The present application is directed to devices and methods for stabilizing vertebral members, and more particularly, to intervertebral implants and methods of use for replacing an intervertebral disc, vertebral member, or combination of both to distract and/or stabilize the spine.
The spine is divided into four regions comprising the cervical, thoracic, lumbar, and sacrococcygeal regions. The cervical region includes the top seven vertebral members identified as C1-C7. The thoracic region includes the next twelve vertebral members identified as T1-T12. The lumbar region includes five vertebral members L1-L5. The sacrococcygeal region includes nine fused vertebral members that form the sacrum and the coccyx. The vertebral members of the spine are aligned in a curved configuration that includes a cervical curve, thoracic curve, and lumbosacral curve. Intervertebral discs are positioned between the vertebral members and permit flexion, extension, lateral bending, and rotation.
Various conditions may lead to damage of the intervertebral discs and/or the vertebral members. The damage may result from a variety of causes including a specific event such as trauma, a degenerative condition, a tumor, or infection. Damage to the intervertebral discs and vertebral members can lead to pain, neurological deficit, and/or loss of motion.
Various procedures include replacing the entirety or a section of a vertebral member, the entirety or a section of an intervertebral disc, or both. One or more replacement implants may be inserted to replace the damaged vertebral members and/or discs. The implants reduce or eliminate the pain and neurological deficit, and increase the range of motion.
The present application is directed to an intervertebral spacer with first and second members each with an outer side and an inner side. The members may be positioned in a stacked orientation with the inner sides facing together. A threaded extension may extend outward from the inner side of the first member. A cavity may be formed on the inner side of the second member, and may include a floor opposite from an open side. A ring gear may be positioned in the cavity and against the floor. The ring gear may include a threaded bore that receives the threaded extension and teeth that extend around an outer circumference. A gear may be positioned in the cavity and may include helical teeth that engage with the teeth on the ring gear. The gear may be rotatably positioned in the cavity with rotation in a first direction causing the first and second members to move apart and rotation in a second direction causing the first and second members to move together.
The present application relates to implants for replacing an intervertebral disc, vertebral member, or combination of both, and to methods of inserting the same. The implant comprises an intervertebral spacer 10 that can be inserted between vertebral bodies in a compact configuration as shown in
The inferior member 12 comprises a body 14 including a bottom surface 16 that contacts an adjacent vertebral body. The bottom surface 16 can be textured to grip the adjacent vertebral body. For example, small teeth, ridges, or grooves can be formed in the bottom surface 16 to improve gripping capability. The body 14 has a main cavity 18 formed therein to house components of the jack mechanism, and a guide hole 20 to receive a guide member 46 on the superior member. The body 14 further includes a shelf 22 having an opening 24 formed therein. The shelf 22 and opening 24 are configured to engage the head of an insertion tool 100 as will be hereinafter described in more detail.
The superior member 40, shown in
The jack mechanism 60 comprises a screw shaft 62 that extends downward from the bottom surface of the top plate 42, and a ring gear 64 that is rotatably mounted in the main cavity 18 of the inferior member 12. The ring gear 64 is internally threaded to mesh with the externally threaded screw shaft 62. When the ring gear 64 is rotated in a first direction, the superior member 40 is raised relative to the inferior member 12. Conversely, when the ring gear 64 is rotated in a second direction, the superior member 40 is moved toward the inferior member 12.
A drive gear 70 meshes with the ring gear 64. The drive gear is actuated by the surgeon to rotate the ring gear 64. In the exemplary embodiment, the drive gear comprises a worm gear with helical teeth that mesh with the teeth of the ring gear 64. The drive gear 70 has an axial bore 72 to receive a mounting shaft 74 which is rotatably journaled in openings 76, 78 in the main cavity 14 of the inferior member 12. The mounting shaft 74 includes a head 75 having a socket for receiving a tool. The drive gear 70 may be fixed to the mounting shaft 74 by any suitable means, such as pin 80. During assembly, the ring gear 64 and drive gear 70 are disposed within the main cavity 14 of the inferior member 12 as shown in
The inferior member 12 and superior member 40 can be made of any suitable material, such carbon reinforced PEEK. The bottom of the inferior member 12 and/or top plate 42 of the superior member 40 could be porous to allow the in-growth of bone. An embedded biologic coating, such as hydroxia appetite (HA), BMP, or calcium phosphate could be used to promote bone in-growth. The contact surfaces of the inferior and superior members 12 and 40 could also be textured to grip the adjacent vertebral bodies.
