Expandable intervertebral spacer

Abstract
A spacer for separating bones of a joint, the spacer includes a first endplate configured to engage a first bone of the joint; a second endplate configured to engage a second bone of the joint; and an actuation subassembly comprising a drive nut, a drive screw coupled to the drive nut, and a cam frame coupled to the drive screw, wherein the cam frame is disposed between the first endplate and the second endplate, wherein the cam frame comprises a proximal frame end, a distal frame end, and lateral frame sides, wherein cams disposed on the lateral frame sides selectively engage at least one of the first endplate or the second endplate.
Description
FIELD OF THE INVENTION

This invention relates to stabilizing adjacent vertebrae of the spine by inserting an intervertebral spacer, and more particularly an intervertebral spacer that is adjustable in height.


BACKGROUND

The vertebral or spinal column (spine, backbone) is a flexible assembly of vertebrae stacked on top of each other extending from the skull to the pelvic bone which acts to support the axial skeleton and to protect the spinal cord and nerves. The vertebrae are anatomically organized into four generalized body regions identified as cervical, thoracic, lumbar, and sacral; the cervical region including the top of the spine beginning in the skull, the thoracic region spanning the torso, the lumbar region spanning the lower back, and the sacral region including the base of the spine ending with connection to the pelvic bone. With the exception of the first two cervical vertebrae, cushion-like discs separate adjacent vertebrae, i.e. intervertebral discs.


The stability of the vertebral column during compression and movement is maintained by the intervertebral discs. Each disc includes a gel-like center surrounded by a fibrous ring. The gel-like center, i.e. nucleus pulposus, provides strength such that the disc can absorb and distribute external loads and contains a mixture of type II-collagen dispersed in a proteoglycan matrix. The fibrous ring, or annulus fibrosus, provides stability during motion and contains laminated rings of type-I collagen. Thus, the annulus fibrosis and the nucleus pulposus are interdependent, as the annulus fibrosis contains the nucleus pulposus in place and the nucleus pulposus aligns the annulus fibrosus to accept and distribute external loads. The integrity of the composition and structure of the intervertebral disc is necessary to maintain normal functioning of the intervertebral disc.


Many factors can adversely alter the composition and structure of the intervertebral disc, such as normal physiological aging, mechanical injury/trauma, and/or disease, resulting in impairment or loss of disc function. For example, the content of proteoglycan n the nucleus pulposus declines with age, thus, it follows that the ability of the nucleus pulposus to absorb water concurrently declines. Therefore, in normal aging the disc progressively dehydrates, resulting in a decrease in disc height and possible de-lamination of the annulus fibrosus. Mechanical injury can tear the annulus fibrosis allowing the gel-like material of the nucleus pulposus to extrude into the spinal canal and compress neural elements. Growth of a spinal tumor can impinge upon the vertebrae and/or disc potentially compressing nerves.


Bones of the spine, and bony structures, generally, are susceptible to a variety of weaknesses that can affect their ability to provide support and structure. Weaknesses in bony structures have numerous potential causes, including degenerative diseases, tumors, fractures, and dislocations. Advances in medicine and engineering have provided doctors with a plurality of devices and techniques for alleviating or curing these weaknesses.


In some cases, the spinal column, in particular, requires additional support in order to address such weaknesses. One technique for providing support is to insert a spacer between adjacent vertebrae.


SUMMARY

In accordance with an embodiment of the disclosure, a spacer for separating bone of a joint may be provided, wherein the spacer may comprise: a first endplate configured to engage a first bone of the joint; a second endplate configured to engage a second bone of the joint; and an actuation subassembly comprising a drive nut, a drive screw coupled to the drive nut, and a cam frame coupled to the drive screw, wherein the cam frame is disposed between the first endplate and the second endplate, wherein the cam frame comprises a proximal frame end, a distal frame end, and lateral frame sides, wherein cams disposed on the lateral frame sides selectively engage at least one of the first endplate or the second endplate.


In accordance with an embodiment of the disclosure, a method of separating bones of a joint may be provided, wherein the method may comprise inserting a spacer between bones of the joint; and translating a cam frame along a longitudinal axis of the spacer, wherein cams disposed on the cam frame engage at least one of a first endplate and/or a second endplate increasing a height of the spacer.





BRIEF DESCRIPTION OF THE DRAWINGS

These drawings illustrate certain aspects of some examples of the present invention, and should not be used to limit or define the invention.



FIG. 1 is a perspective view of a spacer in a collapsed position in accordance with example embodiments;



FIG. 2 is a perspective view of a spacer in an expanded position in accordance with example embodiments;



FIG. 3 is an exploded view of a spacer in accordance with example embodiments;



FIGS. 4 and 5 illustrate an endplate of a spacer in accordance example embodiments;



FIG. 6 illustrates a cam frame of a spacer of in accordance with example embodiments;



FIGS. 7 and 8 illustrate cam pins in accordance with example embodiments.



FIG. 9 illustrates a front plate in accordance with example embodiments.



FIGS. 10 and 11 illustrate an actuation subassembly positioned with an endplate in accordance with example embodiments;



FIGS. 12 and 13 illustrate a spacer insertion device in accordance with example embodiments;



FIG. 14 is a perspective view of a spacer in a collapsed position in accordance with example embodiments;



FIG. 15 is a perspective view of a spacer in an expanded position in accordance with example embodiments;



FIG. 16 is an exploded view of a spacer in accordance with example embodiments;



FIG. 17 illustrates a front plate of a spacer in accordance with example embodiments;



FIG. 18 illustrates a spacer in accordance with example embodiments;



FIG. 19 is a perspective view of a spacer in a collapsed position in accordance with example embodiments;



FIG. 20 is a perspective view of a spacer in an expanded position in accordance with example embodiments;



FIG. 21 is an exploded view of a spacer in accordance with example embodiments;



FIG. 22 illustrates a spacer in accordance with example embodiments;



FIG. 23 is a perspective view of a spacer in a collapsed position in accordance with example embodiments;



FIG. 24 is a perspective view of a spacer in an expanded position in accordance with example embodiments;



FIG. 25 is an exploded view of a spacer in accordance with example embodiments;



FIG. 26 illustrates an endplate of a spacer in accordance example embodiments;



FIG. 27 illustrates a cam frame of a spacer in accordance with example embodiments;



FIG. 28 illustrates a cam of a spacer in accordance with example embodiments;



FIGS. 29 and 30 illustrate an actuation subassembly positioned with an endplate in accordance with example embodiments;



FIG. 31 is a perspective view of a spacer in a collapsed position in accordance with example embodiments;



FIG. 32 is a perspective view of a spacer in an expanded position in accordance with example embodiments;



FIG. 33 is an exploded view of a spacer in accordance with example embodiments; and



FIG. 34 illustrates a spacer in accordance with example embodiments.





