This invention relates to stabilizing adjacent vertebrae of the spine by inserting an intervertebral spacer, and more particularly an intervertebral spacer that is adjustable in height.
Bones and bony structures are susceptible to a variety of weaknesses that can affect their ability to provide support and structure. Weaknesses in bony structures have numerous potential causes, including degenerative diseases, tumors, fractures, and dislocations. Advances in medicine and engineering have provided doctors with a plurality of devices and techniques for alleviating or curing these weaknesses.
In some cases, the spinal column requires additional support in order to address such weaknesses. One technique for providing support is to insert a spacer between adjacent vertebrae.
In accordance with the disclosure, a joint spacer for therapeutically maintaining a separation of bones of a joint, comprises: a frame having distal and proximal ends defining a longitudinal axis extending therebetween; a carriage slideably retained within the frame and having at least one ramped surface, the carriage further including a threaded portion; an actuator screw threadably engaged with the carriage threaded portion, the actuator screw configured to bear against the frame to cause the carriage to slideably move within the frame when the actuator screw is rotated; a first endplate configured to engage a first bone of the joint, and having at least one ramped surface mateable with the at least one carriage ramped surface, whereby when the carriage is slideably moveable by rotation of the actuator screw, the at least one endplate ramped surface slideable against the at least one carriage ramped surface to cause the first endplate to move along an axis transverse to the longitudinal axis to increase a height of the spacer; and a second endplate configured to engage a second bone of the joint.
In an embodiment thereof, the carriage includes at least one additional ramped surface, and the second endplate includes at least one ramped surface mateable with the at least one additional ramped surface of the carriage, whereby when the carriage is slideably moved by rotation of the actuator screw, the at least one second endplate ramped surface slides against the at least one additional carriage ramped surface to cause the second endplate to move along an axis transverse to the longitudinal axis to increase a height of the spacer.
In other embodiments thereof, the first endplate is configured to abut the frame as the first endplate is moved along an axis transverse to the longitudinal axis, whereby the first endplate moves substantially only along an axis transverse to the longitudinal axis; the first endplate includes at least one aperture through which a fastener may pass to secure the first endplate to a bone of the joint; the spacer further including a blocking mechanism to prevent backing out of a fastener passed through the first endplate; the first endplate includes one or more projections configured to engage bone of the joint when the implant is positioned between bones of the joint; at least one of the first and second endplates is composed of two interconnected portions of dissimilar materials; where dissimilar materials are used, one is metallic and includes at least one aperture through which a fastener may be passed to attach the implant to a bone of the joint. In another embodiment, one dissimilar material is polymeric, and another dissimilar material is metallic.
In further embodiments thereof, the carriage is slideably supported by the actuator screw and by at least one lateral support extending from the carriage to the frame; the spacer further includes a thrust washer interposed between the actuator screw and the frame; the spacer further includes a polymeric material configured to press against the actuator screw to reduce a potential for unintended rotation of the actuator screw.
In yet further embodiments, an aperture is formed in part by the first endplate, and in part by the second endplate, the aperture sized and dimensioned to rotatably support a bone screw when the first endplate has been moved a distance along the axis transverse to the longitudinal axis. In another embodiment, the spacer further includes a dovetail connection formed between the frame and the first endplate when the first endplate is configured to abut against the frame.
In another embodiment of the disclosure, a joint spacer for therapeutically maintaining a separation of bones of a joint, comprises a frame having distal and proximal ends defining a longitudinal axis extending therebetween; a carriage slideably retained within the frame and having at least one ramped surface, the carriage further including a threaded bore; an actuator screw threadably engaged with the carriage threaded bore, the actuator screw configured to bear against the frame to cause the carriage to slideably move within the frame when the actuator screw is rotated; a first endplate configured to engage a first bone of the joint, and having at least one channel having a ramped surface mateable with the at least one carriage ramped surface, whereby when the carriage is slideably moveable by rotation of the actuator screw in a first direction, the at least one endplate ramped surface slideable against the at least one carriage ramped surface to cause the first endplate to move along an axis transverse to the longitudinal axis to increase a height of the spacer; and a second endplate configured to engage a second bone of the joint.
In embodiments thereof, when the actuator screw is rotated in an opposite, second direction, the at least one endplate ramped surface is slideable against the at least one carriage ramped surface to cause the first endplate to move along an axis transverse to the longitudinal axis to decrease a height of the spacer; and, the carriage is slideably supported by the actuator screw and by at least one screw extending from the carriage through an elongated channel in the frame.
