. Jan 1973 A
3916596 Hawley Nov 1975 A
3985000 Hartz Oct 1976 A
3988906 Smith Nov 1976 A
4261211 Haberland Apr 1981 A
4396047 Balkus Aug 1983 A
4478109 Kobelt Oct 1984 A
4516303 Kloster May 1985 A
4528864 Craig Jul 1985 A
4559717 Scire et al. Dec 1985 A
4630495 Smith Dec 1986 A
4691586 van Leijenhorst et al. Sep 1987 A
4694703 Routson Sep 1987 A
4869552 Tolleson et al. Sep 1989 A
5133108 Esnault Jul 1992 A
5172442 Bartley et al. Dec 1992 A
5181371 Deworth Jan 1993 A
5196857 Chiappetta et al. Mar 1993 A
5198932 Takamura Mar 1993 A
5222986 Wright Jun 1993 A
5313852 Arena May 1994 A
5374556 Bennett et al. Dec 1994 A
5439377 Milanovich Aug 1995 A
5445471 Wexler et al. Aug 1995 A
5554191 Lahille et al. Sep 1996 A
5645599 Samani Jul 1997 A
5653763 Errico et al. Aug 1997 A
5664457 Nejati Sep 1997 A
5904479 Staples May 1999 A
5960670 Iverson et al. Oct 1999 A
5980252 Samchukov et al. Nov 1999 A
5988006 Fleytman Nov 1999 A
6039761 Li et al. Mar 2000 A
6045579 Hochshuler et al. Apr 2000 A
6056491 Hsu May 2000 A
6080193 Hochshuler et al. Jun 2000 A
6136031 Middleton Oct 2000 A
6175989 Carpentar et al. Jan 2001 B1
6190414 Young et al. Feb 2001 B1
6315797 Middleton Nov 2001 B1
6350317 Hao et al. Feb 2002 B1
6378172 Schrage Apr 2002 B1
6395035 Bresina et al. May 2002 B2
6454806 Cohen et al. Sep 2002 B1
6454807 Jackson Sep 2002 B1
6484608 Ziavras Nov 2002 B1
6517772 Woolf Feb 2003 B1
6554526 Egelandsdal Apr 2003 B1
6616695 Crozet et al. Sep 2003 B1
6641614 Wagner et al. Nov 2003 B1
6719796 Cohen et al. Apr 2004 B2
6752832 Neumann Jun 2004 B2
6772479 Hinkley et al. Aug 2004 B2
6802229 Lambert Oct 2004 B1
6808537 Michelson Oct 2004 B2
6863673 Gerbec et al. Mar 2005 B2
6932844 Ralph et al. Aug 2005 B2
6953477 Berry Oct 2005 B2
7018415 McKay Mar 2006 B1
7051610 Stoianovici et al. May 2006 B2
7070598 Lim et al. Jul 2006 B2
7087055 Lim et al. Aug 2006 B2
7201751 Zucherman et al. Apr 2007 B2
7273373 Horiuchi Sep 2007 B2
7308747 Smith et al. Dec 2007 B2
7316381 Hacker et al. Jan 2008 B2
7410201 Wilson et al. Aug 2008 B1
7425103 Perez-Sanchez Sep 2008 B2
7431735 Liu et al. Oct 2008 B2
7435032 Murphey et al. Oct 2008 B1
7547325 Biedermann et al. Jun 2009 B2
7584682 Hsiao Sep 2009 B2
7611538 Belliard et al. Nov 2009 B2
7632281 Errico et al. Dec 2009 B2
7674296 Rhoda et al. Mar 2010 B2
7682376 Trieu Mar 2010 B2
7708779 Edie et al. May 2010 B2
7712389 Wang May 2010 B2
7753958 Gordon et al. Jul 2010 B2
7758645 Studer Jul 2010 B2
7758648 Castleman et al. Jul 2010 B2
7892285 Viker Feb 2011 B2
7896919 Belliard et al. Mar 2011 B2
7901409 Canaveral et al. Mar 2011 B2
7947078 Siegal May 2011 B2
7985256 Grotz et al. Jul 2011 B2
8057549 Butterman et al. Nov 2011 B2
8070813 Grotz et al. Dec 2011 B2
8088163 Kleiner Jan 2012 B1
8192485 Simpson et al. Jun 2012 B2
8303663 Jimenez et al. Nov 2012 B2
8496706 Ragab et al. Jul 2013 B2
8523944 Jimenez et al. Sep 2013 B2
8540452 Jimenez et al. Sep 2013 B2
8628577 Jimenez Jan 2014 B1
8636746 Jimenez et al. Jan 2014 B2
8771360 Jimenez et al. Jul 2014 B2
8795366 Varela Aug 2014 B2
8894712 Varela Nov 2014 B2
8906100 Jimenez Dec 2014 B2
8932302 Jimenez et al. Jan 2015 B2
8940049 Jimenez et al. Jan 2015 B1