DETAILED DESCRIPTION

Embodiments are directed to a spacer that may be inserted between two adjacent bony surfaces to facilitate separation of the bones, and if desired, to promote the fusion of bony surfaces. Although intended to be useful with any adjacent bony surface in which fusion is desired, the spacer may advantageously be applied to insertion between two adjacent vertebral bodies in any section of the spine, including the cervical, thoracic, lumbar, and sacral vertebral sections. Additionally, the spacer may be implanted through an anterior, anterolateral, posterior, posterolateral, lateral, or any other suitable approach. More than one spacer may be implanted within the body, for example between successive or separated vertebrae, between adjacent vertebrae. The use of multiple spacers is particularly advantageous for patients whose back pain is not limited to a localized area, or for patients whose localized damage has progressed to other areas of the spine.


The spacer and methods for its insertion can be used in a treatment protocol for any of a wide variety of conditions in a patient involving diseased or damaged bony structures. The patient can be a human being. Additionally, it is contemplated that the spacer may be useful in veterinary science for any animal having adjacent bony structures to be fused. The spacer can collapse, for example, to approximately one half of an expanded size. When in this collapsed configuration, the spacer can be inserted into a space through a small incision and narrow pathways, using appropriate minimally-invasive techniques, and can be positioned within the space between adjacent bones, and there expanded to a desired therapeutic height. The incision may be short, for example about one inch in length, which is smaller than the spacer in an expanded configuration. If the desired position and/or expansion are not achieved, the spacer can be collapsed, repositioned, and re-expanded in situ.


Although the spacer is exemplified herein for use in the spine, the spacer is contemplated for fusion of any bony structures. While the spacers are described herein using several varying embodiments, the spacers are not limited to these embodiments. An element of one embodiment may be used in another embodiment, or an embodiment may not include all described elements.


With reference now to FIGS. 1-3, embodiments of spacer 100 may comprise endplates 102 and actuation subassembly 104. In the embodiment shown, endplates 102 may be generally symmetrical, and spacer 100 can be implanted with either endplate 102 positioned superior with respect to the other. In other embodiments, they may be dissimilar, and a particular orientation may then be advantageous or necessary. While spacer 100 shown on FIGS. 1-3 may be implanted using a variety of approaches, spacer 100 may be particularly suitable for a lateral approach.


Spacer 100 forms a distal end 106 which may be inserted first into the body, and which can be tapered to facilitate insertion between body tissues. Spacer 100 also forms a proximal end 108, to which a spacer insertion device (e.g. 202 shown on FIGS. 12 and 13) may be connected. Spacer 100 may be inserted in a collapsed position, as shown on FIG. 1. Distal end 106 and proximal end 108 define a spacer longitudinal axis 110. The spacer 100 may be expanded, as shown on FIG. 2, after it has been inserted. To expand spacer 100, cam frame 112 (best seen on FIG. 3) may be displaced related to endplates 102. As the cam frame 112 translates along spacer longitudinal axis 110, cam frame 112 engages cam pins 114, driving them outward and, in turn, pushing endplates 102 relatively apart such that a height of spacer 100 may be increased. As will be discussed in more detail below, translation of cam frame 112 may be effected by rotation of drive nut 113.


Turning now to FIGS. 4 and 5, embodiments of endplates 102 will now be described. It should be understood that the endplates 102 may be symmetrical so the description may equally apply to either of endplates 102. Endplates 102 may have a plate proximal end 116 and a plate distal end 118. Nose 120 at plate distal end 118 may be tapered or otherwise formed to facilitate insertion into a desired location. As best seen on FIG. 4, endplates 102 may further comprise an outer facing surface 122 connecting plate proximal end 116 and plate distal end 118. As illustrated, endplates 102 may also comprise lateral sides 124. Endplates 102 may further comprise an inner facing surface 126. Inner facing surface 126 may have a recessed portion 128 in which cam frame 112 may be received. In the illustrated embodiment, endplates 102 may further comprise a cutout 130 for receiving drive screw 132 (e.g., shown on FIG. 3).


In some embodiments, endplates 102 may further comprise through openings 136. Through openings 136 may form an opening in endplates 102 that extends from outer facing surface 122 to inner facing surface 126. The through opening 136, in an exemplary embodiment, may be sized to receive bone graft or similar bone growth inducing material and further allow the bone graft or similar bone growth inducing material to be packed in a central opening 138 in cam frame 112 (best seen on FIG. 6).


With specific reference to FIG. 4, the outer facing surfaces 122 of endplates 102 may be flat and generally planar to allow the outer facing surfaces 122 to engage with the adjacent tissue (e.g., vertebral body). Alternatively, not shown, the outer facing surfaces 122 may be curved, convexly or concavely to allow, for a greater or lesser degree of engagement with the adjacent tissue, h is also contemplated that the outer facing surfaces 122 can be generally planar but include a generally straight ramped surface or a curved ramped surface. Where present, the ramped surface may allow for engagement with the adjacent tissue in a lordotic fashion. In the illustrated embodiment, the outer facing surfaces 122 comprise texturing 140, for example, to aid in gripping the adjacent tissue Although not limited to the following, the texturing can include teeth, ridges, friction increasing elements, keels, or gripping or purchasing projections.


As seen in FIGS. 6a and 6b, the endplates 102 may further include a plurality of holes 142. In some embodiments, holes may be blind holes that do not extend through outer facing surfaces 122. The holes 42 may be configured to receive cam pins 114, for example. The holes 142 may define a cam contact surface in which motion of the cam pins 114 is transferred to endplates 102. As illustrated, the holes 142 may be arranged in a row in each lateral side 124 of the endplates 102. In the illustrated embodiment, there are three holes 142 in each lateral side 124. However, it should be understood that the number and arrangement of holes 142 in endplates 102 may be selected as desired for a particular application. In addition, guide pin holes 144 may be also be disposed in at least one of the endplates 102. Guide pins 146 (e.g., shown on FIG. 3) may be disposed in fastener holes 144, for example, to guide expansion of endplates 102.