In yet further embodiments thereof, the first endplate includes a metallic portion having an aperture through which a fastener may be passed for connecting the implant to body tissue, the first endplate further having a polymeric portion connected to the metallic portion, the polymeric portion sized and dimensioned to support a bone of the joint; and, the frame and the first endplate include mateable dovetailed portions configured to maintain an orientation of the first endplate and the frame when the first endplate is positioned proximate the frame.
In another embodiment of the disclosure, a method for therapeutically maintaining a separation of bones of a joint, comprises: inserting a spacer between bones of the joint, the spacer including—a frame having distal and proximal ends defining a longitudinal axis extending therebetween; a carriage slideably retained within the frame and having at least one ramped surface, the carriage further including a threaded bore; an actuator screw threadably engaged with the carriage threaded bore, the actuator screw configured to bear against the frame to cause the carriage to slideably move within the frame when the actuator screw is rotated; a first endplate configured to engage a first bone of the joint, and having at least one ramped surface mateable with the at least one carriage ramped surface, whereby when the carriage is slideably moveable by rotation of the actuator screw, the at least one endplate ramped surface slideable against the at least one carriage ramped surface to cause the first endplate to move along an axis transverse to the longitudinal axis to increase a height of the spacer; and a second endplate configured to engage a second bone of the joint; the spacer inserted when the first endplate is positioned proximate the frame; and slideably moving, by rotation of the actuator screw, the at least one endplate ramped surface against the at least one carriage ramped surface to cause the first endplate to move along an axis transverse to the longitudinal axis to increase a height of the spacer to maintain a separation of bones of the joint.
A more complete understanding of the present invention, and the attendant advantages and features thereof, will be more readily understood by reference to the following detailed description when considered in conjunction with the accompanying drawings, in which:
As required, detailed embodiments are disclosed herein; however, it is to be understood that the disclosed embodiments are merely examples and that the systems and methods described below can be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present subject matter in virtually any appropriately detailed structure and function. Further, the terms and phrases used herein are not intended to be limiting, but rather, to provide an understandable description of the concepts.
The terms “a” or “an”, as used herein, are defined as one or more than one. The term plurality, as used herein, is defined as two or more than two. The term another, as used herein, is defined as at least a second or more. The terms “including” and “having,” as used herein, are defined as comprising (i.e., open language).
With reference to
Implant 100 includes two separable endplates 110, 112. A surface 114 of an endplate 110, 112 can be provided with teeth or other projections 116 which can penetrate body tissue to reduce a likelihood of migration of implant 100 after implantation. Implant 100 is further secured with one or more bone screws 300, which pass through bone screw socket 118 within implant 100, and into body tissue of the patient. In the embodiment illustrated in
Endplates 110, 112 are moveably connectable to an actuator 150 operable to change a relative relationship of endplates 110 and 112. Actuator 150 includes a frame 152 rotatably supporting an actuator screw 154, and a moveable carriage 156. As actuator screw 154 rotates within frame 152, carriage 156 slides within frame 152, driven by cooperation between threads 158 (
With reference to
Carriage 156 is supported by frame 152 by lateral engagement means, in this embodiment two support screws 174 engaged with carriage 156, and passable through respective channels 176 formed in frame 152. Distal end 172 of actuator screw 154 provides additional support for carriage 156. Actuator screw 154 is supported by a set screw 178, which passes through and is rotatably supported within frame 152.
An actuator access port 180 permits passage of a tool, for example a hex driver (not shown), into engagement with a proximal end 182 of actuator screw 152. As actuator screw 152 is turned, distal end 172 bears against a thrust washer 184, and an end portion of frame 152. As actuator screw 152, carriage 156 is driven along actuator screw by interaction of threads 158 and 160. As carriage 156 moves, endplates 110, 112 are urged to move along ramps 168, 168A and 170, 170A, moving relatively apart, and increasing a height of spacer 100. Endplates 110, 112 are prevented from moving together with carriage 156 by abutting against an end portion 186 of frame 152. In a given orientation, one of endplate 110 and 112 is an upper endplate with respect to an orientation in a standing patient. However, implant 100 may, in some embodiments, be implantable in either of opposite orientations, and therefore designations of upper and lower are provided for ease of understanding, only. It should be understood that only one of endplate 110, 112 may be moveable with respect to the other. For example, in one embodiment, ramps 168A, 170A may not be provided, and endplate 112 may be attached to frame 152.