9358125 Jimenez et al. Jun 2016 B2
9381092 Jimenez et al. Jul 2016 B2
9445917 Jimenez et al. Sep 2016 B2
9474626 Jimenez Oct 2016 B2
9486328 Jimenez Nov 2016 B2
9498270 Jimenez Nov 2016 B2
9668879 Jimenez et al. Jun 2017 B2
9801734 Stein et al. Oct 2017 B1
9820865 Sharabani et al. Nov 2017 B2
9867717 Jimenez Jan 2018 B2
10052214 Jimenez et al. Aug 2018 B2
10060469 Jimenez et al. Aug 2018 B2
10117757 Jimenez et al. Nov 2018 B2
10363142 McClintock et al. Jul 2019 B2
10369008 Jimenez et al. Aug 2019 B2
20020128716 Cohen et al. Sep 2002 A1
20020138146 Jackson Sep 2002 A1
20030077110 Knowles Apr 2003 A1
20030233145 Landry et al. Dec 2003 A1
20040049271 Biederman et al. Mar 2004 A1
20040111157 Ralph et al. Jun 2004 A1
20040153156 Cohen et al. Aug 2004 A1
20040193158 Lim Sep 2004 A1
20040225364 Richelsoph et al. Nov 2004 A1
20050000228 De Sousa et al. Jan 2005 A1
20050033431 Gordon et al. Feb 2005 A1
20050095384 Wittmeyer, Jr. May 2005 A1
20050113921 An et al. May 2005 A1
20050113924 Buttermann May 2005 A1
20050175406 Perez-sanchez Aug 2005 A1
20050182416 Lim et al. Aug 2005 A1
20050261769 Moskowitz et al. Nov 2005 A1
20060004447 Mastrorio et al. Jan 2006 A1
20060004455 Leonard et al. Jan 2006 A1
20060025862 Villiers et al. Feb 2006 A1
20060058878 Michelson Mar 2006 A1
20060129244 Ensign Jun 2006 A1
20060149385 McKay Jul 2006 A1
20060184171 Biedermann et al. Aug 2006 A1
20060247781 Francis Nov 2006 A1
20060253201 McLuen Nov 2006 A1
20060293752 Moumene et al. Dec 2006 A1
20070032791 Greenhalgh et al. Feb 2007 A1
20070049943 Moskowitz et al. Mar 2007 A1
20070083267 Miz et al. Apr 2007 A1
20070093901 Grotz et al. Apr 2007 A1
20070129730 Woods et al. Jun 2007 A1
20070173826 Canaveral Jul 2007 A1
20070185577 Malek Aug 2007 A1
20070191954 Hansell et al. Aug 2007 A1
20070191958 Abdou Aug 2007 A1
20070198089 Moskowitz et al. Aug 2007 A1
20070219634 Greenhalgh et al. Sep 2007 A1
20070222100 Husted et al. Sep 2007 A1
20070250171 Bonin, Jr. Oct 2007 A1
20070255415 Edie et al. Nov 2007 A1
20070282449 de Villiers et al. Dec 2007 A1
20070288092 Bambakidis Dec 2007 A1
20070293329 Glimpel et al. Dec 2007 A1
20070293948 Bagga et al. Dec 2007 A1
20080026903 Flugrad et al. Jan 2008 A1
20080077246 Fehling et al. Mar 2008 A1
20080091211 Gately Apr 2008 A1
20080100179 Ruggeri et al. May 2008 A1
20080103601 Biro et al. May 2008 A1
20080114367 Meyer May 2008 A1
20080140207 Olmos Jun 2008 A1
20080147194 Grotz et al. Jun 2008 A1
20080154266 Protopsaltis et al. Jun 2008 A1
20080161920 Melkent Jul 2008 A1
20080161931 Perez-Cruet et al. Jul 2008 A1
20080168855 Giefer et al. Jul 2008 A1
20080183204 Greenhalgh et al. Jul 2008 A1
20080188941 Grotz Aug 2008 A1
20080210039 Brun Sep 2008 A1
20080221694 Warnick et al. Sep 2008 A1
20080234736 Trieu et al. Sep 2008 A1
20080281423 Sheffer et al. Nov 2008 A1
20080292392 Voellmer Nov 2008 A1
20080319487 Fielding et al. Dec 2008 A1
20090012564 Chirico et al. Jan 2009 A1
20090076614 Arramon Mar 2009 A1
20090099568 Lowry et al. Apr 2009 A1
20090164017 Sommerich et al. Jun 2009 A1
20090210061 Sledge Aug 2009 A1
20090222100 Cipoletti et al. Sep 2009 A1
20090234362 Blain et al. Sep 2009 A1
20090259316 Ginn et al. Oct 2009 A1