Endplates 102 may additionally, or alternatively, be resilient, so that they may conform to bony surfaces, forming a more stable support platform. Accordingly, endplates 102 can be fabricated from a polymeric material, a naturally resilient material, or a resilient metal, for example a shape memory alloy, or any other resilient biocompatible material of sufficient strength and durability for separating bones within the body.


Turning now to FIGS. 3 and 6, cam frame 112 will now be described in more detail with respect to particular embodiments. As illustrated, cam frame 112 may comprise proximal frame end 148, distal frame end 150, and lateral frame sides 152. Lateral frame sides 152 may extend from proximal frame end 148 to distal frame end 150. Proximal frame end 148, distal frame end 150, and lateral frame sides 152 may define central opening 138 in cam frame 112. Opening 154 may be formed in proximal frame end 148 through which drive screw 132 may be disposed. Retaining slots 156 may be formed in proximal frame end 148 that intersect opening 154. One or more screw retaining plates 158 may be inserted into retaining slots 156 to retain drive screw 132.


In some embodiments, cam slots 160 may be formed in lateral frame sides 152. As illustrated three cam slots 160 may be formed in each of lateral frame sides 152. However, it should be understood that more or less than three cam slots 160 may be used. The number of cam slots 160 generally may correspond to the number of cam pins 114. At least a portion of cam pins 114 may be disposed in a corresponding one of cam slots 160. By way of example, each of cam pins 114 may include a protuberance, such as ridge 162 (best seen on FIGS. 7 and 8). The ridge 162 may ride in cam slots 160. The cam slots 160 may include drive surfaces 164 that engage cam pins 114. The cam slots 160 may operate to change the direction of the linear movement of cam frame 112. For example, movement of the cam frame 112 along the spacer longitudinal axis 110 may be changed to movement of cam pins 114 in a direction generally transverse to spacer longitudinal axis 110. As the cam frame 112 is moved, for example, along the spacer longitudinal axis 110, the cam slots 160 may engage the cam pins 114 to drive the cam pins 114 against the endplates 102, pushing endplates 102 relatively apart such that a height of spacer 100 may be increased. Cam slots 160 may be arranged so that expansion may be achieved with advancement or withdrawal of cam frame 112 with movement of the cam frame 112 in the opposite direction causing the cam slots 160 to engage the cam pins 114 to drive the cam pins 114 into a collapsed position, thus collapsing the endplates 102. As illustrated, the cam slots 160 may be angled with respect to spacer longitudinal axis 110. As will be appreciated, the angle of cam slots 160 may be adjusted to modify expansion of endplates 102.


Turning now to FIG. 7, an example cam pin 114 is illustrated in more detail in accordance with embodiments of the present disclosure. In the illustrated embodiment, cam pin 114 may comprise an elongated body portion 166 and ridge 162. In operation, the cam pin 114 may engage one of endplates 102 driving it outward. As illustrated, ridge 162 may project from elongated body portion 166 and extend at an angle with respect to the elongated body portion 166. As previously described, ridge 162 may ride in cam slots 160 of cam frame 112. Ridge 162 may include a drive surface 170 and a return surface 172. Motion of cam frame 112 may be transferred to cam pin 114 through drive surface 170 as endplates 102 are being driven outward, while motion of cam frame 112 may be transferred to cam pins 114 through return surface 172 as endplates 102 are being retracted. FIG. 8 illustrates an alternative embodiment of a cam pin 114 in which drive surface 170 is disposed on an opposite side of ridge 162 from the embodiment shown on FIG. 8. The positioning of drive surface 170 with respect to return surface 172 may depend on the angle of the cam slot 160 into which the cam pin 114 may be disposed. Depending on the angle of cam slots 160, the cam pins 114 of FIGS. 7 and 8 may be used separately or in combination.


Front plate 174 of spacer 100 is shown in more detail on FIGS. 3 and 9 in accordance with example embodiments. As best seen on FIG. 9, front plate 174 may include a plate body 176 and an extension 178. Front plate 174 may be arranged so that extension 178 extends from plate body 176 toward spacer distal end 106. Plate body 176 may also include outer facing surfaces 180. In the illustrated embodiment, the outer facing surfaces 180 comprise texturing 182, for example, to aid in gripping the adjacent tissue. Although not limited to the following, the texturing can include teeth, ridges, friction increasing elements, keels, or gripping or purchasing projections. In some embodiments, extension 178 may also include extension guide pin holes 184 for receiving guide pins 146. As best seen on FIG. 3, front plate 174 may be disposed plate proximal end 116 with extension 178 extending between endplates 102. Front plate 174 may be positioned so that guide pin holes 184 may align with guide pin holes 144 in endplates 102. Front plate 174 may further include a through bore 186, which may extend through front plate 174, for example, in a direction of spacer longitudinal axis 110. Plate body 176 may further comprise an insertion tool engagement 134, best seen on FIG. 3, which engages a corresponding engagement of spacer insertion device (e.g., 202 on FIGS. 12 and 13).



FIGS. 10 and 11 illustrate actuation subassembly 104 in accordance with embodiments of the present invention. Embodiments of actuation subassembly 104 will also described with additional reference to FIG. 3. Action subassembly 104 may extend between endplates 102. In the illustrated embodiments, one of the endplates 102 has been removed to better show actuation subassembly 104. FIG. 10 illustrates the actuation assembly 104 in a collapsed position, and FIG. 11 illustrates the actuation assembly 104 in an expanded position.


As illustrated, actuation subassembly 104 may comprise cam frame 112, drive screw 132, and drive nut 113. Cam frame 112 may be displaced relative to endplates 102 by rotation of drive nut 113 which in turn moves drive screw 132 and cam frame 112 along spacer longitudinal axis 110. In some embodiments, rotation of drive nut 113 may cause cam frame 112 to translate a path along spacer longitudinal axis 110. A spacer insertion device (e.g., 202 on FIGS. 12 and 13) may interact with drive nut 113 to cause rotation of drive nut 113 so that cam frame 112 may be advanced and/or withdrawn. As the cam frame 112 is advanced, the cam frame 112 may drive the cam pins 114 causing them to push endplates 102 from a collapsed position (e.g., shown on FIG. 10) to an expanded position (e.g., shown on FIG. 11).