Spacer 100 can be inserted configured to have a lower height profile, as shown in
Once actuator screw 154 has been rotated to separate endplates 110, 112 a desired amount, the tool is removed. At this point, actuator screw 154 may be secured in place, for example using a mechanical block, or an adhesive, to prevent unintended rotation of actuator screw 154. As carriage 156 is slideably moved by rotation of actuator screw 154, a ramp 166, 166A or a ramped surface of channel 164, 164A of at least one of endplate 110, 112 slides against at least one ramp 168, 168A, 170, or 170A of carriage 156, to cause the endplate to move along an axis transverse to the longitudinal axis of the frame, to increase a height of the spacer. Rotation of actuator screw 154 in an opposite direction causes movement along an axis transverse to the longitudinal axis of the frame to decrease a height of the spacer.
Polymeric insets, or a polymeric square nut, for example PEEK, can be provided, engageable with threads 158 or other portion of actuator screw 152, to provide additional friction to prevent height loss under load, particularly under cyclic loading. Similarly, once bone screws 300 have been inserted, blocking elements 196 may be rotated to extend over an end of bone screw head 302, preventing screw 300 from backing out. A similar mechanical block (not shown) may be provided for actuator screw 154.
With reference to
In an embodiment, spacer 100 of the disclosure provides an actuator that translates relative to the body by means of a threaded actuator screw 154. Ramps 168, 168A and 170, 170A on a carrier 152 mate with channels 164, 164A, and or ramps 166, on endplates 110, 112. Linear translation of carriage 152 causes endplates 110, 112 to expand implant 100 along an S/I axis with respect to the body. There can be dovetail guides that capture endplates 110, 112 when collapsing the implant.
Assembly screws 162 fasten endplates made of dissimilar materials, for example PEEK polymeric portions 122, 122A to Titanium metallic portions 124, 124A. A dovetail and press fit design can be used to connect the dissimilar endplate portions. A PEEK bushing or washer 184 is used between the threaded actuator screw 154 and frame 152 to minimize friction during expansion of implant 100. Support screws 174 and channels 176 cooperate to form side or lateral stabilizers, and set screw 178 supports a nose or leading end of carriage 152. Additionally, cooperating slots and projections (not shown) in carriage 156 and frame 152 can be provided for further relative guidance and stability.
In one embodiment, three bone screws 300 are used to provide fixation into adjacent vertebral bodies, two screws 300 passing through implant 100 and into one vertebra, and one screw 300 passing through implant 100 into another vertebra, although other combinations may be used. Bone screws 300 can have spherical or otherwise curved heads, facilitating insertion at a desired angle, or may be provided to mate with socket 118 in a fixed orientation, particularly depending on a diameter of a neck portion of screw 300. Cam style blocking fasteners 120 can be used to block bone screws 300 from backing out after being inserted.
Implants of the disclosure enable a continuous expansion and retraction over a range of displacements according to predetermined dimensions of a specific implant 100 design. This provides the ability to distract vertebral bodies to a desired height, but also to collapse the implant 100 for repositioning, if therapeutically advantageous for the patient. Endplates 110, 112 may be shaped to form planes or surfaces which converge relative to each, to provide for lordosis, and can be provided with openings through which bone may grow, and into which bone graft material may be placed. Implant 100 may be used to distract, or force bones of a joint apart, or may be used to maintain a separation of bones created by other means, for example a retractor.
Implant 100 may be fabricated using any biocompatible materials known to one skilled in the art, having sufficient strength, flexibility, resiliency, and durability for the patient, and for the term during which the device is to be implanted. Examples include but are not limited to metal, such as, for example titanium and chromium alloys; polymers, including for example, PEEK or high molecular weight polyethylene (HMWPE); and ceramics. There are many other biocompatible materials which may be used, including other plastics and metals, as well as fabrication using living or preserved tissue, including autograft, allograft, and xenograft material.
Portions or all of the implant may be radiopaque or radiolucent, or materials having such properties may be added or incorporated into the implant to improve imaging of the device during and after implantation.
For example, metallic portions 124, 124A of endplates 110, 112 may be manufactured from Titanium, or a cobalt-chrome-molybdenum alloy, Co—Cr—Mo, for example as specified in ASTM F1537 (and ISO 5832-12). The smooth surfaces may be plasma sprayed with commercially pure titanium, as specified in ASTM F1580, F1978, F1147 and C-633 (and ISO 5832-2). Polymeric portions 122, 122A may be manufactured from ultra-high molecular weight polyethylene, UHMWPE, for example as specified in ASTM F648 (and ISO 5834-2). In one embodiment, PEEK-OPTIMA (a trademark of Invibio Ltd Corp, United Kingdom) may be used for one or more components of implant 100. For example, polymeric portions 122, 122A can be formed with PEEK-OPTIMA, which is radiolucent, whereby bony ingrowth may be observed. Other polymeric materials with suitable flexibility, durability, and biocompatibility may also be used.