20090299478 Carls et al. Dec 2009 A1
20090306672 Reindel et al. Dec 2009 A1
20100004688 Maas et al. Jan 2010 A1
20100076557 Miller Mar 2010 A1
20100082109 Greenhalgh et al. Apr 2010 A1
20100094305 Chang et al. Apr 2010 A1
20100161062 Foley et al. Jun 2010 A1
20100185291 Jimenez et al. Jul 2010 A1
20100192715 Vauchel et al. Aug 2010 A1
20100209184 Jimenez et al. Aug 2010 A1
20110015638 Pischl et al. Jan 2011 A1
20110054616 Kamran et al. Mar 2011 A1
20110093075 Duplessis et al. Apr 2011 A1
20110112644 Zilberstein et al. May 2011 A1
20110138948 Jimenez et al. Jun 2011 A1
20110160861 Jimenez et al. Jun 2011 A1
20110172774 Varela Jul 2011 A1
20110270398 Grotz et al. Nov 2011 A1
20120010653 Seifert et al. Jan 2012 A1
20120029636 Ragab et al. Feb 2012 A1
20120116518 Grotz et al. May 2012 A1
20120158071 Jimenez et al. Jun 2012 A1
20120185049 Varela Jul 2012 A1
20120226357 Varela Sep 2012 A1
20120271419 Marik Oct 2012 A1
20120290094 Lim et al. Nov 2012 A1
20120303124 McLuen et al. Nov 2012 A1
20120323329 Jimenez et al. Dec 2012 A1
20130053966 Jimenez et al. Feb 2013 A1
20130088714 Terada et al. Apr 2013 A1
20130144388 Emery et al. Jun 2013 A1
20130158664 Palmatier et al. Jun 2013 A1
20130197642 Ernst Aug 2013 A1
20130317615 Jimenez et al. Nov 2013 A1
20140012383 Triplett et al. Jan 2014 A1
20140018924 McManus et al. Jan 2014 A1
20140039622 Glerum et al. Feb 2014 A1
20140140757 Jimenez et al. May 2014 A1
20140156007 Pabst et al. Jun 2014 A1
20140194991 Jimenez Jul 2014 A1
20140236296 Wagner et al. Aug 2014 A1
20140249629 Moskowitz et al. Sep 2014 A1
20140343608 Whiton et al. Nov 2014 A1
20150018951 Leobl Jan 2015 A1
20150088258 Jimenez et al. Mar 2015 A1
20150100128 Glerum et al. Apr 2015 A1
20150148908 Marino et al. May 2015 A1
20150272743 Jimenez Oct 2015 A1
20150272745 Jimenez et al. Oct 2015 A1
20150272746 Jimenez et al. Oct 2015 A1
20150351925 Emerick et al. Dec 2015 A1
20160166369 McClintock et al. Jun 2016 A1
20160262907 Jimenez Sep 2016 A1
20160356368 Jimenez et al. Dec 2016 A1
20160377113 Jimenez et al. Dec 2016 A1
20170105844 Kuyler Apr 2017 A1
20170216045 Dewey Aug 2017 A1
20170319352 Dewey Nov 2017 A1
20170333198 Robinson Nov 2017 A1
20190021868 Ludwig Jan 2019 A1
20190151111 Dewey May 2019 A1
20210030561 Gleason Feb 2021 A1
Foreign Referenced Citations (26)
Number Date Country
1342456 Sep 2003 EP
1552797 Jul 2005 EP
1881209 Jan 2008 EP
2372998 Dec 1976 FR
05-81194 Apr 1993 JP
2004-301135 Oct 2004 JP
2008208932 Sep 2008 JP
2004026188 Apr 2004 WO
2004109155 Dec 2004 WO
2005081330 Sep 2005 WO
2005096975 Oct 2005 WO
2006094535 Sep 2006 WO
2006116052 Nov 2006 WO
2006125329 Nov 2006 WO
2007002583 Jan 2007 WO
2007009107 Jan 2007 WO
2007028140 Mar 2007 WO
2007076377 Jul 2007 WO
2007111979 Oct 2007 WO
2008137192 Nov 2008 WO
2009018349 Feb 2009 WO
2010078468 Jul 2010 WO
2010078520 Jul 2010 WO
2011011609 Jan 2011 WO
2011011626 Jan 2011 WO
2014066890 May 2014 WO
Non-Patent Literature Citations (49)
Entry
Printout from Video for OmniLIF Anterior Insertion Approach from Lumber Jax; https://seelio.com/w/fgf/omnilif-the-new-standard-in-spinal-deformity-correction-and-fusion?student=lumbarjax; dated Nov. 27, 2014, 7 pages.