In use, the superior member 40 is assembled to the inferior member 12 and placed in a compact configuration with the superior member 40 in a retracted position relative to the inferior member 12 as shown in
The intervertebral spacer 10 may be used in various regions of the spine, including the cervical, thoracic, lumbar and/or sacral portions of the spine.
The embodiments described above include member 40 being a superior member and member 12 being inferior. In another embodiment, the orientation of these members 40, 12 may be interchanged with member 40 functioning as an inferior member and member 12 functioning as a superior member.
The term “distal” is generally defined as in the direction of the patient, or away from a user of a device. Conversely, “proximal” generally means away from the patient, or toward the user. Spatially relative terms such as “under”, “below”, “lower”, “over”, “upper”, and the like, are used for ease of description to explain the positioning of one element relative to a second element. These terms are intended to encompass different orientations of the device in addition to different orientations than those depicted in the figures. Further, terms such as “first”, “second”, and the like, are also used to describe various elements, regions, sections, etc and are also not intended to be limiting. Like terms refer to like elements throughout the description.
As used herein, the terms “having”, “containing”, “including”, “comprising” and the like are open ended terms that indicate the presence of stated elements or features, but do not preclude additional elements or features. The articles “a”, “an” and “the” are intended to include the plural as well as the singular, unless the context clearly indicates otherwise.
The present invention may be carried out in other specific ways than those herein set forth without departing from the scope and essential characteristics of the invention. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive, and all changes coming within the meaning and equivalency range of the appended claims are intended to be embraced therein.
The present application is a continuation of and claims priority from U.S. Utility patent application Ser. No. 12/722,311, filed on Mar. 11, 2010 now allowed, which claims priority from Utility patent application Ser. No. 11/415,042, filed on May 1, 2006, now U.S. Pat. No. 7,708,779, each of which are incorporated herein in their entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
196117 | Greenleaf | Oct 1877 | A |
4553273 | Wu | Nov 1985 | A |
4554914 | Kapp et al. | Nov 1985 | A |
4657550 | Daher | Apr 1987 | A |
4820305 | Harms et al. | Apr 1989 | A |
4932975 | Main et al. | Jun 1990 | A |
5002576 | Fuhrmann et al. | Mar 1991 | A |
5026373 | Ray et al. | Jun 1991 | A |
5062850 | MacMillian et al. | Nov 1991 | A |
5236460 | Barber | Aug 1993 | A |
5336223 | Rogers | Aug 1994 | A |
5360430 | Lin | Nov 1994 | A |
5397364 | Kozak et al. | Mar 1995 | A |
5480442 | Bertagnoli | Jan 1996 | A |
5522899 | Michelson | Jun 1996 | A |
5571190 | Ulrich et al. | Nov 1996 | A |
5571192 | Schönhöffer | Nov 1996 | A |
5658335 | Allen | Aug 1997 | A |
5702451 | Biedermann et al. | Dec 1997 | A |