Embodiments of drive nut 113 may also include a nut through bore 188, which may be threaded as best seen on FIG. 3. Drive screw 132 may include a threaded portion 190. Threaded portion 190 may threadingly engage nut through bore 188 so that drive nut 113 may be retained on drive screw 132. Embodiments may further include a first ring 192 and a second ring 194, which one or both may be in the form of a c-ring or other suitable device. In some embodiments, first ring 192 may be a washer and second ring 194 may be a c-ring. In some embodiments, first ring 192 and/or second ring 194 may be compressible. In some embodiments, first ring 192 and/or second ring 194 may be retained on corresponding grooves found on extension 196 from head portion 198 of drive nut 113. When assembled, first ring 192 may be disposed between endplates 102 and drive nut 113. In some embodiments, extension 196 of drive nut 113 may be secured in through bore 186 of front plate 174. For example, extension 196 may threadingly engage through bore 186. Second ring 194 may be disposed on extension 196 during insertion into through bore 186 of endplates 102 and then expand, thus securing drive nut 113 to front plate 174.


In some embodiments, drive screw 132 may be secured in drive nut 113 at one end and be secured to cam frame 112 at another end. Drive screw 132 may include a retainer groove 200, best seen on FIG. 3. As illustrated, retainer groove 200 may be disposed at an opposite end of drive screw 132 from threaded portion 190. Drive screw 132 may extend into opening 154 in cam frame 112. One or more screw retaining plates 158 may inserted into retaining slots 156 to engage drive screw 132. For example, screw retaining plates 158 may engage retainer groove 200 so that drive screw 132 may be retained in opening 154.



FIGS. 12 and 13 illustrate spacer insertion device 202 in accordance with embodiments of the present invention. Spacer insertion device 202 may be used to engage spacer 100 during its insertion into a patient and also to actuate spacer 100 after its insertion. As illustrated, spacer insertion device 202 may comprise a handle portion 204 and an implant holder portion 206. Spacer insertion device 202 may further comprise an inner shaft 208 and an outer shaft 210. As best seen on FIG. 13, inner shaft 208 may include a threaded end 212 onto which the spacer 100 may be threaded. For example, threaded end 212 may thread into a threaded opening 214 of drive screw 132 (e.g., shown on FIG. 3). Implant holder portion 206 may also include ears 216 (or other projections) that engage corresponding insertion tool engagements 134 (e.g., shown on FIG. 3) of front plate 174. Implant holder portion 206 may also include drive nut interface 218 (best seen on FIG. 13) that engages drive nut 113 to cause rotation of drive nut 113.


Referring now to FIGS. 14-18, in an alternative embodiment, in which like numbers correspond to like elements in other embodiments herein, a spacer 100 is illustrated. As illustrated, the spacer 100 may comprise endplates 102 and actuation subassembly 104. Actuation subassembly 104 may comprise drive nut 113, drive screw 132, and cam frame 112. Spacer 100 may further comprise front plate 174. As previously described, cam frame 112 may engage cam pins 114 driving them into endplates 102, forcing the endplates 102 apart. Embodiments of spacer 100, and the various components thereof, shown on FIGS. 14-18 may be similar in function and operation to spacer 100 shown on FIGS. 1-11 except that plate body 176 of front plate 174 may further include bone fastener receiving holes 220. Bone fastener receiving holes 220 may extend through front plate 174 at an angle with respect to spacer longitudinal axis 110. Bone fastener receiving holes 220 may be sized and configured to receive a bone fastener 222, best seen on FIG. 18. Bone fastener 222 may be any suitable fastener for securing front plate 174 to adjacent tissue, such as vertebral bodies. Examples of suitable bone fasteners 222 may include, without limitation, bone screws and bone shanks. As best seen on FIG. 18, front plate 174 may further include a blocking screw 224. Blocking screws 224 may be rotated to block bone fasteners 222 and retain bone fasteners 222 in bone fastener receiving holes 220. While spacer 100 shown on FIGS. 14-18 may be implanted using a variety of approaches, spacer 100 may be particularly suitable for a lateral approach.


Referring now to FIGS. 19-22, in an alternative embodiment, in which like numbers correspond to like elements in other embodiments herein, a spacer 100 is illustrated. As illustrated, the spacer 100 may comprise endplates 102 and actuation subassembly 104. Actuation subassembly 104 may comprise drive nut 113, drive screw 132, and cam frame 112. Spacer 100 may further comprise front plate 174. Front plate 174 may comprise bone fastener receiving holes 220 for receiving bone fasteners 222. Blocking screw 224 may be disposed in front plate 174 and may be rotated to retain bone fasteners 222 in bone fastener receiving holes 220. As previously described, cam frame 112 may engage cam pins 114 driving them into endplates 102, forcing the endplates 102 apart. While spacer 100 shown on FIGS. 19-22 may be implanted using a variety of approaches, spacer 100 may be particularly suitable for an anterior or anterolateral approach.


Embodiments of spacer 100, and its various components, shown on FIGS. 19-22 may be similar in function and operation to embodiments of spacer 100 shown on FIGS. 19-22, except that spacer 100 may have a different configuration. By way of example, instead of one through opening 136 in endplates 102, each endplate 102 may comprise a pair of through openings 136. In addition, endplates 102 may also comprise a central extension 226 that extends from plate proximal end 116 to plate distal end 118. Additionally, cam frame 112 (best seen on FIG. 21) may be open at one end, for example, the distal frame end 150, which may be opposite opening 154. Moreover, a central frame extension 228 may extend from proximal frame end 148 between lateral frame sides 152. With respect to endplates 102, one of the endplates 102 (e.g., the uppermost endplate) may comprise front sockets 230 for receiving bone fasteners 222. Blocks screws 224 may be disposed in front sockets 230 for retaining bone fasteners 222 therein. Additionally, middle plate 232 may be disposed behind front plate 134, as best seen on FIG. 21. Middle plate 232 may receive drive screw 132 and have wings 234 that fit in corresponding grooves of endplates 102. While drive nut 113 has previously been described as being a separate components, embodiments may include a drive nut 113 integral to, or otherwise formed with, drive screw 132, as best seen on FIG. 21.