Printout from Video for OmniLIF Features from Lumber Jax; https://seelio.com/w/fgf/omnilif-the-new-standard-in-spinal-deformity-correction-and-fusion?student+lumbarjax; dated Nov. 27, 2014, 11 pages.
Wenzel Spine, Inc., VariLift®-L Expandable Interbody Fusion Device: A proven solution for stand-alone fusion, Product Overview, 12 pages, 2010.
Peter A. Halverson, et al., Tension-based Multistable Compliant: Rolling-contact Elements, Department of Mechanical Engineering, Brigham Young University, Provo UT, USA 84602, 34 pages, 2007.
Just L. Herder, Force Directed Design of Laparoscopic Forceps, ASME Design Engineering Technical Conference, 8 pages, 1998.
Alexander H. Slocum, Fundamentals of Design, 2005.
W. Küsswetter, A Supplementary Instrumentation for Posterior Fusion of Spine in Scoliosis, Archives of Orthopedic Traumatic Surgery, 1980, 1 page.
Chou et al., Efficacy of Anterior Cervical Fusion: Comparison of Titanium Cages, polyetheretherketone (PEEK) cages and autogenous bone grafts, Journal of Clinical Neuroscience, 2008, pp. 1240-1245.
Amelie Jeanneau, et al., A Compliant Rolling Contract Joint and its Application in a 3-DOF Planar Parallel Mechanism with Kinematic Analysis, ASME, Design Engineering Technical Conferences, 9 pages, 2004.
Hunter et al., Overview of Medical Devices, Department of Radiology, University of Arizona, Aug. 2001, pp. 89-140, vol. 30, No. 4, ISSN: 0363-0188.
Medtronic Sofamor Danek USA, Inc., CAPSTONE Instrument Set Technique, http://www.mtortho.com/public/capstone.pdf, © 2005, 25 pages.
Medtronic, CAPSTONE PEEK Spinal System Surgical Technique, http://www.mtortho.com/public/capstone_peek_st.pdf, © 2009, 36 pages.
Website printout from https://seelio.com/w/fgf/omnilif-the-new-standard-in-spinal-defprminty-correction-and-fusion?student=lumbarjax; dated Nov. 27, 2014, 5 pages.
Publication and File History for U.S. Appl. No. 12/407,608, filed Mar. 19, 2009, now U.S. Pat. No. 8,628,577, Inventors Jimenez et al.
Application and File History for U.S. Appl. No. 12/650,994, filed Dec. 31, 2009, now U.S. Pat. No. 8,523,944, Inventors Jimenez et al.
Application and File History for U.S. Appl. No. 12/651,266, filed Dec. 31, 2009 now U.S. Pat. No. 8,540,452, Inventors Jimenez et al.
Application and File History for U.S. Appl. No. 12/841,465, filed Jul. 22, 2010, now U.S. Pat. No. 8,303,663, Inventors Jimenez et al.
Application and File History for U.S. Appl. No. 12/841,869, filed Jul. 22, 2010, now U.S. Pat. No. 9,358,125, Inventors Jimenez et al.
Application and File History for U.S. Appl. No. 12/118,767, filed May 12, 2008, Inventor Jimenez.