In accordance with the invention, implants of various sizes may be provided to best fit the anatomy of the patient. Components of matching or divergent sizes may be assembled during the implantation procedure by a medical practitioner as best meets the therapeutic needs of the patient, the assembly inserted within the body using an insertion tool. Implants of the invention may also be provided with an overall angular geometry, for example an angular mating disposition of endplates 110, 112, to provide for a natural lordosis, or a corrective lordosis, for example of from 0° to 6° for a cervical application, although much different values may be advantageous for other joints. Lordotic angles may also be formed by shaping one or both of plates 110, 112 to have relatively non-coplanar surfaces. Expanded implant heights, for use in the cervical vertebrae for example, may typically range from 7 mm to 12 mm, but may be larger or smaller, including as small as 5 mm, and as large as 16 mm, although the size is dependent on the patient, and the joint into which an implant of the invention is to be implanted. Implants 100 may be implanted within any level of the spine, and may also be implanted in other joints of the body, including joints of the hand, wrist, elbow, shoulder, hip, knee, ankle, or foot.
In accordance with the invention, a single implant 100 may be used, to provide stabilization for a weakened joint or joint portion. Alternatively, two, three, or more implants 100 may be used, at a single joint level, or in multiple joints. Moreover, implants 100 may be combined with other stabilizing means.
Additionally, implant 100 may be fabricated using material that biodegrades in the body during a therapeutically advantageous time interval, for example after sufficient bone ingrowth has taken place. Further, implant 100 is advantageously provided with smooth and or rounded exterior surfaces, which reduce a potential for deleterious mechanical effects on neighboring tissues.
Any surface or component of the invention may be coated with or impregnated with therapeutic agents, including bone growth, healing, antimicrobial, or drug materials, which may be released at a therapeutic rate, using methods known to those skilled in the art.
Devices of the disclosure provide for adjacent vertebrae to be supported during flexion/extension, lateral bending, and axial rotation. In one embodiment, implant 100 is indicated for spinal arthroplasty in treating skeletally mature patients with degenerative disc disease, primary or recurrent disc herniation, spinal stenosis, or spondylosis in the lumbosacral spine (LI-SI). Degenerative disc disease is advantageously defined as discogenic back pain with degeneration of the disc confirmed by patient history and radiographic studies, with or without leg (radicular) pain. Patients are advantageously treated, for example, who may have spondylolisthesis up to Grade 1 at the involved level. The surgery position implant 100 may be performed through an Anterior, Anterolateral, Posterolateral, and/or Lateral approach.
In a typical embodiment, implant 100 has a uncompressed height, before insertion, of 12 to 18 mm, and may advantageously be provided in cross-sections of 23×32 mm, 26×38 mm and 26×42 mm, with 4, 8, 12, or 16 degree lordotic angles, although these are only representative sizes, and substantially smaller or larger sizes can be therapeutically beneficial. In one embodiment a spacer 100 in accordance with the instant disclosure is sized to be inserted using an MIS approach (a reduced incision size, with fewer and shorter cuts through body tissue).
Implant 100 may advantageously be used in combination with other known or hereinafter developed forms of stabilization or fixation, including for example rods and plates.
All references cited herein are expressly incorporated by reference in their entirety. There are many different features to the present invention and it is contemplated that these features may be used together or separately. Unless mention was made above to the contrary, it should be noted that all of the accompanying drawings are not to scale. Thus, the invention should not be limited to any particular combination of features or to a particular application of the invention. Further, it should be understood that variations and modifications within the spirit and scope of the invention might occur to those skilled in the art to which the invention pertains. Accordingly, all expedient modifications readily attainable by one versed in the art from the disclosure set forth herein that are within the scope and spirit of the present invention are to be included as further embodiments of the present invention.