Referring now to FIGS. 23-30, in an alternative embodiment, in which like numbers correspond to like elements in other embodiments herein, a spacer 100 is illustrated. As illustrated, the spacer 100 may comprise endplates 102 and actuation subassembly 104. Actuation subassembly 104 may comprise drive nut 113, drive screw 132, and cam frame 112. Spacer 100 may further comprise front plate 174. Cam frame 112 may comprise cams 236 coupled thereto that engage endplates 102, force the endplates 102 apart, as cam frame 112 is translated. While spacer 100 shown on FIGS. 23-30 may be implanted using a variety of approaches, spacer 100 may be particularly suitable for a lateral approach. Embodiments of spacer 100, and the various components thereof, shown on FIGS. 23-30 may be similar in function and operation to spacer 100 shown on FIGS. 1-11 except that cam frame 112 may comprise cams 236 instead of cam slots 160.


With reference to FIGS. 25 and 27-30, embodiments of cam frame 112 will now be described in more detail. As previously described, cam frame 112 may comprise proximal frame end 148 and distal frame end 150, which are both coupled by lateral frame sides 152. In some embodiments, cam clearance slots 238 may be formed on lateral frame sides 152. Cam clearance slots 238 may be sized and configured to allow for unobstructed rotation of cams 236, for example. Cams 236 may be coupled to cam frame 112. As illustrated, cams 236 may be coupled in cam clearance slots 238. Cam pins 240 may pivotably retain cams 236 in connection with cam frame 112. In the illustrated embodiment, cam pins 240 may be unitary, but cam pins 240 may alternatively be provided in segments. Cams 236 may rotate about cam pins 240. Cam pins 240 may be received in pin holes 242, for example, in cam clearance slots 238. With additional reference to FIGS. 26 and 27, cams 236 may engage drive surfaces 244 in cam cutouts 246 of endplates 102. Cam cutouts 246 may be formed in lateral sides 124 of endplates 102.


As best on FIG. 28, a cam 236 may comprise a body portion 250, which may be generally circular in shape, but other shaped body portions 250, such as square, elliptical, etc., may also be suitable. Cam arms 248 may extend from body portion 250. Cam arms 248 may engage endplates 102. For example, cam arms 248 may engage drive surfaces 244 of endplates 102. The cams 236 may operate to change the direction of the linear movement of cam frame 112. For example, movement of the cam frame 112 along the spacer longitudinal axis 110 may be changed to movement of endplates 102 in a direction generally transverse to spacer longitudinal axis 110. As the cam frame 112 is moved, for example, along the spacer longitudinal axis 110, the cams 236 may engage drive surfaces 244 of endplates 102. As best seen on FIG. 26, drive surfaces 244 may be sloped in some embodiments. Cam 236 may rotate as cam frame 112 is moved with cam arms 248 pushing endplates 102 relatively apart such that a height of spacer 100 may be increased. Cams 236 may be arranged so that expansion may be achieved with advancement or withdrawal of cam frame 112 with movement of the cam frame 112 in the opposite direction causing the cams 236 to engage endplates 102 driving them to a collapsed positon.


Referring now to FIGS. 31-34, in an alternative embodiment, in which like numbers correspond to like elements in other embodiments herein, a spacer 100 is illustrated. As illustrated, the spacer 100 may comprise endplates 102 and actuation subassembly 104. Actuation subassembly 104 may comprise drive nut 113, drive screw 132, and cam frame 112. Spacer 100 may further comprise front plate 174. As previously described, cam frame 112 may cams 236 that endplates 102 to drive them outward forcing expansion of spacer 100. Embodiments of spacer 100, and the various components thereof, shown on FIGS. 31-37 may be similar in function and operation to spacer 100 shown on FIGS. 23-30 except that plate body 176 of front plate 174 may further include bone fastener receiving holes 220. Bone fastener receiving holes 220 may extend through front plate 174 at an angle with respect to spacer longitudinal axis 110. Bone fastener receiving holes 220 may be sized and configured to receive a bone fastener 222, best seen on FIG. 18. Bone fastener 222 may be any suitable fastener for securing front plate 174 to adjacent tissue, such as vertebral bodies. Examples of suitable bone fasteners 222 may include, without limitation, bone screws and bone shanks. As best seen on FIG. 18, front plate 174 may further include a blocking screw 224. Blocking screws 224 may be rotated to block bone fasteners 222 and retain bone fasteners 222 in bone fastener receiving holes 220. While spacer 100 shown on FIGS. 31-34 may be implanted using a variety of approaches, spacer 100 may be particularly suitable for a lateral approach.


In some embodiments, spacer 100 may be fabricated using any biocompatible materials known or hereinafter discovered, having sufficient strength, flexibility, resiliency, and durability for the patient, and for the term during which the device is to be implanted. Examples include but are not limited to metal, such as, for example titanium and chromium alloys; stainless steel, polymers, including for example, PEEK or high molecular weight polyethylene (HMWPE); and ceramics. There are many other biocompatible materials which may be used, including other plastics and metals, as well as fabrication using living or preserved tissue, including autograft, allograft, and xenograft material. Portions or all of the spacer 100 may be radiopaque or radiolucent, or materials having such properties may be added or incorporated into the spacer 100 to improve imaging of the device during and after implantation. Any surface or component of a spacer 100 may be coated with or impregnated with therapeutic agents, including bone growth, healing, antimicrobial, or drug materials, which may be released at a therapeutic rate, using methods known to those skilled in the art.


In some embodiments, spacer 100 may be formed using titanium, or a cobalt-chrome-molybdenum alloy, Co—Cr—Mo, for example as specified in ASTM F1537 (and ISO 5832-12). The smooth surfaces may be plasma sprayed with commercially pure titanium, as specified in ASTM F1580, F1978, F1147 and C-633 (and ISO 5832-2). Alternatively, part or all of spacers 100 may be formed with a polymer, for example ultra-high molecular weight polyethylene, UHMWPE, for example as specified in ASTM F648 (and ISO 5834-2). In one embodiment, PEEK-OPTIMA (a trademark of Invibio Ltd Corp, United Kingdom) may be used for one or more components of the disclosed spacers 100. For example, polymeric portions can be formed with PEEK-OPTIMA, which is radiolucent, whereby bony ingrowth may be observed. Other polymeric materials with suitable flexibility, durability, and biocompatibility may also be used.