Application and File History for U.S. Appl. No. 13/189,410, filed Jul. 22, 2011, now U.S. Pat. No. 8,636,746, Inventor Jimenez.
Application and File History for U.S. Appl. No. 13/661,534, filed Oct. 26, 2012, now U.S. Pat. No. 8,932,302, Inventor Jimenez.
Application and File History for U.S. Appl. No. 13/591,463, filed Aug. 22, 2012, now U.S. Pat. No. 8,771,360, Inventor Jimenez.
Application and File History for U.S. Appl. No. 13/891,356, filed May 10, 2013, now U.S. Pat. No. 8,906,100, Inventor Jimenez et al.
Application and File History for U.S. Appl. No. 14/024,764, filed Sep. 12, 2013, now U.S. Pat. No. 9,381,092, Inventor Jimenez et al.
Application and File History for U.S. Appl. No. 144/153,281, filed Jan. 13, 2014, now U.S. Pat. No. 9,867,717, Inventor Jimenez.
Application and File History for U.S. Appl. No. 14/563,660, filed Dec. 8, 2014, now U.S. Pat. No. 9,445,917, Inventor Jimenez et al.
Application and File History for U.S. Appl. No. 14/242,451, filed Apr. 1, 2014, now U.S. Pat. No. 8,940,049, Inventor Jimenez et al.
Application and File History for U.S. Appl. No. 14/318,196, filed Jun. 27, 2014, now U.S. Pat. No. 9,474,626. Inventor Jimenez et al.
Application and File History for U.S. Appl. No. 14/592,507, filed Jan. 8, 2015, now U.S. Pat. No. 9,498,270. Inventor Jimenez et al.
Application and File History for U.S. Appl. No. 14/585,544, filed Dec. 30, 2014, now U.S. Pat. No. 9,486,328. Inventor Jimenez et al.
Application and File History for U.S. Appl. No. 15/164,498, filed May 25, 2016, now U.S. Pat. No. 9,668,879. Inventors: Jimenez et al.
Application and File History for U.S. Appl. No. 15/174,454, filed Jun. 6, 2016, now U.S. Pat. No. 10,117,757. Inventors: Jimenez et al.
Application and File History for U.S. Appl. No. 15/332,066, filed Oct. 24, 2016, now U.S. Pat. No. 10,369,008. Inventors: Jimenez et al.
Application and File History for U.S. Appl. No. 15/198,557, filed Jun. 30, 2016, now U.S. Pat. No. 10,060,469. Inventors: Jimenez et al.
Application and File History for U.S. Appl. No. 15/591,214, filed May 10, 2017, now U.S. Pat. No. 10,052,214. Inventors: Jimenez et al.
Mirus IO Exandable Lumbar Interbody, 2021, 2 pages.
Mirus IO Exandable Lumbar Interbody, 2021, 28 pages.
Mirus IO Exandable Lumbar Interbody, 2020, 2 pages.
Mirus IO Expandable Lumbar Interbody wepage, https://www.mirusmed.com/solutions/spine/io-expandable-system/, accessed Apr. 23, 2023.
PCT/US2010/041941, filed Jul. 22, 2010, International Search Report and Written Opinion, dated Apr. 25, 2011.
PCT/US2010/042915, filed Jul. 22, 2010, Search Report and Written Opinion, dated Apr. 22, 2011.
PCT/US2009/069876, filed Dec. 30, 2009, International Search Report and Written Opinion dated Sep. 27, 2010, 10 pages.
PCT/US2009/069958, filed Dec. 31, 2009, International Search Report and Written Opinion dated Nov. 29, 2010, 7 pages.
PCT/US2015/055449, filed Oct. 14, 2015, International Search Report and Written Opinion dated Dec. 11, 2015, 9 pages.
PCT/US2015/032977, filed May 28, 2015, International Search Report and Written Opinion dated Sep. 21, 2015, 10 pages.
European Application No. EP 09837185, European Search Report dated May 14, 2013, 7 pages.
Japanese Application No. 2012-521784, JP Office Action dated Feb. 18, 2014, 8 pages.
PCT/US2013/067070, PCT Written Opinion/Search Report dated Feb. 27, 2014, 14 pages.
PCT/US2014/052913, PCT Written Opinion/Search Report dated Dec. 22, 2014, 10 pages.
Related Publications (1)
Number Date Country
20230104776 A1 Apr 2023 US
Provisional Applications (1)
Number Date Country
63249797 Sep 2021 US