5702453 | Rabbe et al. | Dec 1997 | A |
5702455 | Saggar | Dec 1997 | A |
5723013 | Jeanson et al. | Mar 1998 | A |
5725528 | Errico et al. | Mar 1998 | A |
5776197 | Rabbe et al. | Jul 1998 | A |
5776198 | Rabbe et al. | Jul 1998 | A |
5989290 | Biedermann et al. | Nov 1999 | A |
6015436 | Schonhoffer | Jan 2000 | A |
6086613 | Camino et al. | Jul 2000 | A |
6156038 | Zucherman et al. | Dec 2000 | A |
6176881 | Schär et al. | Jan 2001 | B1 |
6190413 | Sutcliffe | Feb 2001 | B1 |
6190414 | Young et al. | Feb 2001 | B1 |
6193755 | Metz-Stavenhagen et al. | Feb 2001 | B1 |
6193756 | Studer et al. | Feb 2001 | B1 |
6200348 | Biedermann et al. | Mar 2001 | B1 |
6296665 | Strnad et al. | Oct 2001 | B1 |
6299644 | Vanderschot | Oct 2001 | B1 |
6344057 | Rabbe et al. | Feb 2002 | B1 |
6352556 | Kretschmer et al. | Mar 2002 | B1 |
6375681 | Truscott | Apr 2002 | B1 |
6375682 | Fleischmann et al. | Apr 2002 | B1 |
6375683 | Crozet et al. | Apr 2002 | B1 |
6395032 | Gauchet | May 2002 | B1 |
6395034 | Suddaby | May 2002 | B1 |
6409766 | Brett | Jun 2002 | B1 |
6447547 | Michelson | Sep 2002 | B1 |
6454806 | Cohen et al. | Sep 2002 | B1 |
6520991 | Huene | Feb 2003 | B2 |
6524341 | Läng et al. | Feb 2003 | B2 |
6562074 | Gerbec et al. | May 2003 | B2 |
6610090 | Böhm et al. | Aug 2003 | B1 |
6616695 | Crozet et al. | Sep 2003 | B1 |
6645249 | Ralph et al. | Nov 2003 | B2 |
6648917 | Gerbec et al. | Nov 2003 | B2 |
6660038 | Boyer, II et al. | Dec 2003 | B2 |
6719796 | Cohen et al. | Apr 2004 | B2 |
6723126 | Berry | Apr 2004 | B1 |
6752832 | Neumann | Jun 2004 | B2 |
6758862 | Berry et al. | Jul 2004 | B2 |
6776798 | Camino et al. | Aug 2004 | B2 |
6783547 | Castro | Aug 2004 | B2 |
6793678 | Hawkins | Sep 2004 | B2 |
6808538 | Paponneau | Oct 2004 | B2 |
6835207 | Zacouto et al. | Dec 2004 | B2 |
6852129 | Gerbec et al. | Feb 2005 | B2 |
6863673 | Gerbec et al. | Mar 2005 | B2 |
6866682 | An et al. | Mar 2005 | B1 |
6893465 | Huang | May 2005 | B2 |
6902579 | Harms et al. | Jun 2005 | B2 |
6908485 | Crozet et al. | Jun 2005 | B2 |
20030191531 | Berry et al. | Oct 2003 | A1 |
20030199980 | Siedler | Oct 2003 | A1 |
20040049271 | Biedermann et al. | Mar 2004 | A1 |
20040073314 | White et al. | Apr 2004 | A1 |
20040172129 | Schafer et al. | Sep 2004 | A1 |
20040181283 | Boyer, II et al. | Sep 2004 | A1 |
20040186569 | Berry | Sep 2004 | A1 |
20050004572 | Biedermann et al. | Jan 2005 | A1 |
20050060036 | Schultz et al. | Mar 2005 | A1 |
20050090898 | Berry et al. | Apr 2005 | A1 |
20050113921 | An et al. | May 2005 | A1 |
20050209698 | Gordon et al. | Sep 2005 | A1 |
20050273169 | Purcell | Dec 2005 | A1 |
20050283245 | Gordon et al. | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
1 080 703 | Aug 2000 | EP |
1 188 424 | Aug 2001 | EP |
WO 03073964 | Sep 2003 | WO |
WO 03096937 | Nov 2003 | WO |
WO 2004026157 | Apr 2004 | WO |
WO 2004096103 | Nov 2004 | WO |
WO 2004100837 | Nov 2004 | WO |
WO 2005055887 | Jun 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20120296430 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12722311 | Mar 2010 | US |
Child | 13562550 | US | |
Parent | 11415042 | May 2006 | US |
Child | 12722311 | US |