In accordance with present embodiments, spacer 100 may be provided in various sizes to best fit the anatomy of the patient. Components of matching or divergent sizes may be assembled during the implantation procedure by a medical practitioner as best meets the therapeutic needs of the patient, the assembly inserted within the body using an insertion tool. In some embodiments, spacer 100 may also be provided with an overall angular geometry, for example an angular mating disposition of endplates, to provide for a natural lordosis, or a corrective lordosis, for example of from 0° to 12° for a cervical application, although much different values may be advantageous for other joints. Lordotic angles may also be formed by shaping one or both endplates to have relatively non-coplanar surfaces.


In some embodiments, a single spacer 100 may be used, to provide stabilization for a weakened joint or joint portion. Alternatively, a combination of two, three, or more of any of spacer 100 may be used, at a single joint level, or in multiple joints. Moreover, implants of the disclosure may be combined with other stabilizing means.


In some embodiments, a spacer 100 may be fabricated using material that biodegrades in the body during a therapeutically advantageous time interval, for example after sufficient bone ingrowth has taken place. Further, implants of the disclosure are advantageously provided with smooth and or rounded exterior surfaces, which reduce a potential for deleterious mechanical effects on neighboring tissues.


In some embodiments, a spacer 100 may be provided to be support adjacent vertebrae during flexion/extension, lateral bending, and axial rotation. In one embodiment, spacer 100 is indicated for spinal arthroplasty in treating skeletally mature patients with degenerative disc disease, primary or recurrent disc herniation, spinal stenosis, or spondylosis in the lumbosacral spine (LI-SI). The surgery to implant spacer 100 may be performed through an Anterior, Anterolateral, Posterolateral, Lateral, or any other approach.


The terms “a” or “an”, as used herein, are defined as one or more than one. The term plurality, as used herein, is defined as two or more than two. The term another, as used herein, is defined as at least a second or more. The terms “including” and “having,” as used herein, are defined as comprising (i.e., open language).


Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations may be made herein without departing from the spirit and scope of the invention as defined by the appended claims

Claims
  • 1. A spacer for separating bones of a joint, the spacer comprising: a first endplate configured to engage a first bone of the joint;a second endplate configured to engage a second bone of the joint; andan actuation subassembly comprising a drive nut, a drive screw coupled to the drive nut, and a frame coupled to the drive screw, wherein the frame is disposed between the first endplate and the second endplate, wherein the frame comprises a proximal end, a distal end, and lateral sides, and the frame comprise slots formed in the lateral sides of the frame and pins engage the slots, wherein rotation of the drive nut translates the frame, the frame engages the pins to selectively engage at least one of the first endplate or the second endplate.
  • 2. The spacer of claim 1, wherein the spacer is moveable from a collapsed position to an expanded position, wherein, in the expanded position, the spacer has a height that is greater than a height in the collapsed position.
  • 3. The spacer of claim 1, wherein the pins each comprise an elongated body portion and a ridge, wherein the ridge is at an angle with respect to the elongated body portion.
  • 4. The spacer of claim 3, wherein the ridge of each of the pins engages a corresponding one of the slots.
  • 5. The spacer of claim 1, wherein the drive screw comprises a threaded portion that threadingly engages a through bore of the drive nut.
  • 6. The spacer of claim 1, wherein one end of the drive screw is retained in an opening in the proximal frame end, and another end of the drive screw is threadingly coupled to a through bore of drive nut.
  • 7. The spacer of claim 1, wherein frame is open at the distal end.
  • 8. The spacer of claim 1, at least one retention slot is formed in proximal frame end, wherein the at least one retention slot intersects an opening in the proximal frame end, and wherein one or more screw retention plates are positioned in the at least one retention slot to retain the drive screw in the opening.
  • 9. The spacer of claim 1, further comprising a front plate, wherein the front plate comprise a plate body and an extension, wherein the plate body comprises bone fastener receiving holes configured to receive bone fasteners, and wherein the extension extends between the first endplate and the second endplate, the drive screw extending through the front plate.
  • 10. The spacer of claim 1, wherein the first endplate further comprises front sockets configured to receive bone fasteners.
  • 11. The spacer of claim 1, wherein the pins are pivotably secured in slots formed on the lateral frame sides.
  • 12. A spacer for separating bones of a joint, the spacer comprising: a first endplate configured to engage a first bone of the joint;a second endplate configured to engage a second bone of the joint;an actuation subassembly comprising: a drive nut comprising a head portion and an extension from the head portion, wherein the extension is secured in a cutout formed by the first endplate and the second endplate;a drive screw comprising a threaded end that is threadingly coupled to a through bore of the drive nut;a frame comprising a proximal frame end, a distal frame end, and lateral sides, wherein slots are formed in the lateral frame sides, wherein the slots are at an angle with respect to a longitudinal axis of the spacer, wherein the drive screw is retained in an opening in the proximal frame end; anda plurality of pins that engage the slots and engage at least one of the first endplate and/or the second endplate.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/453,038, filed on Jun. 26, 2109, which is a divisional of U.S. patent application Ser. No. 14/970,598, filed Dec. 16, 2015, 2015, which is incorporated by reference herein in its entirety for all purposes.