The present application is a continuation application of U.S. Ser. No. 16/144,243, filed on Sep. 27, 2018 (published as U.S. Pat. Pub. No. 2019-0021876), which is a continuation application of U.S. patent application Ser. No. 13/775,731, filed Feb. 25, 2013 (now U.S. Pat. No. 10,117,754), the entire contents of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4349921 | Kuntz | Sep 1982 | A |
4599086 | Doty | Jul 1986 | A |
4636217 | Ogilvie | Jan 1987 | A |
4863476 | Shepperd | Sep 1989 | A |
4863477 | Monson | Sep 1989 | A |
5123926 | Pisharodi | Jun 1992 | A |
5290312 | Kojimoto et al. | Mar 1994 | A |
5306310 | Siebels | Apr 1994 | A |
5375823 | Navas | Dec 1994 | A |
5390683 | Pisharodi | Feb 1995 | A |
5397364 | Kozak et al. | Mar 1995 | A |
5458641 | Jiminez | Oct 1995 | A |
5522899 | Michelson | Jun 1996 | A |
5534030 | Navarro et al. | Jul 1996 | A |
5549612 | Yapp et al. | Aug 1996 | A |
5554191 | Lahille et al. | Sep 1996 | A |
5571192 | Schonhoffer | Nov 1996 | A |
5645596 | Kim | Jul 1997 | A |
5653763 | Errico et al. | Aug 1997 | A |
5665122 | Kambin | Sep 1997 | A |
5676701 | Yuan et al. | Oct 1997 | A |
5861041 | Tienboon | Jan 1999 | A |
5888223 | Bray, Jr. | Mar 1999 | A |
6039761 | Li et al. | Mar 2000 | A |
6045579 | Hochshuler et al. | Apr 2000 | A |
6066175 | Henderson et al. | May 2000 | A |
6080193 | Hochshuler et al. | Jun 2000 | A |
6099531 | Bonutti | Aug 2000 | A |
6126689 | Brett | Oct 2000 | A |
6156037 | LeHuec et al. | Dec 2000 | A |
6176882 | Biedermann | Jan 2001 | B1 |
6200347 | Anderson et al. | Mar 2001 | B1 |
6206922 | Zdeblick et al. | Mar 2001 | B1 |
6231610 | Geisler | May 2001 | B1 |
6258089 | Campbell et al. | Jul 2001 | B1 |
6258125 | Paul et al. | Jul 2001 | B1 |
6383186 | Michelson | May 2002 | B1 |
6432106 | Fraser | Aug 2002 | B1 |
6482233 | Aebi | Nov 2002 | B1 |
6540785 | Gill et al. | Apr 2003 | B1 |
6558423 | Michelson | May 2003 | B1 |
6558424 | Thalgott | May 2003 | B2 |
6562074 | Gerbec et al. | May 2003 | B2 |
6576016 | Hochshuler et al. | Jun 2003 | B1 |
6554863 | Paul et al. | Aug 2003 | B2 |
6616695 | Crozet | Sep 2003 | B1 |
6641614 | Wagner | Nov 2003 | B1 |
6648917 | Gerbec et al. | Nov 2003 | B2 |
6666889 | Commarmond | Dec 2003 | B1 |
6666891 | Boehm, Jr. et al. | Dec 2003 | B2 |
6692495 | Zacouto | Feb 2004 | B1 |
6706070 | Wagner et al. | Mar 2004 | B1 |
6740118 | Eisermann et al. | May 2004 | B2 |
6752832 | Ulrich | Jun 2004 | B2 |
6814756 | Michelson | Nov 2004 | B1 |
6827740 | Michelson | Dec 2004 | B1 |
6830589 | Erickson | Dec 2004 | B2 |
6849093 | Michelson | Feb 2005 | B2 |
6852129 | Gerbec et al. | Feb 2005 | B2 |
6863673 | Gerbec et al. | Mar 2005 | B2 |
6881228 | Zdeblick et al. | Apr 2005 | B2 |
6899735 | Coates et al. | May 2005 | B2 |
6972019 | Michelson | Dec 2005 | B2 |
7001432 | Keller et al. | Feb 2006 | B2 |
7018415 | McKay | Mar 2006 | B1 |
7025787 | Bryan et al. | Apr 2006 | B2 |
7070598 | Lim et al. | Jul 2006 | B2 |
7137997 | Paul | Nov 2006 | B2 |
7147665 | Bryan et al. | Dec 2006 | B1 |
7153325 | Kim et al. | Dec 2006 | B2 |
7172627 | Fiere et al. | Feb 2007 | B2 |
7204853 | Gordon | Apr 2007 | B2 |