US Referenced Citations (224)
Number Name Date Kind
4349921 Kuntz Sep 1982 A
4599086 Doty Jul 1986 A
4863476 Sheppherd Sep 1989 A
4863477 Monson Sep 1989 A
5123926 Pisharodi Jun 1992 A
5290312 Kojimoto et al. Mar 1994 A
5306310 Siebels Apr 1994 A
5375823 Navas Dec 1994 A
5390683 Pisharodi Feb 1995 A
5522899 Michelson Jun 1996 A
5534030 Navarro et al. Jul 1996 A
5554191 Lahille et al. Sep 1996 A
5571192 Schonhoffer Nov 1996 A
5645596 Kim et al. Jul 1997 A
5653763 Errico et al. Aug 1997 A
5665122 Kambin Sep 1997 A
5676701 Yuan et al. Oct 1997 A
6039761 Li et al. Mar 2000 A
6045579 Hochschuler et al. Apr 2000 A
6080193 Hochschuler et al. Jun 2000 A
6099531 Bonutti Aug 2000 A
6126689 Brett Oct 2000 A
6176882 Biedermann Jan 2001 B1
6258125 Paul et al. Jul 2001 B1
6554863 Paul et al. Apr 2003 B2
6558423 Michelson May 2003 B1
6562074 Gerbec et al. May 2003 B2
6576016 Hochshuler et al. Jun 2003 B1
6641614 Wagner et al. Nov 2003 B1
6648917 Gerbec et al. Nov 2003 B2
6666891 Boehm, Jr. et al. Dec 2003 B2
6692495 Zacouto Feb 2004 B1
6706070 Wagner et al. Mar 2004 B1
6752832 Ulrich Jun 2004 B2
6814756 Michelson Nov 2004 B1
6830589 Erickson Dec 2004 B2
6849093 Michelson Feb 2005 B2
6852129 Gerbec et al. Feb 2005 B2
6863673 Gerbec et al. Mar 2005 B2
6881228 Zdeblick et al. Apr 2005 B2
7018415 McKay Mar 2006 B1
7070598 Lim et al. Jul 2006 B2
7204853 Gordon Apr 2007 B2
7217291 Zucherman et al. May 2007 B2
7282063 Cohen et al. Oct 2007 B2
7316714 Gordon Jan 2008 B2
7473276 Aebi Jan 2009 B2
7547325 Biedermann Jun 2009 B2
7621953 Braddock, Jr. et al. Nov 2009 B2
7641693 Gutlin et al. Jan 2010 B2
7682396 Beaurain et al. Mar 2010 B2
7749270 Peterman Jul 2010 B2
7753958 Gordon Jul 2010 B2
7771473 Thramann Aug 2010 B2
7780732 Abernathie Aug 2010 B2
7799081 McKinley Sep 2010 B2
7815683 Melkent et al. Oct 2010 B2
7837734 Zucherman et al. Nov 2010 B2
7875078 Wysocki et al. Jan 2011 B2
7901409 Canaveral et al. Mar 2011 B2
7909869 Gordon Mar 2011 B2
7951199 Miller May 2011 B2
7985256 Grotz et al. Jul 2011 B2
8062375 Glerum Nov 2011 B2
8070813 Grotz et al. Dec 2011 B2
8105382 Olmos et al. Jan 2012 B2
8123810 Gordon Feb 2012 B2
8137405 Kostuik et al. Mar 2012 B2
8192495 Simpson et al. Jun 2012 B2
8303663 Jimenez et al. Nov 2012 B2
8377140 DeFalco et al. Feb 2013 B2
8394129 Lopez et al. Mar 2013 B2
8394143 Grotz et al. Mar 2013 B2
8435296 Kadaba et al. May 2013 B2
8454695 Grotz et al. Jun 2013 B2
8647386 Gordon Feb 2014 B2
8696751 Ashley et al. Apr 2014 B2
8771360 Jimenez et al. Jul 2014 B2
8894710 Simpson et al. Nov 2014 B2
8932355 Grotz et al. Jan 2015 B2
8940049 JImenez et al. Jan 2015 B1
8956413 Ashley et al. Feb 2015 B2
8992620 Ashley et al. Mar 2015 B2
9028550 Shulock et al. May 2015 B2
9358125 JImenez et al. Jun 2016 B2
9532883 McLuen et al. Jan 2017 B2
9622878 Grotz Apr 2017 B2
20020045945 Liu Apr 2002 A1
20020068976 Jackson Jun 2002 A1
20020068977 Jackson Jun 2002 A1
20030176926 Boehm et al. Sep 2003 A1
20040030387 Landry et al. Feb 2004 A1
20040049271 Biedermann et al. Mar 2004 A1
20040054412 Gerbec et al. Mar 2004 A1
20040087947 Lim et al. May 2004 A1
20040153065 Lim Aug 2004 A1
20050021041 Michelson Jan 2005 A1
20050021145 de Villiers et al. Jan 2005 A1
20050033432 Gordon Feb 2005 A1
20050080422 Otte et al. Apr 2005 A1
20050113916 Branch May 2005 A1
20050149188 Cook et al. Jul 2005 A1
20050171541 Boehm Aug 2005 A1
20050251258 Jackson Nov 2005 A1
20050273171 Gordon Dec 2005 A1
20050273174 Gordon Dec 2005 A1
20050278026 Gordon Dec 2005 A1
20050283244 Gordon Dec 2005 A1
20050283245 Gordon Dec 2005 A1
20060004453 Bartish, Jr. et al. Jan 2006 A1
20060015184 Winterbottom et al. Jan 2006 A1
20060058878 Michelson Mar 2006 A1
20060084986 Grinberg et al. Apr 2006 A1
20060122701 Kister Jun 2006 A1
20060129244 Ensign Jun 2006 A1
20060142859 Mcluen Jun 2006 A1
20060149385 Mckay Jul 2006 A1
20060195192 Gordon et al. Aug 2006 A1
20060229729 Gordon Oct 2006 A1
20060241770 Rhoda et al. Oct 2006 A1
20060253201 Mcluen Nov 2006 A1
20070043442 Abernathie Feb 2007 A1
20070050030 Kim Mar 2007 A1
20070050032 Gittings et al. Mar 2007 A1
20070055377 Hanson et al. Mar 2007 A1
20070191951 Branch Aug 2007 A1
20070250168 Lechmann et al. Oct 2007 A1
20070255415 Edie et al. Nov 2007 A1
20070270963 Melkent et al. Nov 2007 A1
20070270968 Baynham Nov 2007 A1
20080021559 Thramann Jan 2008 A1
20080065222 Hamada Mar 2008 A1
20080114467 Capote et al. May 2008 A1
20080140207 Olmos et al. Jun 2008 A1
20080147194 Grotz et al. Jun 2008 A1
20080161933 Grotz et al. Jul 2008 A1
20080167657 Greenhalgh Jul 2008 A1
20080183204 Greenhalgh et al. Jul 2008 A1
20080221694 Warnick et al. Sep 2008 A1
20080275455 Berry et al. Nov 2008 A1
20080281346 Greenhalgh et al. Nov 2008 A1
20080288073 Renganath et al. Nov 2008 A1
20080300598 Barriero et al. Dec 2008 A1
20080306488 Altarac et al. Dec 2008 A1
20080319487 Fielding et al. Dec 2008 A1
20080319549 Greenhalgh et al. Dec 2008 A1
20090024217 Levy et al. Jan 2009 A1
20090062833 Song Mar 2009 A1
20090076616 Duggal et al. Mar 2009 A1
20090125062 Arnin May 2009 A1
20090149956 Greenhalgh et al. Jun 2009 A1
20090149959 Conner et al. Jun 2009 A1
20090204218 Richelsoph Aug 2009 A1
20090222100 Cipoletti et al. Sep 2009 A1
20090240334 Richelsoph Sep 2009 A1
20090270989 Conner et al. Oct 2009 A1
20090281628 Oglaza et al. Nov 2009 A1
20090292361 Lopez Nov 2009 A1
20090299478 Carls et al. Dec 2009 A1
20090312763 McCormack Dec 2009 A1
20100049324 Valdevit Feb 2010 A1
20100070041 Peterman Mar 2010 A1
20100082109 Greenhalgh et al. Apr 2010 A1
20100145455 Simpson et al. Jun 2010 A1
20100179657 Greenhalgh et al. Jul 2010 A1
20100185291 Jimenez Jul 2010 A1
20100191336 Greenhalgh Jul 2010 A1
20100204795 Greenhalgh Aug 2010 A1
20100211176 Greenhalgh Aug 2010 A1
20100222816 Gabelberger et al. Sep 2010 A1
20100222884 Greenhalgh Sep 2010 A1
20100234952 Peterman Sep 2010 A1
20100249933 Trieu Sep 2010 A1
20100280622 Mckinley Nov 2010 A1
20100286779 Thibodeau Nov 2010 A1
20100286780 Dryer Nov 2010 A1
20100286783 Lechmann et al. Nov 2010 A1
20100292796 Greenhalgh et al. Nov 2010 A1
20100305705 Butler Dec 2010 A1
20100331981 Mohammed Dec 2010 A1
20100331985 Gordon Dec 2010 A1
20110035011 Cain Feb 2011 A1
20110093074 Glerum et al. Apr 2011 A1
20110160861 Jimenez et al. Jun 2011 A1
20110172774 Varela Jul 2011 A1
20110184522 Melkent et al. Jul 2011 A1
20110276142 Niemiec et al. Nov 2011 A1
20110301713 Theofilos Dec 2011 A1
20110319997 Glerum et al. Dec 2011 A1
20120035729 Glerum et al. Feb 2012 A1
20120059470 Weiman Mar 2012 A1
20120059472 Weiman Mar 2012 A1
20120109308 Lechmann et al. May 2012 A1
20120130496 Duffield et al. May 2012 A1
20120165945 Hansell et al. Jun 2012 A1
20120185049 Varela Jul 2012 A1
20120209386 Triplett et al. Aug 2012 A1
20120215313 Saidha et al. Aug 2012 A1
20120226357 Varela Sep 2012 A1
20120265309 Glerum et al. Oct 2012 A1
20120277861 Steele et al. Nov 2012 A1
20120277870 Wolters et al. Nov 2012 A1
20120323329 Jimenez et al. Dec 2012 A1
20120330426 McLaughlin et al. Dec 2012 A1
20130023993 Weiman Jan 2013 A1
20130023994 Glerum Jan 2013 A1
20130158663 Miller et al. Jun 2013 A1
20130158669 Sungarian et al. Jun 2013 A1
20130197647 Wolters et al. Aug 2013 A1
20130211526 Alheidt et al. Aug 2013 A1
20130274883 McLuen et al. Oct 2013 A1
20140067071 Weiman et al. Mar 2014 A1
20140088714 Miller et al. Mar 2014 A1
20140163683 Seifert et al. Jun 2014 A1
20150066145 Rogers et al. Mar 2015 A1
20150088258 Jimenez et al. Mar 2015 A1
20150134064 Grotz et al. May 2015 A1
20150216676 Shulock et al. Aug 2015 A1
20150289988 Ashley et al. Oct 2015 A1
20150374508 Sandul Dec 2015 A1
20160166396 McClintock Jun 2016 A1
20160324654 Loebl et al. Nov 2016 A1
20170100258 Jimenez et al. Apr 2017 A1
20170119543 Dietzel et al. May 2017 A1
Foreign Referenced Citations (36)
Number Date Country
2088066 Jan 1992 CA
4012622 Jul 1991 DE
4327054 Apr 1995 DE
0576379 Jun 1993 EP
0610837 Jul 1994 EP
3111896 Jan 2017 EP
2794968 Dec 2000 FR
2794968 Dec 2000 FR
2874814 Mar 2006 FR
2000-513263 Oct 2000 JP
2000-513263 Oct 2000 JP
2000513263 Oct 2000 JP
2013508031 Mar 2013 JP
200290058 Sep 2002 KR
1424826 Sep 1988 SU
9201428 Feb 1992 WO
9525485 Sep 1995 WO
199942062 Aug 1999 WO
1999042062 Aug 1999 WO
199966867 Dec 1999 WO
1999066867 Dec 1999 WO
2002045625 Jun 2002 WO
2004019829 Mar 2004 WO
2004069033 Aug 2004 WO
2006045094 Apr 2006 WO
WO2006045094 Apr 2006 WO
2006047587 May 2006 WO
2006113080 Oct 2006 WO
WO2006113080 Oct 2006 WO
2008044057 Apr 2008 WO
WO2008044057 Apr 2008 WO
2008134515 Nov 2008 WO
2009114381 Sep 2009 WO
2010103344 Sep 2010 WO
2012031267 Mar 2012 WO
2015009793 Jan 2015 WO
Related Publications (1)
Number Date Country
20210322182 A1 Oct 2021 US
Divisions (1)
Number Date Country
Parent 14970598 Dec 2015 US
Child 16453038 US
Continuations (1)
Number Date Country
Parent 16453038 Jun 2019 US
Child 17365219 US