7217291 | Zucherman et al. | May 2007 | B2 |
7232464 | Mathieu et al. | Jun 2007 | B2 |
7276082 | Zdeblick et al. | Oct 2007 | B2 |
7282063 | Cohen et al. | Oct 2007 | B2 |
7309357 | Kim | Dec 2007 | B2 |
7316714 | Gordon | Jan 2008 | B2 |
7320708 | Bernstein | Jan 2008 | B1 |
7473276 | Aebi et al. | Jan 2009 | B2 |
7547325 | Biedermann et al. | Jun 2009 | B2 |
7618456 | Mathieu et al. | Nov 2009 | B2 |
7621953 | Braddock, Jr. et al. | Nov 2009 | B2 |
7641693 | Gutlin et al. | Jan 2010 | B2 |
7682396 | Beaurain et al. | Mar 2010 | B2 |
7717959 | William | May 2010 | B2 |
7749270 | Peterman | Jul 2010 | B2 |
7753958 | Gordon | Jul 2010 | B2 |
7771473 | Thramann | Aug 2010 | B2 |
7771475 | Michelson | Aug 2010 | B2 |
7780732 | Abernathie | Aug 2010 | B2 |
7799081 | McKinley | Sep 2010 | B2 |
7815683 | Melkent et al. | Oct 2010 | B2 |
7837734 | Zucherman et al. | Nov 2010 | B2 |
7846207 | Lechmann et al. | Dec 2010 | B2 |
7862616 | Lechmann et al. | Jan 2011 | B2 |
7875076 | Mathieu et al. | Jan 2011 | B2 |
7875078 | Wysocki et al. | Jan 2011 | B2 |
7901409 | Canaveral et al. | Mar 2011 | B2 |
7909869 | Gordon | Mar 2011 | B2 |
7951199 | Miller | May 2011 | B2 |
8062375 | Glerum | Nov 2011 | B2 |
8100976 | Bray et al. | Jan 2012 | B2 |
8105382 | Olmos | Jan 2012 | B2 |
8123810 | Gordon | Feb 2012 | B2 |
8137405 | Kostuik | Mar 2012 | B2 |
8343222 | Cope | Jan 2013 | B2 |
8366777 | Matthis | Feb 2013 | B2 |
8647386 | Gordon | Feb 2014 | B2 |
10117754 | Davenport | Nov 2018 | B2 |
20020010511 | Michelson | Jan 2002 | A1 |
20020016595 | Michelson | Feb 2002 | A1 |
20020045945 | Liu | Apr 2002 | A1 |
20020068976 | Jackson | Jun 2002 | A1 |
20020068977 | Jackson | Jun 2002 | A1 |
20030045939 | Casutt | Mar 2003 | A1 |
20030105528 | Shimp et al. | Jun 2003 | A1 |
20030125739 | Bagga et al. | Jul 2003 | A1 |
20030167091 | Scharf | Sep 2003 | A1 |
20040030387 | Landry | Feb 2004 | A1 |
20040049271 | Biedermann | Mar 2004 | A1 |
20040054412 | Gerbec et al. | Mar 2004 | A1 |
20040078078 | Shepard | Apr 2004 | A1 |
20040087947 | Lim | May 2004 | A1 |
20040143270 | Zucherman et al. | Jul 2004 | A1 |
20040143332 | Krueger et al. | Jul 2004 | A1 |
20040153065 | Lim | Aug 2004 | A1 |
20040176853 | Sennett et al. | Sep 2004 | A1 |
20050006942 | Bremner | Jan 2005 | A1 |
20050021041 | Michelson | Jan 2005 | A1 |
20050021145 | de Villiers et al. | Jan 2005 | A1 |
20050033432 | Gordon | Feb 2005 | A1 |
20050055098 | Zdeblick et al. | Mar 2005 | A1 |
20050065607 | Gross | Mar 2005 | A1 |
20050080422 | Otte | Apr 2005 | A1 |
20050113916 | Branch, Jr. | May 2005 | A1 |
20050149188 | Cook | Jul 2005 | A1 |
20050149192 | Zucherman et al. | Jul 2005 | A1 |
20050149193 | Zucherman et al. | Jul 2005 | A1 |
20050159819 | McCormack et al. | Jul 2005 | A1 |
20050171541 | Boehm | Aug 2005 | A1 |
20050171607 | Michelson | Aug 2005 | A1 |
20050177236 | Mathieu et al. | Aug 2005 | A1 |
20050187625 | Wolek et al. | Aug 2005 | A1 |
20050240267 | Randall et al. | Oct 2005 | A1 |
20050240271 | Zubok et al. | Oct 2005 | A1 |
20050251258 | Jackson | Nov 2005 | A1 |
20050256574 | Paul et al. | Nov 2005 | A1 |
20050273171 | Gordon | Dec 2005 | A1 |
20050273174 | Gordon | Dec 2005 | A1 |
20050278026 | Gordon | Dec 2005 | A1 |
20050283244 | Gordon | Dec 2005 | A1 |
20050283245 | Gordon | Dec 2005 | A1 |
20060004453 | Bartish, Jr. et al. | Jan 2006 | A1 |
20060015184 | Winterbottom | Jan 2006 | A1 |
20060058878 | Michelson | Mar 2006 | A1 |
20060084986 | Grinberg | Apr 2006 | A1 |
20060085071 | Lechmann et al. | Apr 2006 | A1 |
20060122701 | Kister | Jun 2006 | A1 |
20060129240 | Lessar et al. | Jun 2006 | A1 |
20060129244 | Ensign | Jun 2006 | A1 |
20060142859 | Mcluen | Jun 2006 | A1 |
20060149385 | Mckay | Jul 2006 | A1 |
20060195192 | Gordon et al. | Aug 2006 | A1 |
20060217809 | Albert et al. | Sep 2006 | A1 |
20060229729 | Gordon | Oct 2006 | A1 |
20060241770 | Rhoda | Oct 2006 | A1 |
20060253201 | Mcluen | Nov 2006 | A1 |
20070043442 | Abernathie | Feb 2007 | A1 |
20070050030 | Kim | Mar 2007 | A1 |
20070050032 | Gittings et al. | Mar 2007 | A1 |
20070055377 | Hanson et al. | Mar 2007 | A1 |
20070088441 | Duggal et al. | Apr 2007 | A1 |
20070123987 | Bernstein | May 2007 | A1 |
20070135923 | Peterman et al. | Jun 2007 | A1 |
20070162130 | Rashbaum et al. | Jul 2007 | A1 |
20070168032 | Muhanna et al. | Jul 2007 | A1 |
20070191951 | Branch | Aug 2007 | A1 |
20070225806 | Squires et al. | Sep 2007 | A1 |
20070225812 | Gill | Sep 2007 | A1 |
20070233253 | Bray et al. | Oct 2007 | A1 |
20070250167 | Bray et al. | Oct 2007 | A1 |
20070255415 | Edie et al. | Nov 2007 | A1 |
20070270961 | Ferguson | Nov 2007 | A1 |
20070270963 | Melkent et al. | Nov 2007 | A1 |
20070270968 | Baynham | Nov 2007 | A1 |
20080021559 | Thramann | Jan 2008 | A1 |
20080051890 | Waugh et al. | Feb 2008 | A1 |
20080051907 | Marik | Feb 2008 | A1 |
20080065222 | Hamada | Mar 2008 | A1 |
20080114467 | Capote | May 2008 | A1 |
20080133013 | Duggal et al. | Jun 2008 | A1 |
20080140207 | Olmos et al. | Jun 2008 | A1 |
20080147194 | Grotz | Jun 2008 | A1 |
20080167657 | Greenhalgh | Jul 2008 | A1 |
20080183204 | Greenhalgh et al. | Jul 2008 | A1 |
20080221694 | Warnick | Sep 2008 | A1 |
20080275455 | Amicus | Nov 2008 | A1 |
20080281346 | Greenhalgh et al. | Nov 2008 | A1 |
20080288073 | Renganath et al. | Nov 2008 | A1 |
20080300598 | Barreiro et al. | Dec 2008 | A1 |
20080306488 | Altarac | Dec 2008 | A1 |
20080319487 | Fielding et al. | Dec 2008 | A1 |
20080319549 | Greenhalgh et al. | Dec 2008 | A1 |
20090024217 | Levy | Jan 2009 | A1 |
20090076608 | Gordon et al. | Mar 2009 | A1 |
20090076616 | Duggal | Mar 2009 | A1 |
20090125062 | Uri | May 2009 | A1 |
20090149956 | Greenhalgh et al. | Jun 2009 | A1 |
20090149959 | Conner et al. | Jun 2009 | A1 |
20090204218 | Richelsoph | Aug 2009 | A1 |
20090210062 | Thalgott | Aug 2009 | A1 |
20090222100 | Cipoletti et al. | Sep 2009 | A1 |
20090240334 | Richelsoph | Sep 2009 | A1 |
20090270989 | Conner et al. | Oct 2009 | A1 |
20090281628 | Oglaza | Nov 2009 | A1 |
20090292361 | Lopez | Nov 2009 | A1 |
20090299478 | Carls et al. | Dec 2009 | A1 |
20090312763 | Mccormack | Dec 2009 | A1 |
20100049324 | Valdevit | Feb 2010 | A1 |
20100070041 | Peterman | Mar 2010 | A1 |
20100082109 | Greenhalgh et al. | Apr 2010 | A1 |
20100179657 | Greenhalgh et al. | Jul 2010 | A1 |
20100211176 | Greenhalgh | Aug 2010 | A1 |
20100222816 | Gabelberger | Sep 2010 | A1 |
20100286783 | Lechmann | Nov 2010 | A1 |
20100292796 | Greenhalgh | Nov 2010 | A1 |
20110035011 | Cain | Feb 2011 | A1 |
20110093074 | Glerum | Apr 2011 | A1 |
20110160861 | Jimenez | Jun 2011 | A1 |
20110172774 | Varela | Jul 2011 | A1 |
20110251691 | McLaughlin | Oct 2011 | A1 |
20110276142 | Niemiec | Nov 2011 | A1 |
20110301713 | Theofilos | Dec 2011 | A1 |
20110319997 | Glerum | Dec 2011 | A1 |
20120035729 | Glerum | Feb 2012 | A1 |
20120059470 | Weiman | Mar 2012 | A1 |
20120059472 | Weiman | Mar 2012 | A1 |
20120109308 | Lechmann | May 2012 | A1 |
20120130496 | Duffield et al. | May 2012 | A1 |
20120165945 | Hansell | Jun 2012 | A1 |
20120185049 | Varela | Jul 2012 | A1 |
20120209386 | Triplett | Aug 2012 | A1 |
20120215313 | Saidha | Aug 2012 | A1 |
20120265309 | Glerum | Oct 2012 | A1 |
20120277870 | Wolters | Nov 2012 | A1 |
20120323329 | Jimenez | Dec 2012 | A1 |
20120330426 | McLaughlin | Dec 2012 | A1 |
20130023993 | Weiman | Jan 2013 | A1 |
20130023994 | Glerum | Jan 2013 | A1 |
20130158669 | Sungarian | Jun 2013 | A1 |
20140163682 | Iott | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
4012622 | Jul 1991 | DE |
4327054 | Apr 1995 | DE |
0576379 | Jun 1993 | EP |
0610837 | Jul 1994 | EP |
2727003 | May 1996 | FR |
2794968 | Dec 2000 | FR |
2000-513263 | Oct 2000 | JP |
1424826 | Sep 1988 | SU |
9201428 | Feb 1992 | WO |
9525485 | Sep 1995 | WO |
1997023175 | Jul 1997 | WO |
199942062 | Aug 1999 | WO |
199966867 | Dec 1999 | WO |
1999063914 | Dec 1999 | WO |
2002045625 | Jun 2002 | WO |
2004019829 | Mar 2004 | WO |
2004069033 | Aug 2004 | WO |
2005007040 | Jan 2005 | WO |
2006045094 | Apr 2006 | WO |
2006047587 | May 2006 | WO |
2006113080 | Oct 2006 | WO |
2007098288 | Aug 2007 | WO |
2008014258 | Jan 2008 | WO |
2008044057 | Apr 2008 | WO |
2008134515 | Nov 2008 | WO |
2009114381 | Sep 2009 | WO |
2012031267 | Mar 2012 | WO |
Entry |
---|
U.S. Appl. No. 60/777,663, filed Feb. 27, 2006, Messerli. |
U.S. Appl. No. 60/777,732, filed Feb. 27, 2006, Messerli et al. |
U.S. Appl. No. 60/838,229, filed Aug. 16, 2006, Hunziker et al. |
Guidance Document: Intervertebral Body Fusion Device, U.S. Dept. of Health and Human Services, Food and Drug Administration (Jun. 12, 2007). |
M. Spruit et al., The in vitro stabilizing effect of polyether-etherketone cages versus a titanium cage of similar design for anterior lumbar interbody fusion. 14(8) EUR. SPINE J. 752, 752-758 (2005). |
P. Schleicher et al., Biomechanical comparison of two different concepts for stand alone anterior lumbar interbody fusion, 17(12) EUR. SPINE J. 1757, 1757-1765 (2008). |
P.W. Pavlov et al., Anterior lumbar interbody fusion with threaded fusion cages and autologous bone grafts, 9 EUR. SPINE J. 224, 224-229 (2000). |
Synthes' SynFix Technique Guide device (“SynFix Technique Guide”). |
Number | Date | Country | |
---|---|---|---|
20200397593 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16144243 | Sep 2018 | US |
Child | 17009955 | US | |
Parent | 13775731 | Feb 2013 | US |
Child | 16144243 | US |